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We have developed a general purpose algorithm which finds genes by combining
plural existing gene-finders. The algorithm has been implemented into a novel
gene-finder named DIGIT. An outline of the algorithm is as follows. First, existing
gene-finders are applied to an uncharacterized genomic sequence (input sequence).
Next, DIGIT produces all possible exons from the results of gene-finders, and
assigns them their exon types, reading frames and exon scores. Finally, DIGIT
searches a set of exons whose additive score is maximized under their reading
frame constraints. Bayesian procedure and a hidden Markov model are used to
infer exon scores and search the exon set, respectively. We have designed DIGIT
so as to combine the results of FGENESH, GENSCAN and HMMgene, and have
assessed its prediction accuracy by using recently compiled benchmark data sets.
For all data sets, DIGIT successfully discarded many false-positive exons predicted
by individual gene-finders and yielded remarkable improvements in sensitivity and
specificity at the gene level compared with the best gene level accuracies achieved
by any single gene-finder.

1 Introduction

Draft sequences corresponding to approximately 90% of the human genome
have been produced !, and interest in exhaustive gene finding in the genome
has increased enormously. Over the last decade, many gene finding programs
(gene-finders) for the human genome have been developed, but none of them
is entirely reliable 2.

Gene-finders may be categorized into two classes: empirical gene-finders
and ab initio gene-finders. Empirical gene-finders, which are also called ‘se-
quence similarity-based gene-finders’, detect genes by aligning known cDNA



and protein sequences onto uncharacterized genomic sequences ¢. The re-
markable feature of empirical gene-finders is their high specificity, that is,
genes exist with high probability in genomic regions which these gene-finders
detect. However, empirical gene-finders can detect only a limited number of
genes (low sensitivity) because it is extremely difficult experimentally to col-
lect mRNAs of all genes. On the other hand, ab initio gene-finders do not
utilize sequence similarity and rely on intrinsic gene measures such as coding
potential and splice signals. The remarkable feature of ab initio gene-finders
is their high sensitivity, that is, these gene-finders are capable of detecting
almost all genes. However, ab initio gene-finders also predict many false-
positive genes (low specificity) because known gene measures are insufficient
to distinguish true positives from false positives.

Several attempts to complete the human gene catalogue have been
launched since the production of the draft sequences. Among them, Ensembl
(http://www.ensembl.org/) is the most popular project. Ensembl adopts
a conservative gene annotation protocol which mainly uses empirical gene-
finders. Therefore, the gene catalogue compiled by Ensembl contains only a
small number of false-positive genes but misses a large number of unknown
genes.

Ab initio gene-finders are essential for the completion of the human gene
catalogue. Hence, an improvement in their specificity has become an impor-
tant problem. To address this problem, hybrid gene-finders which combine
coding potential and splice signals (ab initio approach) with similarity to
known gene sequences (empirical approach) have been recently developed 4.
On average, hybrid gene-finders enable us to improve the specificity of ab
initio gene-finders. However, their specificity drops to levels comparable with
that of ab initio gene-finders when remote homologous genes or no homologous
genes are available.

Ab initio gene-finders are immensely powerful tools to find genes when
there are no known homologues. It is for these cases where specificity should
be improved. The sequencing project of human chromosome 21 addressed
this problem by using plural ab initio gene-finders, namely, only genome re-
gions which were simultaneously detected by more than one of them were
chosen as exons ®. Although this heuristic approach considerably improves
the specificity of ab initio gene-finders, the following problems have newly
arisen. When we assemble such exons into a gene, the frame consistencies
between adjoining exons are not always ensured. Moreover, in the case when
all exon scores given by plural gene-finders are low, it is questionable as to

®Gene-finders based on genome-genome comparisons may also be categorized into this class.



Table 1. Patterns of exons predicted by two gene-finders, where X and Y are the 5’ and the
3’ ends of actual exons, respectively. For example, ‘Case 1’ is the case where gene-finders
1 and 2 predict the same genomic region as an exon and this region corresponds exactly to
an actual exon.

