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Abstract

We propose a framework to learn deep generative
models via Variational Gradient Flow (VGrow)
on probability spaces. The evolving distribution
that asymptotically converges to the target dis-
tribution is governed by a vector field, which is
the negative gradient of the first variation of the
f -divergence between them. We prove that the
evolving distribution coincides with the pushfor-
ward distribution through the infinitesimal time
composition of residual maps that are perturba-
tions of the identity map along the vector field.
The vector field depends on the density ratio of
the pushforward distribution and the target distri-
bution, which can be consistently learned from a
binary classification problem. Connections of our
proposed VGrow method with other popular meth-
ods, such as VAE, GAN and flow-based methods,
have been established in this framework, gaining
new insights of deep generative learning. We also
evaluated several commonly used divergences, in-
cluding Kullback-Leibler, Jensen-Shannon, Jef-
freys divergences as well as our newly discovered
“logD” divergence which serves as the objective
function of the logD-trick GAN. Experimental
results on benchmark datasets demonstrate that
VGrow can generate high-fidelity images in a sta-
ble and efficient manner, achieving competitive
performance with state-of-the-art GANs.
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1. Introduction
Learning the generative model, i.e., the underlying data gen-
erating distribution, based on large amounts of data is a fun-
damental task in machine learning and statistics (Salakhut-
dinov, 2015). Recent advances in deep generative models
have provided novel techniques for unsupervised and semi-
supervised learning, with broad applications varying from
image synthesis (Reed et al., 2016), semantic image editing
(Zhu et al., 2016), image-to-image translation (Zhu et al.,
2017) to low-level image processing (Ledig et al., 2017).
Implicit deep generative models are extremely powerful
and flexible to approximate the target distribution by learn-
ing deep samplers (Mohamed & Lakshminarayanan, 2016)
including generative adversarial networks (GAN) (Good-
fellow et al., 2014) and likelihood-based models, such as
variational auto-encoders (VAE) (Kingma & Welling, 2014)
and flow-based methods (Dinh et al., 2015), as the repre-
sentatives. The above-mentioned implicit deep generative
models focus on learning a deterministic or stochastic non-
linear mapping that try to transform low-dimensional latent
samples from a simple reference distribution to samples that
closely match the target distribution.

GAN builds a minmax two player game between the gen-
erator and the discriminator. During training, the generator
transforms samples from a simple reference distribution
into samples that would hopefully deceive the discriminator,
while the discriminator conducts a differential two-sample
test to distinguish the generated samples from the observed
samples. The objective of vanilla GAN amounts to the
Jensen-Shannon (JS) divergence between the learned distri-
bution and the target distribution. Vanilla GAN generates
sharp image samples but suffers from the instability issue
(Arjovsky et al., 2017). A myriad of extensions to vanilla
GAN have been investigated, either theoretically or empiri-
cally, in order to achieve a stable training and high-quality
sample generation. Existing work includes but is not limited
to designing new learning procedures or network architec-
tures (Denton et al., 2015; Radford et al., 2015; Zhang et al.,
2017; Zhao et al., 2017; Arora et al., 2017; Tao et al., 2018;
Brock et al., 2018), seeking alternative distribution discrep-
ancy measures as loss criteria in the feature or data space (Li
et al., 2015; Dziugaite et al., 2015; Li et al., 2017; Suther-
land et al., 2017; Bińkowski et al., 2018; Arjovsky et al.,
2017; Mao et al., 2017; Mroueh & Sercu, 2017), exploiting
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insightful regularization methods (Che et al., 2017; Gulra-
jani et al., 2017; Miyato et al., 2018; Zhang et al., 2018), and
building hybrid models (Donahue et al., 2017; Tolstikhin
et al., 2017; Dumoulin et al., 2017; Ulyanov et al., 2018;
Huang et al., 2018).

VAE approximately minimizes the Kullback-Leibler (KL)
divergence between the transformed distribution and the
target distribution via optimizing a surrogate loss, i.e., the
negative evidence lower bound defined as the reconstruc-
tion loss plus the regularization loss (Kingma & Welling,
2014). VAE enjoys optimization stability but was disputed
for generating blurry image samples caused by the Gaussian
decoder and the marginal log-likelihood based loss (Tol-
stikhin et al., 2017). Adversarial auto-encoders (Makhzani
et al., 2016) use GAN to penalize the discrepancy between
the aggregated posterior of latent codes and the simple prior
distribution. Wasserstein auto-encoders (Tolstikhin et al.,
2018) extend adversarial auto-encoders to general penalized
optimal transport objectives (Bousquet et al., 2017) to alle-
viate the blurriness. Similar ideas are found in some works
on disentangled representations of natural images (Higgins
et al., 2017; Kumar et al., 2018).

