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Abstract

This work studies the second-order convergence
for both standard alternating minimization and
proximal alternating minimization. We show that
under mild assumptions on the (nonconvex) ob-
jective function, both algorithms avoid strict sad-
dles almost surely from random initialization. To-
gether with known first-order convergence results,
this implies that both algorithms converge to a
second-order stationary point. This solves an
open problem for the second-order convergence
of alternating minimization algorithms that have
been widely used in practice to solve large-scale
nonconvex problems due to their simple imple-
mentation, fast convergence, and superb empirical
performance.

1. Introduction

We consider the following optimization problem over two
sets of variables:

minimize f(x 1
zER", ycR™ f(@y), M
where f : R™ x R™ — R is a continuous (nonconvex)
function and the partition of variables into « and y blocks
typically reflect natural structures within the problem.

One approach to solve (1) is by concatenating x and y as a
single variable z = (x, y) and then directly applying stan-
dard iterative algorithms like gradient descent (or its vari-
ants) for f(z). Recent progress in nonconvex optimization
has provided solid theoretical guarantees for gradient-type
algorithms in solving nonconvex problems. In particular,
the seminal work (Lee et al., 2016) shows that gradient de-
scent with random initialization almost surely converges to
a second-order stationary point. Meanwhile, recent results
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in landscape analysis show that many popular nonconvex
optimization problems enjoy a nice landscape where all
second-order stationary points are global minima, including
low-rank matrix recovery (Ge et al., 2016; 2017; Bhojana-
palli et al., 2016; Park et al., 2017; Li et al., 2016; 2018; Zhu
et al., 2018; 2017), phase retrieval (Sun et al., 2018), dictio-
nary learning (Sun et al., 2017), blind deconvolution (Zhang
et al., 2017), and tensor decomposition (Ge et al., 2015); see
(Jain et al., 2017; Chen & Chi, 2018; Chi et al., 2018) for
an overview. This implies gradient-type algorithms can find
a global minimum for many popular nonconvex problems.

An alternative approach to solve (1) is alternating mini-
mization (cf. Algorithms 1; a.k.a. nonlinear Gauss-Seidel
method or block-coordinate descent), which sequentially
optimizes over one variable while fixes the other. Compared
with gradient-type algorithms, alternating minimization has
several advantages: () it is easy to implement as there is no
need to tune optimization parameters like step sizes, (¢7) it
converges very fast in practice, and (¢i7) the subproblems
are easy to solve as they usually have closed-form solutions.
Thus, alternating minimization has been widely used in prac-
tice (Wang et al., 2008; Comon et al., 2009; Jain et al., 2013;
Netrapalli et al., 2013; Hastie et al., 2015; Lu et al., 2019).

Algorithm 1 Alternating Minimization

1: Initialization: x,.

2: For k =1,2,..., recursively generate (xx,y;) by
Yy = arg min f(zx-1,y),
v @)
4 = arg min f(x,y,).
xcR”
Algorithm 2 Proximal Alternating Minimization
1: Input: 3 > Ly.
2: Initialization: (x¢, y,).
3: For k =1,2,..., recursively generate (xy, y;,) by
_ : B 2
gy = g min f(e1,9) + 2y~ w13
ver 3)

. B
oy = arg min f(@,y;) + 5 @ — 213
xeR"™
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However, the empirical performance of alternating mini-
mization is not sufficiently substantiated by solid conver-
gence guarantees. In fact, although the idea of alternatingly
updating the variables is quite straightforward, the conver-
gence properties for alternating minimization are far more
complicated. In particular, alternating minimization may
not converge to first-order stationary points of the prob-
lem (Grippo & Sciandrone, 2000). When the function f is
strongly bi-convex and satisfies the Kurdyka-ELojasiewicz
(KL) property, (Xu & Yin, 2013) shows that alternating mini-
mization converges to a first-order stationary point of f. The
KL property is satisfied by a wide class of nonconvex (and
even nonsmooth) functions, including all semi-algebraic
functions and sub-analytic functions (Attouch et al., 2010).
To relax the bi-convexity condition, Attouch et al. (Attouch
et al., 2010) utilized a proximal method in either subprob-
lem and proved that the corresponding proximal alternating
minimization (cf. Algorithm 2) converges to a first-order
stationary point of f under even mild conditions. We now
summarize these results as follows.

Assumption 1. f satisfies the KL property and V f is Lips-
chitz continuous on any bounded subset of domain R™ x R™.

