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Abstract

As more and more high-throughput protein-protein interaction data
are collected, the task of estimating the reliability of different data sets
becomes increasingly important. In this paper, we present our study of
two groups of protein-protein interaction data, the physical interaction
data and the protein complex data, and estimate the reliability of these
data sets using three different measurements: (1) the distribution of gene
expression correlation coefficients, (2) the reliability based on gene ex-
pression correlation coefficients, and (3) the accuracy of protein function
predictions. We develop a maximum likelihood method to estimate the
reliability of protein interaction data sets according to the distribution
of correlation coefficients of gene expression profiles of putative interact-
ing protein pairs. The results of the three measurements are consistent
with each other. The MIPS protein complex data have the highest mean
gene expression correlation coefficients (0.256) and the highest accuracy
in predicting protein functions (70% sensitivity and specificity), while
Ito’s Yeast two-hybrid data have the lowest mean (0.041) and the lowest
accuracy (15% sensitivity and specificity). Uetz’s data are more reli-
able than Ito’s data in all three measurements, and the TAP protein
complex data are more reliable than the HMS-PCI data in all three
measurements as well. The complex data sets generally perform bet-
ter in function predictions than do the physical interaction data sets.
Proteins in complexes are shown to be more highly correlated in gene
expression. The results confirm that the components of a protein com-
plex can be assigned to functions that the complex carries out within
a cell. There are three interaction data sets different from the above
two groups: the genetic interaction data, the in-silico data and the syn-
express data. Their capability of predicting protein functions generally
falls between that of the Y2H data and that of the MIPS protein com-
plex data. The supplementary information is available at the following
Web site: http://www-hto.usc.edu/∼msms/AssessInteraction/.



1 Introduction

The development of high-throughput bio-techniques for functional genomic
analysis generated a large amount of protein-protein interaction data. These
include the yeast two-hybrid assay 1,2,3 and mass spectrometry 4,5. Several
databases have been developed to collect different sources of protein inter-
action data, including the Munich Information Center for Protein Sequences
(MIPS) 6, the Database of Interacting Proteins (DIP)7, and the Biomolecular
Interaction Network Database (BIND)8. However, even using the same exper-
imental technique of the yeast two-hybrid assay, Ito’s data and Uetz’s data
share few overlaps3, which suggest that errors are present in these data sets.
In this paper, we estimate the reliability of these data sets using three different
measurements: (1) the distribution of gene expression correlation coefficients,
(2) the reliability based on gene expression correlation coefficients, and (3) the
accuracy of protein function predictions.

Interacting proteins are more likely to be involved in similar biological
processes and functions and thus they are more likely to be co-expressed. Based
on this observation, Grigoriev (2001)9 first showed that the mean correlation
coefficient of gene expression profiles for interacting protein pairs is higher than
that for random protein pairs. Therefore, the significance of a set of protein
interaction data can be tested by comparing the mean correlation coefficient
of gene expression profiles with that of random protein pairs10,11,12. Using the
same idea, Ge et al. (2001) 13 showed that interacting protein pairs are more
likely to be in the same cluster of gene expression data than random pairs.
Although this idea can be used to study the significance of a set of protein
interaction data, it cannot be used to estimate the reliability of this set. Here
the reliability is defined as the fraction of real interactions over the observed
protein interactions.

Two methods have been proposed to estimate the reliability of a set of
putative protein interactions. Mrowka et al. (2001)14 used the protein physical
interactions in MIPS as the reference of real interactions and estimated the
reliability of a putative set by comparing the distributions of correlation coef-
ficients with those of random pairs. They used a bootstrap method to count
how many random pairs needed to be added to the reference data to create
the same statistical behavior of gene expression correlation coefficients as the
putative interaction data, and then they computed the reliability from this
sampling data. Deane et al. (2002)15 used INT, a subset of DIP interactions
that are derived from small-scale experiments, as the reference for real inter-
actions. They assumed that the distribution of the square of the Euclidian
distance between expression profiles of putative interacting pairs is a mixture



of distributions for real interacting pairs and for random pairs. They then used
a least-square approach to estimate the reliability of the putative protein in-
teraction data. Although both ideas are novel and interesting, their estimation
methods do not optimally correspond to their models. Other methods have
also been proposed to assess the reliability by looking at protein functions 16

and “interaction generality”17.
In this paper, we develop a maximum likelihood estimation(MLE) method