Flow-based methods minimize exactly the negative log-
likelihood, i.e., the KL divergence, where the model density
is the pushforward density of a simple reference distribution
through a sequence of learnable invertible transformations
called normalizing flows (Rezende & Mohamed, 2015). The
research on flow-based generative models mainly focuses
on designing neural network architectures to trade off the
representation power and the computation complexity of log-
determinants (Dinh et al., 2015; 2017; Kingma et al., 2016;
Papamakarios et al., 2017; Alessio et al., 2018; Kingma &
Dhariwal, 2018).

In this paper, we propose a general framework to learn a
deep generative model via combining the strengths of varia-
tional gradient flow (VGrow) on probability spaces, particle
optimization and deep neural networks. Our method aims
to find a deterministic transport map that transforms low-
dimensional samples from a simple reference distribution,
such as the standard normal distribution or the uniform dis-
tribution, into samples from the target distribution. The
evolving distribution that asymptotically converges to the
target distribution is governed by a vector field, which is the
negative gradient of the first variation of the f -divergence
between the evolving distribution and the target distribu-
tion. We prove that the evolving distribution coincides with
the pushforward distribution through the infinitesimal time
composition of residual maps that are perturbations of the
identity map along the vector field. At the population level,
the vector field only depends on the density ratio of the push-
forward distribution and the target distribution, which can
be consistently learned from a binary classification problem

to distinguish the observed data sampling from the target
distribution from the generated data sampling from push-
forward distribution. Both the transform and the binary
classifier are parameterized with deep neural networks and
trained via stochastic gradient descent (SGD). Connections
of our proposed VGrow method with other popular meth-
ods, such as VAE, GAN and flow-based methods, have been
established in our framework, gaining new insights of deep
generative learning. We also evaluated several commonly
used divergences, including KL, JS, Jeffreys divergences
as well as our newly discovered “logD” divergence serving
as the objective function of the logD-trick GAN, which is
of independent interest of its own. We test VGrow with
the above-mentioned four divergences on four benchmark
datasets including MNIST (LeCun et al., 1998), FashionM-
NIST (Xiao et al., 2017), CIFAR10 (Krizhevsky & Hinton,
2009) and CelebA (Liu et al., 2015)1. The VGrow learning
procedure is very stable, as indicated from our established
theory. The resulting deep sampler obtains realistic-looking
images, achieving competitive performance with state-of-
the-art GANs.

2. Background, Notation and Theory
Let {Xi}Ni=1 ⊂ Rd be i.i.d. samples from an unknown
target distribution ν. We assume that ν admits the density p
with respective to the Lebesgue measure. (All distributions
hold the same assumption hereinafter.) Our aim is to learn
the distribution ν via constructing variational gradient flow
on the space of Borel probability measures P(Rd). To this
end, the following background studied by Ambrosio et al.
(2008) is needed.

Given µ ∈ P(Rd) with the density q, we use the f -
divergence (Ali & Silvey, 1966) to measure the discrepancy
between µ and ν which is defined as

Df (q‖p) =

∫
p(x)f

(
q(x)

p(x)

)
dx, (1)

where f : R+ → R is a convex and continuous func-
tion satisfying f(1) = 0. We also require f(·) is twice-
differentiable. Let F [q] denote the energy functional
Df (·‖p) : P(Rd) → R+ ∪ {0} for simplicity. Obvi-
ously F [q] ≥ 0 and F [q] = 0 iff q(x) = p(x),∀x ∈
supp(p) ∪ supp(q).

Lemma 2.1. Let δF
δq (q) : P(Rd) → R denote the first

variation of F [·] at q, then
(
δF
δq (q)

)
(x) = f ′(r(x)) where

r(x) = q(x)
p(x) .

We consider a curve µt : R+ → P(Rd) and µt admits the

1The code of VGrow is available at https://github.
com/xjtuygao/VGrow.

https://github.com/xjtuygao/VGrow
https://github.com/xjtuygao/VGrow
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density qt. Let vt = −∇
(
δF
δqt

(qt)
)

: R+ → (Rd → Rd)

be the velocity vector field with rt(x) = qt(x)
p(x) .