Theorem 1 (First-order Convergence, (Xu & Yin, 2013;
Attouch et al., 2010)). Under Assumption 1, let (g, y,) be
any initialization and (xy, y,,) be the sequence generated
by Algorithm 1 (if f is further bi-convex) or by Algorithm 2.
If the sequence (xy,y;,) is bounded, then it converges to a
first-order stationary point of f.

The first-order convergence alone is not sufficient to explain
the successful practical performance of alternating mini-
mizations for a considerable body of machine learning prob-
lems, as it cannot exclude the case of getting stuck at saddle
points. However, showing the second-order convergence of
the alternating minimizations remains open. The main con-
tribution of this work is closing this gap between the power
of alternating minimizations in solving nonconvex problems
and its second-order convergence. More precisely, we study
the second-order convergence of alternating minimizations
by answering the following question:

Question: Does (proximal) alternating minimization al-
most surely converge to a second-order optimal solution
from random initialization?

We answer this question affirmatively for real analytic func-
tions and establish the following main results on the second-
order convergence of alternating minimizations:

Theorem 2 (Second-order convergence). Under Assump-
tion 1, let (xg,y,) be a random initialization and (xy, y;,)
be the sequence generated by Algorithm 1 (if f is analytic
and bi-convex with a full-rank cross Hessian at strict sad-
dles) or by Algorithm 2 (if f is bi-smooth). If the sequence

(K, yy) is bounded', then it converges to a second-order
stationary point of f almost surely.

If additionally, the objective function of the problem satis-
fies the strict saddle property (i.e., a stationary point is either
a strict saddle or a local minimum), then Theorem 2 implies
that alternating minimizations with random initialization
converge to local minima with probability one. Moreover,
many popular machine learning and signal processing prob-
lems have no spurious local minimum (Chi et al., 2018), and
thus alternating minimizations converge to a global mini-
mum, partially explaining the superb empirical performance
of alternating minimizations in practice.

2. Preliminary

Definition 1. Let f be a twice continuously differentiable
Sfunction and N be the gradient operator. Then

1. x is a (first-order) stationary point (a.k.a. critical

point) of f, if V f(x) = 0;

2. x is a second-order stationary point of f, if it is a
stationary point of f and V? f(x) = 0;

3. x is a strict saddle of f, if it is a first-order stationary
point but not a second-order stationary point of f, i.e.,
Vf(x) = 0and V?f(x) has a negative eigenvalue.

Definition 1 (Unstable Fixed Point). Given a mapping g :
Q — €, the set of unstable fixed points of g is defined as

Ay = {# - glw) = @, max |\(Dg()| > 1},

where D denotes the Jacobian operator.

Theorem 3 (Theorem 2 of (Lee et al., 2019)). Let g be a C*
mapping from Q to ) and det(Dg(x)) # 0 for all x € ().
Then the set of all initial points that converge to unstable
fixed points has measure zero, i.e., p({xo : kli_)n;o " (x) €

Ag}) = 0. Here ui(-) counts the Lebesgue measure.

Theorem 3 is instrumental in establishing second-order con-
vergence guarantees for even first-order algorithms (cf. (Lee
et al., 2019)). However, the condition that det(Dg(x)) # 0
for all € € is a strong global condition that is both dif-
ficult to satisfy and challenging to verify. The rest of this
section focuses on relaxing this global condition in Theorem
3 to a local one so that this result can be applied to analyze
a larger class of algorithms. More precisely, we will replace
the global non-singularity condition on the whole domain
by a local non-singularity condition around the stationary
points. This can be achieved by refining the arguments used

"Note that the boundedness assumption is automatically sat-
isfied when f is coercive, cf. (Xu & Yin, 2013; Attouch et al.,
2010).
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in (Lee et al., 2019) and the main technical tools are the
Zero-Property Theorem and the Maximum Rank Theorem.

Theorem 4 (Zero-Property Theorem, Theorem 3 of (Pono-
marev, 1987)). Let a mapping g : 2 — § be continuous
and almost everywhere differentiable. Then g satisfies the
zero-property (i.e., preimage of any zero-measure set has
measure zero) if and only if rank(Dg(x)) = dim(Q2) for
almost all € Q).

Theorem 5 (Maximum Rank Theorem, Proposition B.4 of
(Bamber & Van Santen, 1985)). Suppose g : Q) — Qisan
analytic mapping. Then Dg(x) achieves the maximum rank
almost everywhere in ). Here the maximum rank is defined
as maxgeq rank(Dg(x)).

Note the analytic assumption of Theorem 5 is stronger than
infinite differentiability, but still covers a fairly large class of
functions, including all elementary functions, most special
functions, as well as their combinations and compositions.
The Maximum Rank Theorem states that the Jacobian of
any analytic mapping almost always achieves the maximum
rank. Then as long as the Jacobian is of full-rank at some
specific point, the mapping would satisfy the zero-property,
which is indicated by Theorem 4. Now we present the main
technical theorem.