for estimating the reliability of several interaction data sets based on the model
of Deane et al. (2002). We studied two groups of interaction data. The first
group included the MIPS, Uetz’s and Ito’s interaction data, all of which contain
pairwise physical interactions. In this group, the interactions in MIPS were
treated as real interactions, and we estimated the reliability of Uetz’s data,
Ito’s data and Ito’s data with multiple IST hits (Ito1IST, · · · , Ito8IST). We
show that the reliability of Uetz’s interaction data (53%) is much higher than
the reliability of Ito’s data (17%) and is comparable to that of the Ito2IST
data with at least two IST hits (56%). The reliability of Ito’s data generally
increases with the number of IST hits, which is consistent with our intuition
that multiple IST hits could reduce the false positives significantly. The second
group contained protein complexes: the MIPS complexes, the TAP data, and
the HMS-PCI data. They provide protein components in a complex but do
not give the physical interactions. The two groups are different, although a
relationship does exist, since proteins in the same complex are more likely
to physically interact with one another. The two groups have to be treated
differently. For the protein complex data, the meaning of reliability is the
fraction of protein pairs that are in the same protein complex in the putative
complex data. We used the same MLE approach as above to estimate the
reliability of the protein complex data using the MIPS complexes as the true
complexes. The reliability of the TAP data and the HMS-PCI data are 58%
and 25%, respectively.

Several methods have been developed to predict functions using protein-
protein interaction data 18,19,20,21. The basic assumption behind these studies
is that proteins involved in similar functions are more likely to be interacting.
In this paper, we consider two methods: the neighborhood-counting method
and the chi-square method for the prediction of protein function. We use a
leave-one-out method to estimate the accuracy of predictions, and we compare
the results from different data sets. As expected, the reference data sets show
higher accuracy than others in predicting functions. The MIPS complex data
have the highest accuracy (70% sensitivity and specificity), while Ito’s data
have the lowest accuracy (15% sensitivity and specificity). The results are
consistent with the estimation of the reliability of the protein interaction data.



2 Method

2.1 Estimating the reliability of a putative protein interaction data set

The reliability of a set of putative protein interactions is defined as the fraction
of real protein interactions over all the putative protein interactions. Let α be
the reliability of a given set of putative interactions. Let O(·), T (·) and R(·) be
the distributions of the correlation coefficients of the gene expression profiles
for the given set of putative interaction pairs, the true interacting pairs and
the random pairs, respectively. Then we should have

O(·) = αT (·) + (1− α)R(·).

Suppose we split the values of correlation coefficients into K bins. Let nk

be the number of observed interaction pairs in the kth bin. Let pk and qk be
the fractions of real interactions and random pairs in the kth bin, respectively.
Then the likelihood function can be defined as:

L(α) =
L∏

k=1

(αpk + (1− α)qk)nk . (1)

L(α) is a convex function and we can use a classical gradient algorithm to
estimate the parameter α, α̂, by maximizing L(α).

To find the precision of the estimation, we use the following formula to
calculate the variance of α̂,

V ar(α̂) =
1

K∑
k=1

nk
(pk−qk)2

(bαpk+(1−bα)qk)2

.

2.2 Estimating the reliability of protein interactions from different experi-
ments.

If we have protein interaction data from several experiments, how do we esti-
mate the reliability of the different sets of putative interactions? For example,
we have two sets of putative protein interactions, E1 and E2, with M1 and
M2 pairs, respectively. How do we estimate the reliability of the putative in-
teracting pairs in E1/E1 ∩ E2, E2/E1 ∩ E2, and E1 ∩ E2? If the number of
protein pairs in a set is large, the above approach can be applied. On the other
hand, if the number of protein pairs is not too large, we propose the following
method.



As in Deng et al. 10, we define the false positive rate (fp) and the false
negative rate (fn) for a specific data set, where the false positive rate is the
probability that two proteins do not interact in reality but are observed to be
interacting in the experiment. The false negative rate is the probability that
two proteins interact in reality but are not observed to be interacting in the
experiment. Let Oij and Pij be the variables for the observed and the real
interaction for proteins Pi and Pj , respectively, with value 1 for interaction
and 0 for no interaction. Then

fp = Pr(Oij = 1 |Pij = 0), fn = Pr(Oij = 0 |Pij = 1). (2)

Thus, the probability for the observed protein-protein interaction is

Pr(Oij = 1) = Pr(Pij = 1)(1− fn) + Pr(Pij = 0)fp.