Definition. We call µt is a variational gradient flow of the
energy functional F [·] governed by the velocity vector field
vt if the following Vlasov-Fokker-Planck equation holds

d

dt
qt = −∇ · (qtvt) in R+ × Rd. (2)

As shown in Lemma 2.2, the energy functional F [·] de-
creases along the curve µt. As a consequence, the limit of
qt is the target p as t→∞.

Lemma 2.2.

d

dt
F [qt] = −EX∼qt [‖vt(X)‖2]

At any fixed time t ∈ R+, let X be a random variable with
the density qt. Let h(x) : Rd → Rd be an element of the
Hilbert space H(qt) = [L2(qt)]

d and s ∈ R+ be a small
positive number. Define a residual map Ts,h : Rd → Rd as
a small permutation of the identify map id along h, i.e.,

Ts,h = id + sh.

Let T−1s,h be the inverse of Ts,h, which is well-defined when
s is small enough. By the change of variables formula, the
density of the pushforward distribution of Ts,h(X) is gov-
erned by (Ts,h#qt)(x) = qt(T−1s,h(x))|det(∇xT−1s,h(x))|.
We use L[h] = Df (Ts,h#qt‖p) to denote the functional of
h mapping fromH(qt) to R+ ∪ {0}. It is natural to find h
satisfying L[h] < L[0], which indicates the pushforward
distribution Ts,h#qt is much closer to p than qt. We find
such h via calculating the first variation of the functional
L[h] at 0.

Theorem 2.1. For any g ∈ H(qt), if the vanishing condi-
tion lim

‖x‖→∞
‖f ′(rt(x))qt(x)g(x)‖ = 0 is satisfied, then

〈
δL
δh

[0],g

〉
H(qt)

= 〈f ′′(rt)∇rt,g〉H(qt).

The vanishing condition assumed in Theorem 2.1 holds
when the densities have compact supports or light tails.
Theorem 2.1 shows that the residual map defined as a small
perturbation of the identity map along the velocity vector
field vt can push samples from qt into samples more likely
sampled from p.

Theorem 2.2. The evolving distribution qt under the in-
finitesimal pushforward map Ts,vt

satisfies the Vlasov-
Fokker-Planck equation (2).

As consequences of Theorem 2.2, we know the pushforward
distribution through the residual maps with infinitesimal

time perturbations is the same as the variational gradient
flow. This connection motivates us to approximately solve
the Vlasov-Fokker-Planck equation (2) via finding a pushfor-
ward map defined as an aggregate composition of discrete
time residual maps with a small step size as long as we ob-
tain the vector field vt. By definition, the vector field vt is
an explicit function of density ratio rt, which is well-studied,
see for example, (Sugiyama et al., 2012).

Lemma 2.3. Let (X, Y ) be a random variable pair admit-
ting p(x, y) with the binary random variable Y ∼ p(y)
taking the value in {−1,+1}. Denote q(x) = p(x|Y =

−1), p(x) = p(x|Y = 1) and r(x) = q(x)
p(x) . Let

d∗(x) = arg min
d(x)

E(X,Y )∼p(x,y) log(1 + exp(−d(X)Y )).

If p(Y = 1) = p(Y = −1), then r(x) = exp(−d∗(x)).

According to Lemma 2.3, we can estimate the density ratio
rt(x) = qt(x)

p(x) with samples. Let {Zi}Ni=1, {Xi}Ni=1 be
samples from qt(x) and p(x), respectively. We introduce a
random variable Y , and assign a label Yi = −1 for Zi and
Yi = 1 for Xi. Define

d̂(x) = arg min
d(x)

N∑
i=1

( log(1 + exp(−d(Xi))

+ log(1 + exp(d(Zi))), (3)

then r̂(x) = exp(−d̂(x)) consistently estimates rt(x) as
N →∞.

3. Variational gradient flow (VGrow) learning
procedure

With data {Xi}Ni=1 ⊂ Rd sampled from an unknown target
distribution p(x), our goal is to learn a deterministic trans-
port map that transforms low dimensional samples from a
simple reference distribution such as a Gaussian distribution
or a uniform distribution into samples from the underlying
target p(x).