Theorem 6. Let g be an analytic mapping from ) to €.
Then the set of all initial points that converge to nondegen-
erate unstable fixed points has measure zero.

The proof is adapted from (Lee et al., 2019) and therefore the
most important ingredient is the Stable Manifold Theorem
(cf. Theorem III.7 (Shub, 2013)).

Theorem 7 (Stable Manifold Theorem, Theorem III.7 of
(Shub, 2013)). Let * be a fixed point for a C" local diffeo-
morphism g : U — E, where U is a neighborhood of x* in
the Banach space E. Suppose that £ = E; & E,,, where
E is the span of the eigenvectors of Dg(x*) corresponding
to eigenvalues of magnitude smaller than or equal to 1, and
E,, is the span of the eigenvectors of Dg(x*) corresponding
to eigenvalues of magnitude larger than 1. Then there exists
a C" embedded disk W, that is tangent to Es at x* called
the local stable center manifold. Moreover, there exists a
neighborhood By of x*, such that g(W5) N By« C W[,
and (V= g~ (Bar) C Wi

Proof of Theorem 6. First, for any unstable fixed point
x* € Ag, if it is also non-degenerate, i.e., the Jacobian
Dg(x*) is non-singular, then Dg(x) is nonsingular in some
neighborhood U of «*. This shows g : U — ¢(U) is a
local diffeomorphism. Then by Stable Manifold Theorem
(cf. Theorem?7), for any * € A, there is an associated
open neighborhood B+ and thus the union .. A, By«
forms an open cover for A4,. Clearly A, C R", and since
R™ is known to be second- countable (cf. (Lee et al.,, 2019)),

we can extract a countable subcover | J;2; B+ for A,. Let
W ={xy€Q: liingk(ilﬁo) S Ag}.

Because | J;~, B+ forms a countable subcover of A, * €
By for some 1, 1e lim; o0 g*(x0) € Bg+. Thatis to say,
g (:1:0) € By forall t > N for some sufﬁmently large IV,
or equlvalently,

€ ()9 (Ba:) = Si,
k=0

Now by Stable Manifold Theorem (cf. Theorem?7), we
have S; € W, with WS of co-dimension at least one
(since * € Ag). Therefore, S; has measure zero. Since
g~ (xo) € S; with an unknown non-negative integer N and

Ty is an arbitrary element in W, we must have

W cC U U 97N (Sh).

i=1 N=0

vVt > N.

Now if we can show g~V (S;) has measure zero for any non-
negative numbers N and ¢, then the proof can be completed
since any countable union of zero-measure sets has mea-
sure zero. Since g is analytic and x* is nondegenerate, i.e.,
rank(Dg(ax*)) = n, which must be the maximum rank of
the Jacobian Dg(x) in €, then Theorem 5 implies that the
Jacobian Dg(x) achieves the maximum rank n for almost
all x € Q. Further because g is analytic (and hence con-
tinuous and almost everywhere differentiable), we can use
the Zero-Property Theorem (cf. Theorem 4) to get g~ (S;)
has measure zero for all N > 0. Finally note that the above
argument is independent of choice of i. O

3. Second-order Convergence of Alternating
Minimization

When f is strongly bi-convex, we can apply Theorem 6 to
show that alternating minimization (cf. Algorithm 1) will
not converge to a strict saddle. Then combining this with
the first-order convergence result (cf. Theorem 1), we can
get the second-order convergence of the alternating mini-
mization. We first provide some additional assumptions on
the objective function f that are used to prove the avoiding-
saddle property of alternating minimization.

Assumption 2. f is a strongly bi-convex® analytic function.
Assumption 3. Viyf(a:* y*) has full row rank for all
strict saddles (x*, y*).

Theorem 8 (Avoiding Strict Saddles). Suppose f satisfies
Assumptions 2 and 3. Then Algorithm 1 with random ini-
tialization will not converge to a strict saddle of f almost
surely.

V2 f(z,y) = 0and V2 f(x,y) > 0 in the whole domain.
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Therefore, together with the known first-order convergence
(cf. Theorem 1) and noting that any analytic function satis-
fies Assumption 1, we obtain the second-order convergence
property of the alternating minimization.

Corollary 1. Suppose f satisfies Assumptions 2 and 3 and
the sequence (2, y,,) generated by Algorithm 1 is bounded.
Then Algorithm 1 with random initialization converges to a
second-order stationary point of f almost surely.