Exons predicted by Exons predicted by
Gene-finder 1 (z1 < y1) Gene-finder 2 (z2 < y2)

Case 5 end (z1) 3’end (y1) 5 end (x2) 3’ end (y2)
1 1 =X =Y xrog = X y2 =Y
2 1 =X y1 =Y x9 = X yp2 #Y
3 x1 =X y1 =Y xo # X y2 =Y
4 r1 =X y1#FY r2 =X Y=Y
5 x1 # X y1=Y z2 =X y2=Y
*1g z1 =X X<y1<Y X<w<Y ya =Y

27 X<z <Y =Y zo =X X<y2<Y
8 r1 =X y1 >Y Ty < X =Y
9 1 < X y1 =Y o =X ya2 >Y
10 x; =X X<y1 <Y T2 < X y2 =Y
1 =X y1 >Y X <z2<Y y2 =Y

11 1 < X y1=Y o =X X<y2<Y
X<z <Y y1 =Y 2 = X ya2 >Y
12 =X y1=Y x9 # X y2 ZY
13 1 # X y1 #Y z2 = X y2 =Y

*1 *

where y; > x3. 2 where 71 < ya.

whether we should choose it or not. Independently of the above sequencing
project, Murakami & Takagi have reported that different ab initio gene-finders
will often correctly predict different exons, suggesting that they could com-
plement one another, yielding better predictions 6. However, they have not
proposed an algorithm which address the above problems.

We present here a general purpose algorithm which finds genes by combin-
ing plural existing gene-finders. The algorithm addresses the two problems
stated above by applying the frameworks of hidden Markov model (HMM)
7 and Bayesian procedure &, namely, an HMM is used to ensure the frame
consistency between exons within a gene, and Bayesian procedure is used to
take into account the exon scores given by the gene-finders. A remarkable
feature of the algorithm is that it can combine most gene-finders in a system-
atic manner. The algorithm has been implemented into a novel gene-finder
named DIGIT (Digit Integrates Gene Identification Tools). Currently, DIGIT
has been designed so as to combine plural ab initio gene-finders. Our exten-
sive testing has clearly shown that DIGIT can accurately identify genes with
a low rate of false-positives. In this paper, we report the prediction accuracy
of DIGIT as well as presenting the detailed algorithm behind DIGIT.



(A) Multi-exon genes

Single-exon genes

Figure 1. (A) the basic architecture of the HMM which DIGIT employs. EFF indicates
a first coding exon which ends at the i-th position of a codon. EIf’, indicates an internal
coding exon which starts at at the i-th position of a codon and ends at the j-th position of
a codon. ELi.c indicates a last coding exon which starts the i-th position of a codon. ES¥
and [ indicate single exon genes and introns, respectively. Squares are null states. B and
E are the begin and the end states, respectively. This topology includes frame constraints
within genes. For example, a downstream exon which adjoins with the first exon ending at
the first base of codon (E'Flk) through an intron always starts at the second base of codon

(E'Ig’j or ELE). (B) a detailed architecture corresponding to EFF in the left figure, where k
indicates a pattern of exons predicted by gene-finders. There are thirteen possible patterns
in the case of combining two gene-finders. Each of them are listed in Table 1. Note that
these states are able to emit patterns of the predicted exons. (C) a detailed architecture
corresponding to I in the left figure. This state is able to emit four bases i.e. A, C, G and
T.

2 Methods

We describe below the computer algorithm which is employed by DIGIT.
Currently, DIGIT combines two kinds of gene-finders. However, we can easily
extend the algorithm so as to combine more than two kinds of gene-finders.
In such case, although the number of model parameters which we should
estimate increases exponentially, we can apply the same technique described
in ‘Parameter estimation’ in order to reduce the number.