To this end, we parameterize the sought transform via a deep
neural networkGθ : R` → Rd with `� d, where θ denotes
its parameters. We sample particles {Wi}Ni=1 from simple
reference distribution and transform them into {Zi}Ni=1 with
the initial Gθ. We do the following two steps iteratively.
First, we learn a density ratio by solving the optimization
problem (3) with real data {Xi}Ni=1 and generated data
{Zi}Ni=1, where we parameterize d(·) into a neural network
Dφ(·). Then, we define a residual map T̂ using the estimated
vector field with a small step size s and update {Zi}Ni=1

through T̂(·). According to the theory we discussed in
Section 2, the above iteratively two steps can get particles
{Zi}Ni=1 more likely sampled from p(x). So we can update
the generator Gθ via fitting the pairs {(Wi,Zi)}Ni=1 and
repeat the above whole procedure as desired with warm
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start. We give a detailed description of the VGrow learning
procedure as follows.

• Outer loop

– Sample {Wi}Ni=1 ⊂ R` from the simple
reference distribution and let particles Zi =
Gθ(Wi), i = 1, 2, ..., N .

– Inner loop
∗ Restrict d(·) in (3) be a neural network Dφ(·)

with parameter φ and solve (3) with SGD to
get r̂(x) = exp(−Dφ(x)).

∗ Define the residual map T̂ = id + sĥ

with a small step size s, where ĥ(x) =
−f ′′(r̂(x))∇r̂(x).

∗ Update the particles Zi = T̂(Zi), i =
1, 2, ..., N .

– End inner loop
– Update the parameter θ of Gθ(·) via solving

minθ
∑N
i=1 ‖Gθ(Wi)− Zi‖2 with SGD.

• End outer loop

We consider four divergences in this paper. The form of
the four divergences and their second order derivatives are
shown in Table 1. They are three commonly used diver-
gences, including KL, JS and Jeffreys divergences, as well
as our newly discovered “logD” divergence serving as the
objective function of the logD-trick GAN, which to the best
of our knowledge is a new result.

Theorem 3.1. At the population level, the logD-trick GAN
(Goodfellow et al., 2014) minimizes the “logD” divergence
Df (q(x)‖p(x)), with f(u) = (u+ 1) log(u+ 1)− 2 log 2,
where q(x) is the distribution of generated data.

Table 1. Four representative f -divergences

f -Div f(u) f ′′(u)

KL u log u 1
u

JS −(u+ 1) log u+1
2

+ u log u 1
u(u+1)

logD (u+ 1) log(u+ 1)− 2 log 2 1
u+1

Jeffreys (u− 1) log u u+1
u2

4. Related Work
We discuss connections between our proposed VGrow learn-
ing procedure and related work, such as VAE, GAN and
flow-based methods.

VAE (Kingma & Welling, 2014) is formulated as maximiz-
ing a lower bound based on the KL divergence. Flow-based

methods (Dinh et al., 2015; 2017) minimize the KL diver-
gence between the target distribution and a model distri-
bution, which is the pushforward distribution of a simple
reference distribution through a sequence of learnable in-
vertible transforms. These transforms are parameterized as
specifically designed neural networks to facilitate computa-
tions of log-determinants (Dinh et al., 2015; 2017; Kingma
et al., 2016; Papamakarios et al., 2017; Kingma & Dhari-
wal, 2018) and the training process leads to a maximum
likelihood estimation. Our VGrow also learns a sequence of
simple residual maps governed by the variational gradient
flow in probability spaces, which is quite different from the
flow-based methods in principle.

The vanilla GAN and the logD-trick GAN (Goodfellow
et al., 2014) minimize the JS divergence and the “logD” di-
vergence, respectively, as shown in Theorem 3.1. This idea
can be extended to a general f -GAN (Nowozin et al., 2016),
where f -divergences are utilized. Furthermore, based on f -
divergences, GANs are formulated to solve the dual problem.
In contrast, our VGrow directly minimizes the f -divergence
from the primal form. The most related work of GANs
to VGrow is (Johnson & Zhang, 2018; Nitanda & Suzuki,
2018; Wang & Liu, 2017), where functional gradient (first
variation of functional) is adopted to favor the GAN training.
Nitanda & Suzuki (2018) introduced a gradient layer based
on first variation of generator loss in WGAN (Arjovsky
et al., 2017) to accelerate convergence of training. In Wang
& Liu (2017), a deep energy model was trained along Stein
variational gradient (Liu & Wang, 2016), which was the
projection of the first variation of KL divergence in Theo-
rem 2.1 onto a reproducing kernel Hilbert space, please see
the supplementary material for a proof. Johnson & Zhang
(2018) proposed CFG-GAN that directly minimizes the KL
divergence via functional gradient descent. In their work,
the update direction is the gradient of log density ratio mul-
tiplied by a positive scaling function. They empirically set
this scaling function to be 1 in their numerical study. Our
VGrow is based on the general f -divergence, and Theo-
rem 2.1 implies that the update direction in KL divergence
case is indeed the gradient of log density ratio, and thus the
scaling function of CFG-GAN should be exactly 1.