3.1. The Mapping Function

First note that the alternating minimization (cf. Algorithm
1) is well defined under the strong bi-convexity condition in
Assumption 2, since either subproblem minimizes a strongly
convex function and thus has a unique optimal solution.

Proposition 1. Under Assumption 2, the following two map-
pings are well-defined in the whole domain:

¢(x) =arg min f(x,y),
yER™

Y(y) =arg min f(x,y).
xeR"

“4)

Proposition 1 immediately implies that Algorithm 1 is well-
defined. That is, either subproblem in the k-th iteration has
a unique minimizer:

Y1 = ¢’(wk),
Tii1 = P(Yppr)-
By defining the composition g = % o ¢ from R” to R"”,

we can view the alternating minimization process (2) as
iteratively performing the following mapping:

ot =gt ) = g"(@o) fork=12,... (5

By the first-order convergence result (cf. Theorem 1) of
the alternating minimization, the iterative process (5) is
continuing until reaching a fixed point * of the mapping g

x* = g(x*). (6)
In view of (4), this is equivalent to
y* = arg min f(z", y"),
yEeR™
x* = arg min f(x*, y*)
xcR"

with y* = ¢(x*). Then together with the strong bi-
convexity and the sufficient differentiability (by analytic
property) of f, we immediately have that there is a one-to-
one correspondence between the fixed points of g and the
first-order stationary points of f.

Lemma 1. A point x* is a fixed point of g if and only if

Vi(z* y*) =0, (7

where we have defined y* = ¢(x*) and V f(x,y) =
Vaof(z,y)T Vyf(xz,y)"|T.  For simplifying nota-
tions, we will also often informally write V f(x,y) =

(Vaf(z,y), Vyf(z,y)).

3.2. Proof of Theorem 8

According to Theorem 6, it is sufficient to show that 1) the
mapping g is analytic; 2) all strict saddles of f correspond
to unstable fixed points of g; 3) the Jacobian Dy at any strict
saddle is of full rank. Without loss of generality, we also
assume n < m. This assumption can always be satisfied
since otherwise, we can exchange the coordinates of f. We
will see this assumption helps to show the non-degenerate
property at unstable fixed points of g.

(1) Showing analytic mapping Towards that end, we
now derive the closed-form expression of the Jacobian Dg
which will also be useful for the remaining proof. To begin,
we present an immediate consequence of Proposition 1.

Proposition 2. There exist two well-defined and unique
mappings ¢ : R™ — R™ and v : R™ — R" such that
Vyf(x7 (ZS(IE)) = 07 v:l: E Rna

8
Vaf($(y),y) =0, VyeR™ ®)

Then we use the Analytic Implicit Function Theorem 9.

Theorem 9 (Analytic Implicit Function Theorem, Theo-
rem 7.6 of (Fritzsche & Grauert, 2012)). Let the func-
tion h(z,y) : R" x R™ — R™ be analytic. Assume
h(a,b) = 0y, for some point (a,b) € R™ x R™. If the
partial Jacobian Dyh(a, b) is invertible, then there exists
an open set U of R™ containing a such that there exists a
unique analytic function ¢ : U — R™ such that

¢(a) = b

and
hx,p(x)) =0, forallx e U.

Moreover, the Jacobian of ¢ in U is given by
D¢(x) = —Dyh(z, ¢p(x)) ™' Dah(x, $(x)).

We now prove that g is analytic.
Lemma 2. The mapping g is analytic and its Jacobian
Dg(x) is given by

Dy(z) =V f(g(x), ¢(x)) "' Vi, fg(x), ¢(z))x

2 —1v2 (9)
Vil (@, (@) V[, d(x)).

Proof of Lemma 2. From Corollary 2, we know that there
are two well-defined and unique mappings that satisfy (8):

Vyf(z, ¢(z)) =0,
Vaf(¥(y),y) =0,

Vo € R,
Yy € R™.
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Now denote hy = V, f and hy = Vf, which are both
analytic as f is analytic. Then the above equations read that

hy(w7 ¢((E)) =0,
ha(¥(y),y) =0,

Further note that both Dyh, = V% fand Dyhgy = V2 f
are nonsingular by assumption of strong bi-convexity. Then
we can apply Analytic Implicit Function Theorem (cf. The-
orem 9) to (10) to get that ¢ and ) are the unique analytic
mappings satisfying (10). Further, using Analytic Implicit
Function Theorem (cf. Theorem 9), we can compute their
Jacobians

Do(z) =
Dy(y) =

Vo € R",

10
Yy € R™. (19)

—Vif(z, ¢(x)) Vi, f(z, (),
~Vaf@W(y),y) Vi f( ¥ (), y).