2.1 HMDM architecture

Since DIGIT employs an HMM whose architecture includes frame constraints
in gene structure (Figure 1 A), the parsing of genome sequences by DIGIT
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Figure 2. The logistic function which transforms raw exon scores given by gene-finders into
probabilities. The solid curve is a logistic function which enables us to transform raw exon
scores given by FGENESH into the prediction accuracies of 5’ ends of internal coding exons.
This function is adjusted to the correlation, shown here by the bar graph, between the exon
scores and the prediction accuracies observed in the training data.

necessarily results in finding of frame consistent genes. This feature seems to
be very similar to that of Genie ?; however, DIGIT employs a more compli-
cated architecture. The state transitions corresponding to each exon type in
Figure 1 A are divided into thirteen sets of state transitions and states in fact
(Figure 1 B), each of which corresponds to a pattern of exons predicted by
the gene-finders. In other words, these states emit patterns of the predicted
exons. According to the positional relationship between both ends of the pre-
dicted exons and the actual exons, the patterns can be classified into thirteen
cases (Table 1). Note that the number of cases exponentially increases as the
number of gene-finders increases. That is, the number of model parameters
which we should estimate increases exponentially in such cases. As for in-
trons, states which emit four bases and possess in/out- and self-transitions
are prepared (Figure 1 C).

In addition, several state transitions, i.e. from the begin state to EIZ-’fj
and ELf, and from those to the end state, are defined in order to find ‘partial’
genes. For example, transitions from the begin state to EIi’fj enables us to
find partial genes starting in internal coding exons. These transitions are not
shown in Figure 1 for reason of simplicity.
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Gene-finder 2

Genomic sequence 5
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Figure 3. Identification of state sequences in the HMM shown in Figure 1. When we apply
gene-finders to genomic sequences of the training data, we obtain sets of predicted exons
with their types and frames. Since the training data contains information concerning the
types and frames of actual exons, we can easily identify state sequences in the HMM by
refering to Figure 1 and Table 1. For example, the actual exon EF1 in this figure corresponds
to ‘Case 13’ in Table 1 because gene-finder 2 exactly predicted this exon but gene-finder 1
missed.

(A) Multi-exon genes (B) Multi-exon genes

Single-exon genes

Single-exon genes

Figure 4. Two types of HMMs introduced in order to reduce the number of parameters
which need to be estimated. (A) the HMM where information for the pattern of predicted
exons is removed from the HMM shown in Figure 1. (B) the HMM where frame constraints
are removed from the HMM shown in Figure 1.

2.2 Parameter estimation

Emission probabilities of exon states must reflect probabilities that a genomic
region [X ...Y] is an actual exon for each case in Table 1. We assume that
such probabilities can be calculated by a3, where a and (3 are probabilities



that X and Y are actual 5’ and 3’ ends of exons, respectively. Although «
and S should be calculated from exon scores given by the gene-finders, these
scores are usually given as log-odds measure. Thus, we have to begin with
the transformation of raw exon scores into probabilities. First, we plot graphs
representing correlations between the exon scores given by each gene-finder
and the prediction accuracies of 5 and 3’ ends of exons based on training
data (Figure 2). Next, we adjust logistic functions to the plots by using
a non-linear least square method, namely, the Marquardt method °. These
logistic functions enable us to transform raw exon scores given by gene-finders
into prediction accuracies of 5 and 3’ ends of exons. Finally, we calculate
probabilities that a genomic region [X ...Y] is an actual exon for each case in
Table 1. Bayesian procedure tells us that these probabilities can be calculated
in the following manner. For example, the probability for ‘Case 1’ is given by

0518 ) % B132
araz+(1—ar))(l—az) = BB+ (1= B1)(1 — 3)

where a7 and (37 are the prediction accuracies of 5> and 3’ ends of exons by
‘Gene-Finder 1’ respectively. as and (32 are the prediction accuracies of 5’ and
3’ ends of exons by ‘Gene-Finder 2’, respectively. The first term corresponds
to a, and the second term corresponds to 8. «ajas indicates the probability
that X is the 5’ end of an actual exon. (133 indicates the probability that
Y is the 3’ end of an actual exon. (1 — aq)(1 — ag) indicates the probability
that X is not the 5’ end of an actual exon. (1 — 31)(1 — [33) indicates the
probability that Y is not the 3’ end of an actual exon. We assume that the
background probability is given by setting a; = as = 1 = B2 = 0.5 in the
equation above. We can calculate the probabilities for other cases in a similar
way and assign them to the emission probabilities of exon states.