5. Experiments
First, two toy examples of fitting two-dimensional mix-
ture distributions were conducted to illustrate the ability
of VGrow to learn multimodal distributions without mode
collapse. Next, we evaluated our model on four benchmark
image datasets including MNIST (LeCun et al., 1998), Fash-
ionMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky &
Hinton, 2009) and CelebA (Liu et al., 2015). We claim
that all f -divergences with a twice-differentiable f are com-
patible with the general variational gradient flow (VGrow)
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framework, and four representatives in Table 1 were tested
to demonstrate the effectiveness of VGrow for generative
learning.

5.1. 2D toy examples

As shown in Figure 1, the first simulation data were gen-
erated from a mixture of eight two-dimensional Gaussians
and the second were two concentric circles with Gaussian
noise. Single hidden layer neural networks with ReLU ac-
tivation functions were employed to parameterize the deep
sampler and the deep classifier. In order to enhance the
representational capacity of networks, the number of hidden
neurons were set to 512, i.e., the dimension of layers was
2-512-2 for both the sampler and the classifier. We visu-
alized the evolving particles by kernel density estimation
(KDE) in Figure 2. VGrow transformed the standard normal
distribution to capture all the modes of Gaussian mixture
with only one hidden layer. Furthermore, VGrow provided
good approximations to the modes and support of the target
distribution with a few outer loops. With more steps taken,
the distributions were fitted much better.

(a) (b)

Figure 1. KDE plots for (a) Mixture of Gaussians (MoG); (b) Con-
centric circles with Gaussian noise.

5.2. Experimental setup

f -divergences. Theoretically, our model works for the
whole f -divergence family by simply plugging the twice-
differentiable function f in. Special cases are obtained when
specific f -divergences are considered. At the population
level, when the KL divergence is adopted, our VGrow nat-
urally gives birth to CFG-GAN while the adoption of JS
divergence leads us to the vanilla GAN. As we proved above,
GAN with the logD trick corresponds to our newly discov-
ered ”logD” divergence which belongs to the f-divergence
family. Moreover, we consider the Jeffreys divergence to
show that our model is applicable to other f -divergences.
We name these four cases VGrow-KL, VGrow-JS, VGrow-
logD and VGrow-JF.

Datasets. We chose four benchmark datasets which in-

(a) OL = 1k (b) OL = 20k (c) OL = 100k

(d) OL = 100 (e) OL = 20k (f) OL = 80k

Figure 2. KDE plots of the evolving particles. The first and second
rows show pictures concerning MoG and circles, respectively. OL
denotes the number of outer loops hereinafter.

cluded three small datasets (MNIST, FashionMNIST, CI-
FAR10) and one large dataset (CelebA) from GAN literature.
Both MNIST and FashionMNIST have a training set of 60k
examples and a test set of 10k examples as 28× 28 bilevel
images. CIFAR10 has a training set of 50k examples and a
test set of 10k examples as 32× 32 color images. There are
naturally 10 classes on these three datasets. CelebA consists
of more than 200k celebrity images which were randomly
divided into a training set and a test set, and the division ra-
tio is approximately 9 : 1. For MNIST and FashionMNIST,
the input images were resized to 32×32 resolution. We also
pre-processed CelebA images by first taking a 160 × 160
central crop and then resizing to the 64 × 64 resolution.
Only the training sets are used to train our models.