Therefore, g = 1 o ¢ is analytic, as it is a composition of
two analytic mappings 1) and ¢. Also, the Jacobian Dg can
be computed by the chain rule as

Dip(p(x)) x Do(x)
fVQ Flo(®), ¢(x) "'V, flg(@), ¢())x
of (,0(x)) "' Vi, f (2, o()).

Dg(z) =

O

(2) Showing unstable fixed point First of all, by (8), for
any strict saddle (z*,y*) of f, x* = g(a*), i.e., * is
a fixed point of g. It remains to show that the maximal
magnitude of the eigenvalues of Dg(x*) is greater than 1.
Using the fixed point equation * = g(x*), we can simplify
the Jacobian expression (9) as
Dg(a*) =V f(z*, y*) " V3, f(@*, y")x
Vol @y ) Vi f(="yh). A1)
Define a new matrix that is similar to Dg(a*):
*y") 2 Dg(a) Ve f(x

Hence by matrix similarity, they have the same eigenvalues.
Plugging Dg(x*) into I, we have

=(V2 f(z* y*)V2 f(a*,y*)77)

r=vV2f(z Lyt

y*)EV2, f(zt

x (V2 f(z*,y*) 2 V2, fla*, y* )V fla*, y*)"2)T
=LL7,
where
L=V2 f(a*y*) 2V, flz*y") V2 f(z*,y*) 7% (12)

Therefore, it reduces to showing that I' = LLT has at
least an eigenvalue of magnitude greater than 1, by noting

that this can imply Dg(x*) has at least an eigenvalue of
magnitude greater than 1. Note that I' = LL™ has at least
an eigenvalue of magnitude greater than 1 if and only if the
spectral norm of |L|| > 1.

Now we prove |L|| > 1 by contradiction. For the sake of
contradiction, suppose ||L|| < 1. We can represent Hessian

V2 f(z*,y*) (which has a negative eigenvalue by definition
of strict saddles) as
V2 f(z*,y")
_ [ Vaf(a*,y*) Viyf(w*,y*)}
Vief(@*y*)  Vif(z*,y*)
_ [Vaf(@r,y)'? } {In L]
- * gk T
I Vof(@ y) 2 LT I,
(Vo f(ar,y)'/? }
I Vil y)/?

Further note that {I"

T is semi-positive definite, since
L' I,

x T I L
{y} [L% I } [ } = |2[3 + [lyll5 + 22" Ly

> (|23 + lyll3 — 2ll/l2 | L1yl
> (|3 + [lyll3 — 2[zll2]yll2 > 0

for all z € R",y € R™. Consequently, V2 f(x*,y*) is
semi-positive definite. Therefore, we get a contradiction
and have proved that for any strict saddle (x*, y*), * is an
unstable fixed point of the mapping g.

(3) Showing non-degenerate property First recall that
the Jacobian Dg(x*) at any strict saddles point x* is
given by (11). Due to the strict positive-definiteness of
V2 f(x*,y*) and V3 f(x*,y*), we know that Dg(x*) is
similar to a semi-positive definite matrix:

= Vi f(=*

y*)l/QLLTvif(w* 71/2,

Dg(x*)

where L € R™*™ is defined in (12). Therefore, the non-
degenerateness follows from Assumption 3 and that n < m.

")

Combining all, we complete the proof of Theorem 8. [

3.3. Stylized Application of Algorithm 1

We use a simple example to illustrate our result.

Example 1 (Best Rank-1 Matrix PCA). Consider the prob-
lem of computing the best rank-1 approximation of a given
matrix A € R™™™ with rank(A) = n:

A
2

1
fly) = SIA =2y |5+ Sl=l3 + ], (3
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which is an analytic, strongly bi-convex function (cf. As-
sumption 2). Note that there are efficient closed-form so-
lutions when using the alternating minimization (cf. Algo-
rithm 1) to solve (13): given any initialization xy € R",
alternating minimization recursively generates the following
sequence: fork =0,1,2,...

Yppr = o) = AT/ (A + ||zil3)

Teg1 = P(Ypi1) = AYpir/ (A + [y ll3) -

To apply Corollary 1, one still needs to verify the full-
rankness of V2y f(x*,y*) at any strict saddle (z*, y*) of
f, where y* = ¢(x ) Dlrect computations give that

* x T
Ao <2“‘*2 _
At 3
Clearly, when * = 0, we have V3, f(z*,y*) = —A
and the full-rankness assumption automatically holds; and

when * # 0, rank(VZ, f(x*,y*)) = rank(A) provided
A # ||x*||3. Therefore:

Vayf(a" y")=2a"¢(z")" -

Corollary 2. Assume A is nonsingular in (13). Then alter-
nating minimization (cf. Algorithm 1) with random initial-
ization almost surely converges to a second-order stationary
point, provided \ # ||x*||3.