Emission and transition probabilities related to introns (Figure 1 C) are
set so as not to contribute to the Viterbi score 7. That is, emission probabili-
ties of all bases are 0.25, and the corresponding background probabilities are
also 0.25. All transition probabilities are 1.0.

Transition probabilities to exon states must reflect the frequency for each
case in Table 1 as observed in the training data. A straightforward way for
the estimation of transition probabilities is to count the number of degrees for
each case observed in the training data. However, since the HMM shown in
Figure 1 contains a large number of transition parameters to exon states, an
overfitting problem might occur. Thus, we adopted the following strategy in
order to reduce the number of parameters which need to be estimated. First,
we apply the gene-finders to genomic sequences of the training data and iden-
tify state sequences of the HMM for the genomic sequences (Figure 3). Next,
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Figure 5. All possible exons produced from the prediction results of gene-finders and the
identification of their state labels. This figure shows the case when exons which overlap
each other have the same reading frame, i.e. El31 and Elz2 have the same frame. If
ElI31 and El2 2 have different reading frames, we do not generate possible exons ET §72 and

E127 ; because their frames can not be determined. When two overlapping exons have the
same reading frame but their exon types are different, we do not generate exons for their
intersection and union regions.

we prepare two types of HMMs (Figure 4); one is an HMM where information
for the pattern of predicted exons is removed from the HMM shown in Figure
1, and the other is an HMM where frame constraints are removed from the
HMM shown in Figure 1. For each HMM, we count the number of degrees
corresponding to the transition probabilities based on the state sequences of
the training data, add simple pseudocounts ” to these numbers, and then cal-
culate the frequencies from these numbers. Finally, we obtain the transition
probabilities for the exon states in Figure 1 by assuming that these probabili-
ties can be calculated by multiplying the corresponding parameters of the two
HMMs. For example, a transition probability for EFz-k can be calculated by
multiplying the transition probability for FF; by that of EF*. This procedure
enables us to reduce the number of transition probabilities which need to be
estimated. For example, although the HMM contains 39 (3 x 13) transition
probabilities for EFZ-k, we only have to estimate 16 (3 + 13) probabilities by
applying the above procedure.

2.3 Prediction algorithm

Since gene-finders tend to perform better if provided with a genomic region
containing only a single gene and its immediate neighborhood 2, the prediction
algorithm should begin with the extraction of such genomic regions. First, we



apply an ab initio gene-finder FGENESH ! to an uncharacterized genomic
sequence and extract genomic regions as candidate gene regions, each of which
includes a single predicted gene and the surrounding regions (up to 1,000 bps
on each side). Our experiments preliminary to this study have shown that
FGENESH is capable of detecting gene boundaries with high reliability (data
not shown). Second, we apply gene-finders to the candidate gene regions.
This second analysis often leads to different results from the first analysis 2.
Third, we generate all possible exons and identify their state labels in the
HMM shown in Figure 1 (Figure 5). Fourth, we calculate emission proba-
bilities for all possible exons based on the Bayesian procedure explained in
‘Parameter estimation’. The state labels are used to calculate these proba-
bilities. Last, we parse the candidate gene regions by using the HMM shown
in Figure 1. For the parsing algorithm, semi-global search algorithm 7, which
aligns an entire HMM to partial genomic sequences, is used. The local search
algorithm enables us to find plural genes within a candidate gene region. The
search threshold is set so as to maximize the average value of sensitivity and
specificity of gene level in the training data (see below).