As in Mrowka et al.14 and Deane et al. 15, the reliability of a protein-protein
interaction data set is measured by the fraction of real interactions in the data
set, denoted by α. Let Kr and Kn be the sizes of real interactions and non-
interactions, respectively, and let M be the size of the data set. We assume
that the observed interactions and non-interactions are random samples from
the real interaction set and the non-interaction set, respectively. The false
positive rate and false negative rate can be estimated as

fp =
M(1− α)

Kn
, fn = 1− αM

Kr
. (3)

Using the above formula, we can estimate the reliability of a putative
protein-protein pair given two protein-protein interaction sets. We use the
following notation for the kth data set:

O
(k)
ij : observed interaction result for Pi and Pj ,

fp(k) and fn(k): false positive rate and false negative rate,
αk: reliability,
Mk: the number of interaction pairs.

From equations 2 and 3, we have,

Pr(Pij = 1|O(1)
ij = 1, O

(2)
ij = 1)

=
Pr(Pij = 1)(1− fn(1))(1− fn(2))

Pr(Pij = 1)(1− fn(1))(1− fn(2)) + Pr(Pij = 0)fp(1)fp(2)

=
α1α2

α1α2 + Kr

Kn
(1− α1)(1− α2)

.

(4)



Pr(Pij = 1|O(1)
ij = 1, O

(2)
ij = 0)

=
Pr(Pij = 1)(1− fn(1))fn(2)

Pr(Pij = 1)(1− fn(1))fn(2) + Pr(Pij = 0)fp(1)(1− fp(2))

=
α1(1− α2M2

Kr
)

α1(1− α2M2
Kr

) + (1− α1)(1− (1−α2)M2
Kn

)
.

(5)

Therefore, if Kr << Kn (which is true for yeast), the reliability for the inter-
section of both interaction sets will be very high, close to 1. If Mk << Kr

and Mk << Kn such as in the yeast two-hybrid assays of Ito’s and Uetz’s, the
reliability for E1/E1∩E2 is very close to α1, and the reliability for E2/E1∩E2

is very close to α2.

2.3 Protein function prediction using protein-protein interaction data

We used two simple methods to predict protein functions based on protein-
protein interaction data. One is referred to as the “neighborhood-counting
method”18, which assigns k functions to a protein with the k largest frequencies
in its interacting partners. The other, referred to as the “chi-square method”
19, assigns k functions to a protein with the k largest chi-square scores. The
chi-square score for a function j and a protein Pi is defined as

Si(j) =
[ni(j)− ei(j)]2

ei(j)
,

where ni(j) is the number of interaction partners of protein Pi having function
j, ei(j) = ni(j)×pj is the expected number of partners having function j, and
pj is the fraction of proteins having function j among all the proteins.

3 Results

Our study assessed the reliability of two different groups of protein-protein in-
teraction data: the protein physical interaction data and the protein complex
data. The protein physical interaction data included two yeast two-hybrid data
sets, by Uetz et al. 1 and Ito et al. 2,3, and DIP (http://dip.doe-mbi.ucla.edu),
a collection of protein interactions from the literature and the yeast two-hybrid
assays. A special feature of Ito’s protein-protein interactions is that each in-
teraction is accompanied by an IST number, indicating how many times the
interaction was observed. We compared these data with the experimentally de-
termined MIPS physical interaction data set (http://mips.gsf.de). The protein
complex data included two data sets, the TAP data4 and the HMS-PCI data5,
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Figure 1: Distribution of expression coefficients for Uetz, Ito, MIPS physical interactions and
random protein pairs (left), and that for TAP, HMS-PCI, MIPS complex data and random

protein pairs (right).

obtained by systematic purification of protein complexes and protein identifica-
tion via mass spectrometry. We compared them with a set of experimentally
determined protein complexes called “MIPS Complex” 6. For completeness,
we also included the data obtained by other methods: co-expressed proteins
measured at mRNA levels (“SynExpress”), computationally predicted interac-
tions (“In-silico”) and genetic interactions 16 (“Genetic”). We used the YPD
22 protein names in all data sets.

3.1 Distribution of gene expression correlation coefficients

We computed the correlation coefficient for every interacting protein pair using
the cell cycle gene expression data 23, which contains 6,080 genes with 77 data
points (2 cln3, 2 clb, 18 alpha, 24 cdc15, 17 cdc28, and 14 elut). Figure 1 shows
the distributions of pairwise correlation coefficients. One is for all gene pairs,
the MIPS physical interactions, Uetz’s data and Ito’s data. The other is for all
gene pairs, the MIPS complex protein pairs, the TAP data and the HMS-PCI
data. The distributions for the other three sets: “SynExpress”, “In-silico”,
and “Genetic”, are not included, as they cannot be easily classified as being in
either of the above two groups.