4. Second-order Convergence of Proximal
Alternating Minimization

We begin with the following bi-smoothness assumption.

Assumption 4. f € C?is L bi-smooth in the domain, i.e.,
max{||V2f(z,vy)|, Hvzf(a:, Y|} < Ly in the domain.?

In the case where f(x,y) is Ly bi-smooth, we note that
Algorithm 2 requires even minor assumptions for it to avoid
the strict saddles.

Theorem 10 (Avoiding Strict Saddles). Suppose f satisfies
Assumption 4. Choose 8 > Ly in Algorithm 2. Then
Algorithm 2 with random initialization will not converge
to a strict saddle of f almost surely.

Therefore, together with the known first-order convergence
(cf. Theorem 1), we obtain the second-order convergence
property of Algorithm 2.

Corollary 3. Suppose f satisfies Assumptions 1 and 4 and
the sequence (x,y,,) generated by Algorithm 2 is bounded.
Choose B > Ly in Algorithm 2. Then Algorithm 2 with
random initialization almost surely converges to a second-
order stationary point of f.

3 Any globally smooth function f with |V f(z,y)|| < Ly
satisfies Assumption 4.

1)a.

4.1. The Mapping Function

First we observe that under the assumption that 5 > Ly and
the L bi-smoothness condition of f, either subproblem of
Algorithm 2 is well-defined, because the objective function
of either subproblem is strongly convex.

Proposition 3. Under Assumption 4, choose 3 > Ly. Then
the following two mappings are analytic and well-defined
Sor any (x,y):

. . B
ps(@,y) =arg min f(z,y') + Zlly" - 3,
y/eRTn
3 (14)
qp(x,y) =argmin f(x',y) + 5 |lz’ — z|3.
ok 2

With (14), each iteration of Algorithm 2 is equivalent to

= LTr—1,Yx—1)s
Yx p[}( k=1, Y1) (15)
Ty = qﬁ(mk—layk)'

We define a mapping gg : R" x R™ — R"™ x R™ such that

95(x,y) = (qs(z,ps(x,y)),ps(x,y)) , (16)

with which we can rewrite (15) as

(Q5(33k hpg(l’k LYk— 1)),P;3(37k—17yk—1))
= 9p(Th—1,Yp_1)-

(Tk, Y1) =

With the implicit function theorem, the following result
establishes the expression of the Jacobian of gg.

Lemma 3. For any (x,y), denote (Z,y) = gg(x,y),
and assume max{||V2 f(x, )|, | V2 f(2,9)|} < Ly. Set
B > Ly in Algorithm 2. Then the mapping function gg is
continuous at a neighborhood of (x,y) and the Jacobian
Dgyg is nonsingular at (x,y) and is given by

2 £ 0 . i -1
Dgﬁ(w,y) = {me( ’(:')J) +A V2¥( () y% }
AL, 0 } .

(@ F) Bl (7

R

Proof. Since y = pg(x,y), T = qg(x,y), both  and y
can be viewed as functions of (x, y). Note that (x, y) and
(z,y) satisfy the first-order optimality condition of (15):

Vyf(z,y)+ By —y) =0,

18
Vo f(@.3) + 8@ — ) = 0. (1%)

We now compute the expression of the Jacobian

Bﬁém,y) aiém,y)
Dgs(z,y) = 8@(:,1;) ag(i’,y)
ox oy
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To obtain the expressions for these partial derivatives
0F(xyy) 0%(zy) OY(xy) OY(w,

mé:y), w(()my v, ygz Y, yg;y), we apply the 1'n.1p11c1t
function theorem to the first-order optimality condition of
(18) and obtain

(V3 i)+ PEY o pa ),
(Vi) 451 LY g1,

(V21 @)+ 610 2V 92 p(a ) Y .
(V20@5)+01) 22 102, @) Y o,

which can be rearranged as

- 9% (x,y) O
V2, f(@,7) Hmém’” wé’;y)]

[Vif@@?) + AL,

: Y oy(x,y) 0y(x,y)
0 Vyf(a:,y) + AL, % yazy
B, 0
- ~ < T1Dgs(z,y) = Ts.
vamf(m,y) 6L, 1 9,6( Y) 2