3 Data

In order to evaluate the prediction accuracy of DIGIT, we used three various
data sets each of which has different characteristics. The first one is the data
set, HMR195, compiled by Rogic et al. 2. They attempted to create a data
set which did not have many overlaps with the training sets used for the gene-
finders. Then, they selected only sequences entered in GenBank after Aug.,
1997. Since all sequences in HMR195 are relatively short and each of them
contains exactly one complete gene, it can be said that HMR195 is a typi-
cal benchmark set for gene-finders. HMR195 consists of 195 human/murine
DNA sequences, 43 of them contain single-exon genes, and 152 of them contain
multi-exon genes. The average sequence length is 7,096 bps, the proportion of
coding sequence is 14%, of intronic sequence is 46% and of intergenic sequence
is 40%. Note that these sequences are highly gene dense. The second data
set, Genl78, was compiled by Guigd et al. 2. They attempted to overcome
the lack of well-annotated large genomic sequences, by preparing a set of well-
annotated DNA sequences each of which contains exactly one complete gene
and embedding them in simulated intergenic DNA. Genl178 is a more realistic
benchmark set for gene-finders, that is, all sequences are fully long, some of
them contain several genes including partial ones, and some of them do not
contain any genes. Genl78 consists of 43 semiartificial genomic sequences and
contains 178 human genes, 40 are single-exon genes, and 138 are multi-exon



Table 2. Exon- and gene-level prediction accuracies of DIGIT and three ab initio gene-
finders on three data sets. Statistics on annotation are also summarized, i.e. numbers of
actual exons and actual genes in each data set. Exon level sensitivity (Sn) is the percent of
annotated exons predicted correctly. Exon level specificity (Sp) is the percent of predicted
exons which are correct. Gene level Sn is the percent of annotated genes predicted correctly.
Gene level Sp is the percent of predicted genes which are correct.

Exon level Gene level
Data Program ” Sn Sp ” Sn Sp

o Annotated 948 195

= DIGIT 899 0.795 0.838 188  0.507 0.526

faef FGENESH | 1006 0.819 0.772 222 0.476  0.418

E GENSCAN | 1011 0.773 0.725 221  0.364 0.321

HMDMgene 1181 0.754 0.605 299 0.446 0.290
Annotated 900 178

& DIGIT 911 0.786 0.777 166  0.449 0.481

% FGENESH | 1055 0.771 0.657 187 0.376  0.358

&} GENSCAN | 1332 0.665 0.449 222  0.185 0.148

HMMgene 1711 0.696  0.366 362 0.258 0.127
Annotated 3660 522

Q DIGIT 4513  0.695 0.563 654  0.123  0.098

= FGENESH | 5734 0.708 0.452 866 0.115 0.069

O GENSCAN | 6588 0.707 0.393 803 0.067 0.044

HMDMgene 6840 0.629 0.336 | 1508 0.090 0.031

genes. The average sequence length is 177,160 bps, the proportion of coding
sequence is 2.3%, of intronic sequence is 6.3% and of intergenic sequence is
91.4%. Note that these statistics are highly similar to ones observed in real
genomic sequences. The third data set is the finished human chromosome
22 (Chr 22) sequences (May 19, 2000, version) ** with the annotation pro-
vided by the Sanger Institute (March 6, 2001, version). It is one of the few
well-annotated large genomic sequence sets for human. Chr22 consists of 12
contiguous segments covering 33.4 million bps. It consists of 504 multi-exon
genes and 18 single-exon genes. The proportion of coding sequence is 1.7%,
of intronic sequence is 32.3% and of intergenic sequence is 66.0%. Note that
some uncharacterized genes may still remain in these sequences.

4 Results

In this study, we have constructed DIGIT so as to combine plural ab ini-
tio gene-finders. More explicitly, DIGIT has been designed so as to combine
the first coding exons predicted by FGENESH and HMMgene 4, the inter-
nal and last coding exons predicted by FGENESH and GENSCAN 15, and



single exon genes predicted by FGENESH and HMMgene. Among ab initio
gene-finders, these programs are highly reliable and widely used. The se-
lection and the combination of gene-finders was determined on the basis of
our experiments preliminary to this study. We have evaluated the prediction
accuracy of nearly twenty ab initio gene-fingers by using various benchmark
data. Our experiments showed that (1) FGENESH had the best prediction
accuracy on average, (2) the second best was GENSCAN, and (3) HMMgene
was good at predicting coding regions including start codons compared with
other gene-finders.