The statistical significance for the difference between the mean expression
correlation coefficient of a putative interaction set and that of random pairs is
measured by the T-score and the P-value for the null hypothesis of no difference
between the sample mean and the mean of random gene pairs. The T-scores



are calculated as the standard two sample T-test statistic.
Table 1 gives some descriptive statistics for the distributions of correlation

coefficients for different data sets in the three groups: the protein physical
interaction data, the protein complex data, and the data obtained by other
methods. As expected, the MIPS complex data has the largest mean and the
largest T-score among all the data sets. In the first group, the MIPS physical
interaction data has the largest mean, while Ito’s data have the smallest mean
and the smallest T-score. Generally, as the IST number increases, the mean
for Ito’s data increases as well. In the second group, the TAP data shows a
higher mean than the HMS-PCI data.

Data #Pairs Mean Variance T-score P-value
Random 18480160 0.0305 0.200 0.00 −

Physical Interactions
MIPS Physical 2409 0.0985 0.224 16.71 6.31e-063
DIP 14351 0.0852 0.236 32.78 5.63e-236
Uetz 1375 0.0692 0.210 7.18 3.70e-013
Ito1IST 4361 0.0410 0.209 3.47 2.64e-004
Ito2IST 1408 0.0714 0.214 7.69 7.82e-015
Ito3IST 751 0.0833 0.223 7.23 2.42e-013
Ito4IST 541 0.0941 0.217 7.40 6.85e-014
Ito5IST 442 0.0979 0.223 7.09 6.96e-013
Ito6IST 351 0.0821 0.210 4.84 6.75e-007
Ito7IST 291 0.0883 0.217 4.94 4.04e-007
Ito8IST 257 0.0938 0.223 5.08 1.95e-007

Protein Complex
MIPS Complex 8798 0.2560 0.250 105.90 0.00
TAP 17838 0.1642 0.270 89.31 0.00
HMS-PCI 32438 0.0801 0.245 44.69 0.00

Other Methods
SynExpress 16063 0.1650 0.238 85.28 0.00
In-silico 7152 0.1111 0.234 34.10 3.89e-255
Genetic 878 0.0990 0.240 10.16 1.67e-024

Table 1: Statistics of distributions of gene expression correlation coefficients for different
protein-protein interaction data sets.

3.2 Reliability of the different data sets

We estimated the reliability of the different data sets using maximum likelihood
estimation on the distribution of gene expression correlation coefficients. As in
equation 3, we needed to specify the distribution for real interactions and that
for non-interactions. We used the distribution for random pairs as that for the
non-interactions, since it is believed that the size of real interactions is much
smaller than the size of the non-interaction pairs. We chose the MIPS physical
interactions as the reference for the physical interaction data and the MIPS
complex data as the reference for the TAP and the HMS-PCI complex data.



Data Pairs PairsExp α Variance
Physical interactions

Uetz 1436 1375 0.529 0.0843
DIP 14454 14351 0.815 0.0244
Ito1IST 4443 4361 0.167 0.0383
Ito2IST 1469 1408 0.558 0.0831
Ito3IST 802 751 0.753 0.1144
Ito4IST 584 541 0.895 0.1436
Ito5IST 476 442 0.964 0.1567
Ito6IST 379 351 0.676 0.1768
Ito7IST 312 291 0.791 0.1942
Ito8IST 276 257 0.878 0.2054

Protein Complex
TAP 17962 17838 0.585 0.0081
HMS-PCI 32667 32438 0.248 0.0053

Table 2: Reliability of the physical interaction data (Uetz’s, DIP, and Ito’s with different
IST hits) and the protein complex data (TAP and HMS-PCI).

The results are listed in Table 2. The table shows that the Ito5IST data, with
≥ 5 IST hits, are the most reliable, with α = 0.96, while the Ito1IST data are
the least reliable with α = 0.17. The Ito2IST data are as reliable as the Uetz
data. The TAP data are more reliable than the HMS-PCI data. Again, the
maximum likelihood approach cannot be applied to the other three data sets
because they cannot be easily classified into either of the above two groups.

3.3 Cellular role prediction based on different data.

We applied the neighborhood-counting method and the chi-square method20 to
predict protein functions based on the protein-protein interaction data. Both
methods assign functions to a protein based on the functions of its immediate
interaction proteins. The functional annotations were obtained from YPD,
which assigns protein to three functional categories: “cellular role”, “subcel-
lular localization”, and “biochemical function”. Here, we considered the func-
tional annotation based on the cellular role. Up to April 8, 2002, YPD included
6,416 proteins, among which 3,894 proteins have been assigned to one or more
functions of 43 cellular roles, and the rest 2,522 proteins are unknown.