We now show that the matrix I'; is nonsingular. For any

[u} such that T'; [u} [ } we have
v v

(g A [
f(®,y)+8

=l = -
0 v o’
where we have used the strict positive-definiteness of
V2 f(®,9)+ L, and V, f (&, §) + L, by the assumption
that 5 > L. Thus, the matrix I'; is nonsingular. Therefore,
by the implicit function theorem, Dgg(x, y) is a continu-
ous function at some neighborhood of x, y. With a similar

argument, the matrix I'; is also nonsingular. Therefore,
Dggs(x,y) = T']'T is nonsingular at x, y. O

o[

N

4.2. Proof of Theorem 10
By Theorem 3, it suffices to show the following conditions:

(1) gp is a C! mapping. This is because Dy is globally
continuous by Lemma 3 and Assumption 4.

(2) det(Dgg) # 0 in the whole domain.
follows from Lemma 3 and Assumption 4.

This directly

(3) Any strict saddle of f is an unstable fixed point of
gs. Assume (x*,y*) is an arbitrary strict saddles of f.
First of all, we show that (z*,y*) is a fixed point of gg.
Since a strict saddle must be a stationary point, here we
show that every stationary point of f is a fixed point of gg.
Towards that end, first note that any stationary point (i, y)
satisfies V f(x,y) = (Vo f(z,y), Vyf(2,9)) = (0,0),
which implies the first optimality condition (18). Then

noting that Proposition 3 states that the mapping gg is well-
defined in the whole domain, we conclude that (z,y) =
gs(x,y), ie., (z,y) is a fixed point of ggs.

Now we show that the maximum magnitude of eigenval-
ues of Dgg(x*,y*) is greater than 1 at any strict saddle

(z*,y*).
Lemma 4. Let (x*,y*) be any strict saddle of f with
max{V?2 f(x* y*),V%f(m*,y*)} < Ly. Set B> Ly in

Algorithm 2. Then Apax (Dgg(x*
denotes the largest eigenvalue.

L Y*)) > 1, where Apax

Proof. To simplify notations, denote

[Fn FlZ} - {Vif(w*ay*) viyf(m*vy*):|
Fa1 Fao Veaf(x*y*) Vif(ery*) |

Then plugging (Z,y) = (x,y) = (x*,y*) to (17), we can
compute the Jacobian Dgg at (z*, y*) as
Fio

T [AL 0
F22 + ﬁIm _F21 /BIm,
-1

Fi1 Fi2
m Fo1 Foo
Therefore, to show that Dgg(x*,y*) has an eigenvalue
larger than 1, it suffices to show that ® has a negative eigen-
value. We prove this by showing that det(® + pI) = 0

for some o > 0, where det(-) denotes the determinant of a
matrix. Then observe that det(® + uI) = 0 is equivalent to

(1+p)Fiy + ppI (14 p)F12 _

det q Fa (14 p)Fao + MBID =0
1+ w)Fu+ppl T+ pFio _

> det ([ VI+puFo (14 p)Fao + uﬁJ) =0,

where the second line has used the property that det(AB) =
det(A) det(B) and the matrix similarity transform.

Dgs(a”,y*) = {F“ J(;m"

1 {Fn + Al Fio

=1I- ®.
0 F22+5I :|

Thus, the whole proof now reduces to showing that

V14 pFio }

- (I + p)Fi + ppl
) = [ (1+ p)Faz + ppl

V1+ puFop

has a zero eigenvalue for some p > 0. Note that J(u) is a
symmetric matrix (with real eigenvalues) and is a continuous
matrix function of y. Then by Theorem 5.1 of (Kato, 2013),
all the eigenvalues of J(u) (including the minimum eigen-
value Apmin (J(p))) are continuous functions of p. We will
show that the real continuous function Ay, (J (1)) equals
zero for some p > 0. Towards that end, we observe that

Fi1 Fio 2k ok
3(0) = — V2 f(z*,y"),
0= |5 B2] - ety
) Fi + 81
lim T — .
Jmr00 1 { Fo + 1 =0
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First, since (x*,y*) is a strict saddle of f(x,y), by defi-
nition of strict saddles, we have Apin(J(0)) < 0. Second,
since > Ly > max{|[VZ f(z*,y")|, IV f(=* y*)|l}
by the assumption, we have both F1; + I and Fos + 81,
are positive definite and hence A\pin (J(IV)) > 0 for some
sufficiently large N. Finally, since Apin (J()) is a contin-
uous real-valued function of X, we claim that there must
exist a g4 > 0 such that Apyin (J (1)) = 0. O