We performed three tests to evaluate the prediction accuracy of DIGIT.
The first test was a 10-fold cross validation test using the HMR195 data set.
The second and third tests were open tests using the Gen178 and Chr22 data
sets, respectively. In the open tests, the model parameters of DIGIT were
optimized by using the HMR195 data set. In all tests, RepeatMasker was
used to mask the interspersed repeats (replace interspersed repeats with Ns)
in the sequence data in order to reduce the number of false positive exons
detected by ab initio gene-finders. All the ab initio gene-finders including
DIGIT were applied to the masked sequences.

The prediction accuracy of DIGIT with three ab initio gene-finders on
the three data sets is summarized in Table 2. For all data sets, although the
exon-level sensitivity of DIGIT was roughly comparable to that of the other
gene-finders, the exon-level specificity of DIGIT was remarkably higher than
that of the other gene-finders. Remarkably, DIGIT outperformed the other
gene-finders for sensitivity and specificity of gene level in all data sets. Note
that the numbers of exons and genes detected by DIGIT decreased drastically
in comparison with the other gene-finders. However, these numbers are closer
to the actual numbers of the annotated exons and genes.

5 Discussion

Table 2 clearly shows that DIGIT significantly improves exon-level specificity
in comparison with the other ab initio gene-finders. This indicates that DIGIT
successfully discards many false positive exons predicted by the gene-finders.
In such cases, although actual exons are also frequently discarded, DIGIT
prevents the sensitivity from dropping by generating all possible exons and
applying Bayesian procedure to the inference of exon scores. That is, in addi-
tion to candidate exons detected by the other gene-finders, DIGIT produces
intersection and union regions of overlapping exons as novel candidate exons,
and then, Bayesian procedure tells us the likelihood of all possible exons on
the basis of positional relationships between these exons and their scores given
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Figure 6. Exon-level accuracies of DIGIT and three ab initio gene-finders on the HMR195
data set as a function of protein similarity. Left, exon-level sensitivity. Right, exon-level
specificity. These measures were calculated for subsets of the HMR195 data set and grouped
according to the level of BLASTX similarity between HMR195 entries and the Swiss-Prot
database http://www.expasy.ch/sprot/sprot-top.html. The definitions of the subsets
and number of genes per subset were as follows: P > 10710 (29); 10710 > P > 10730 (48);
10730 > P > 10759 (45); 10759 > P > 107120 (36); and 107120 > P (37).

by the other gene-finders. This significant improvement of exon-level speci-
ficity naturally leads DIGIT to remarkable improvements in sensitivity and
specificity at the gene level as compared with the best gene-level accuracies
achieved by any single ab initio gene-finder.

One remarkable feature of the algorithm which DIGIT employs is that
it can combine most gene-finders in a systematic manner. Although we in-
troduced here the algorithm as it combines two gene-finders, we can easily
extend it so as to combine more than two gene-finders (see ‘Methods’). More-
over, the algorithm can combine any gene-finder which gives predicted exons
their types, reading frames and scores. Therefore, it enables us to combine not
only ab initio gene-finders but also empirical gene-finders. When we combined
an ab initio gene-finder and an empirical gene-finder by using the algorithm,
the exon-level sensitivity was significantly improved instead of the exon-level
specificity (data not shown). This is due to differences in genes which ab initio
and empirical gene-finders can detect. On the other hand, the main limitation
of the algorithm is that it cannot predict exons whose boundaries and regions
are not detected by gene-finders. We can however reduce this limitation by
extending DIGIT so as to combine more than two gene-finders.

We strongly believe that DIGIT is an essential program for exhaustive



gene finding in the human genome. Figure 6 shows the exon-level accuracy
of DIGIT on the HMR195 data set as a function of protein similarity. The
prediction accuracy of DIGIT remains high (the sensitivity is comparable to
that of other gene-finders, and the specificity is higher than that of other gene-
finders) even if only remote homologous genes are available (P > 10~10). For
P > 10710, it is known that the prediction accuracy of empirical gene-finders
drops remarkably 2, and that the prediction accuracy of hybrid gene-finders
drops to levels comparable with that of ab initio gene-finders 3. This strongly
suggests that DIGIT is needed to help complete the human gene catalogue,
since DIGIT can find genes with high accuracy which empirical and hybrid
gene-finders almost never find. DIGIT is made available upon request to the
authors.
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