We used a leave-one-out method to measure the accuracy of the predic-
tions. The leave-one-out method randomly selects a protein with known func-
tions, assuming its functions as unknown, and then uses the neighborhood-
counting method or the chi-square method to predict its functions. Finally,
the predictions were compared with the actual functions of the protein. We
repeated the leave-one-out experiment for K known proteins, Pi, · · · , PK . Let
ni be the number of functions for protein Pi in YPD, mi be the number of
predicted functions for protein Pi, and ki be the overlap between them. The
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Figure 2: Sensitivity and specificity of functional predictions for different protein-protein
interaction data sets using the neighborhood-counting (left) and the chi-square (right) meth-

ods.

specificity (SP) and the sensitivity (SN) can be defined as

SP =
∑K

i ki∑K
i mi

, SN =
∑K

i ki∑K
i ni

(6)

Figure 2 shows the relationship between specificity and sensitivity for the
neighborhood-counting method and the chi-square method on different protein
interaction data sets. As expected, the MIPS protein complex data have the
best performance, while the Ito1IST data do the worst. Excluding the MIPS
protein complex data, a group of three data sets (the TAP data, the MIPS
Physical data and the Genetic Interaction data) shows better performance
than the others. Overall, the results are very consistent with those of the dis-
tributions of expression correlation coefficients and the reliability estimation.

4 Discussions

We studied two groups of protein-protein interaction data, the physical inter-
action data and the protein complex data, and estimated the reliability of these
data sets using three different measurements: the distribution of gene expres-
sion correlation coefficients, the reliability based on gene expression correlation
coefficients, and the accuracy of protein function prediction. We separated
protein complex data from protein physical interaction data because of their
obvious difference: not all protein pairs in a complex interact with one another,
and not all physically interacting protein pairs are in the same complex. Many



protein complexes such as ribosomes and RNA Polymerases are essential for
a cell, and the interactions within a complex are generally more stable and
stronger and have a longer life span than most other physical interactions,
while other physical interactions include other important interactions such as
signal transductions. Our results confirm that the components of a protein
complex can be assigned to functions that the complex carries out within a
cell. The complex data sets generally perform better in function predictions
than do the physical interaction data sets. Meanwhile, proteins in complexes
are shown to be more highly correlated in gene expression, as well.

The results of the three measurements are consistent with one another.
For example, the MIPS protein complex data have the highest mean gene ex-
pression correlation coefficient (0.256) and the highest accuracy in predicting
protein functions (70% sensitivity and specificity), while Ito’s Y2H data have
the lowest mean (0.041) and the lowest accuracy (15% sensitivity and speci-
ficity); Uetz’s data are more reliable than Ito’s data in all three measurements,
and the TAP data are more reliable than the HMS-PCI data in all three mea-
surements. The Ito1IST data containing many interactions with only 1 IST hit
are believed to contain many false positives and are the least reliable. However,
the Ito2IST data containing interactions with at least 2 IST hits have better
performance in all three measurements. This confirms that multiple ISTs can
reduce false-positives in Y2H assays significantly.

There are three interaction data sets different from the above two groups:
the genetic interaction data, the In-silico data, and the Synexpress data. Their
capability of predicting protein functions generally falls between that of the
Y2H data and that of the MIPS protein complex data. It should be noted that
these interactions contain not only real physical interactions but also other
protein pairs that are functionally associated. These data are important in
understanding protein functions on a global scale.

We used three different ways to assess protein-protein interaction data.
Although they show consistency with one another, there are some limitations
to the reliability estimation. First, we assumed that the MIPS interactions
and complexes were unbiased real interactions. However, the MIPS data sets
may contain errors and may be biased to certain functions, cell compartments,
mRNA expression levels, and so on, and thus the measurements may be inaccu-
rate. Second, we used the gene expression profiles as a measurement. Ideally,
a good measurement should itself be unbiased for assessing the reliability of
interactions, and the data collection process should be unbiased as well. In
this study, the gene expression data we used are certainly biased. It is also
well-known that only a small set of interacting protein pairs are correlated
at the mRNA expression levels. Another limitation is the assumption that



known proteins have all their functions annotated. Based on this assumption,
we can estimate the accuracy. In reality, the proteins may have un-discovered
functions.
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