4.3. Stylized Applications of Algorithm 2

We can apply the proximal alternating minimization (cf.
Algorithm 2) to the popular Burer-Monteiro Factorization
(BMF) framework (Burer & Monteiro, 2003). Given a large-
scale rank-constrained matrix optimization problem

minimize ¢(M) s.t. rank(M) <, (19)

MeR»xm
BMF explicitly enforces the rank-constraint by factorizing
the low-rank matrix variable M into two smaller matrices
XYT with X € R**", Y € R™*7, and then focuses on

q(XYT). (20)

minimize

XERM X", Y ERMXT
Despite the nonconvexity of (20), it has been shown (Ge
etal.,2016;2017; Bhojanapalli et al., 2016; Park et al., 2017;
Li et al., 2018; Zhu et al., 2018) that when ¢(M) satisfies
certain restricted well-conditioned property (e.g., RIP), then
any second-order stationary point of the nonconvex problem
(20) corresponds to a global optimally solution of (19). So,
the second-order convergence of the proximal alternating
minimization will imply the global optimal convergence.

Example 2 (Matrix Sensing). Consider the following rank-
constrained matrix sensing problem

minimize || A(M) — y||3 + A[|[M]||. s.t.

rank(M) < r,
MGR’!L Xm

where y is the observation vector and A : R™"*™ — RP
is any linear operator with a bounded spectral norm, i.e.,
Al < L. Then the BMF framework focuses on

minimize

A
XY —yl3+ S(I1X)1% + [[Y]|%).
omimimize  [AXYT) = g3+ SO + [Y]7)

Denote f(X,Y) as the above objective function. Note that
Assumption 4 is not satisfied because ||V f| is not glob-
ally upper bounded in the whole domain. We can bypass
this issue by using the forward-invariant property of the
underlying proximal alternating minimization mapping gg.

Lemma 5. gg is a forward-invariant mapping on any sub-
level set Q2 = Lev (U, V) for any U, V, i.e, g(2) C L

Proof. In one way, for any (X,Y) € €, we have
f(X,V) < f(U,V) by definition of Q. In another way,
letting (X4,Y ) = ¢g3(X, V), we have f(X,,Y ) <
f(X, V) by the sufficient decrease property of Algorithm 2
(cf. (Attouch et al., 2010)). Therefore, (X, Y;) € Q. O

Proposition 4. Choosing > L;(Q) for some constant
L(Q) depending on Q = Lev;(U, V), we have: (i)
det(Dgg) # 0 on Q, and (ii) all strict saddles of f in
Q are unstable fixed points of gg. Then by Theorem 3, the
set of all initialization points in §) that will let gg converge
to strict saddles is of zero Lebesgue measure. Thus together
with the first-order convergence (cf. Theorem 1), Algorithm
2 from random initialization in Q) almost surely converges
to a second-order stationary solution of f.

Proof. With Theorem 3 and that gg is forward-invariant in
Q, to prove Proposition 4, it suffices to show the terms (i)
and (ii). To show these two, we first prove a local Lipschitz-
gradient condition for f: [|[V2f(X,Y)| < L¢(Q) for all
(X,Y) € Q. By definition of £2, (X,Y) € Q gives that

[AXYT) —yll5 < £(U, V),

X,Y) < f(U,V) =
F(X,Y) < f( ):{3||X||%+||YII%Sf(U’Vf

Now deonote D = (Dx, Dy), A = \||D||%, and compute
[V?f(X,Y)|(D,D)
=2||A(XDJ+DxY 1) |3 +4(A(DxDy ), AXY ") —y)+A
< ((XIF+IYIE) +ALAXYT) — yl: + ) D]
Together with the definition of spectral norm, this implies
IV2f (X, Y)|| = maximize[V* f(XY)](D, D)/||D|%
<ALP(IXI7 + (Y 1F) +ALJAXYT) — yll + A
<8L*f(U, V)/A+ 4LV (U, V) + A = Ly(9),

where the second inequality follows from @. Now given
the local Lipschitz condition in 2 and the forward-invariant
property g(2) C €, (i) and (ii) immediately follow from
Lemma 3 and Lemma 4, respectively. O

Example 3 (Matrix Completion). Consider the following
rank-constrained matrix completion problem
minimize |[M — M*[|g + A\|M]||, s.t. rank(M) <r,
MERHX‘"L
where M* is the ground-truth matrix, € is the binary mask
matrix, and |M||q = |2 © M| r. Then BMF focuses on
A

minimize || XY" — M*||g + (| X7 + || Y]3)-
L minimize | I+ S+ I1Y13)
We remark that the same result (cf. Proposition 4) applies to
the above matrix completion problem, because the binary
mask operator S is definitely a bounded linear operator.
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