Evaluation metrics. Inception Score (IS) (Salimans
et al., 2016), calculates the exponential mutual information
exp(EGKL[p(C|G)‖p(C)]) where p(c|g) is the underly-
ing distribution of the class C that the generated image
g belongs to and p(c) is the marginal class distribution
across generated images (Barratt & Sharma, 2018). To es-
timate p(c|g) and p(c), we trained specific classifiers on
MNIST, FashionMNIST, CIFAR10 following Johnson &
Zhang (2018) using pre-activation ResNet-18 (He et al.,
2016). We evaluated IS over 50k generated images. Fréchet
Inception Distance (FID) (Heusel et al., 2017) computes the
Wasserstein-2 distance with summary statistics (mean µ and
variance Σ) of real images xs and generated images gs in
the feature space of the Inception-v3 model (Szegedy et al.,
2016), i.e., FID = ‖µx−µg‖22+Tr(Σx+Σg−2(ΣxΣg)

1
2 ).

In our work, FID is reported with respect to the 10k test
examples on MNIST, FashionMNIST and CIFAR10 with
the tensorflow implementation. In a nutshell, higher IS and
lower FID are better.
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Network architectures and hyperparameter settings.
We adopted a new architecture modified from the resid-
ual networks used in Miyato et al. (2018). The modifi-
cations were comprised of reducing the number of batch
normalization layers and introducing spectral normalization
in the deep sampler / generator. The architecture was shared
across the three small datasets and most hyperparameters
were shared across different divergences. More residual
blocks, upsampling and downsampling are employed on
CelebA. Implementation details can be found in the second
and third section of the supplementary material.

5.3. Results

Through our experiment, We demonstrate empirically that
(1) VGrow is very stable in the training phase, and that
(2) VGrow can generate high-fidelity samples that are com-
parable to real samples both visually and quantitatively.
Comparisons with the state-of-the-art GANs suggest the
effectiveness of VGrow.

Stability. It has been shown that the binary classification
loss poorly correlates with the generating performance for
JS divergence based GAN models (Arjovsky et al., 2017).
We observed similar phenomena with our f -divergence
based VGrow model, i.e., the classification loss changed a
little at the beginning of training and then fluctuated around
a constant value. Since the classfication loss was not mean-
ingful enough to measure the generating performance, we
turned to utilize the aforementioned inception score to draw
IS-OL learning curves on MNIST, FashionMNIST and CI-
FAR10. The results are presented in Figure 3. As indicated
in all three subfigures, the IS-OL learning curves are very
smooth and the inception scores nearly monotonically in-
crease until 3500 outer loops (almost 75 epochs) on MNIST
and FashionMNIST as well as 4500 outer loops (almost 100
epochs) on CIFAR10.

Effectiveness. First, we list the real images and generated
examples of our VGrow-KL model on the four benchmark
datasets in Figure 4. We claim that the realistic-looking
generated images are visually comparable to real images
sampled from the training set. It is easy to distinguish which
class the generated example belongs to even on CIFAR10.
Second, Table 2 presents the FID scores for the considered
four models, and the FID values on 10k training data of
MNIST and FashionMNIST. Scores of generated samples
are very close to scores on real data. Especially, VGrow-JS
obtains average scores of 3.32 and 8.75 while the scores on
training data are 2.12 and 4.16 on MNIST and FashionM-
NIST, respectively. Third, Table 3 shows FID evaluations of
our four models, and the referred evaluations of state-of-the-
art WGANs and MMDGANs from Arbel et al. (2018) based
on 50k samples. Our VGrow-logD attain a score of 28.8
with less variance that is competitive with the best (28.5)

Table 2. Mean (standard deviation) of FID evaluations over 10k
generated MNIST / FashionMNIST images with five-time boot-
strap sampling. The last row states statistics of the FID scores
between 10k training examples and 10k test examples.

Models MNIST(10k) FashionMNIST (10k)

VGrow-KL 3.66 (0.09) 9.30 (0.09)
VGrow-JS 3.32 (0.05) 8.75 (0.06)
VGrow-logD 3.64 (0.05) 9.51 (0.09)
VGrow-JF 3.40 (0.07) 9.72 (0.06)
Training set 2.12 (0.02) 4.16 (0.03)

Table 3. Mean (standard deviation) of FID evaluations over 50k
generated CIFAR10 images with five-time bootstrap sampling.
The last four rows are baseline results adapted from Arbel et al.
(2018).

Models CIFAR10 (50k)

VGrow-KL 29.7 (0.1)
VGrow-JS 29.1 (0.1)
VGrow-logD 28.8 (0.1)
VGrow-JF 32.3 (0.1)

WGAN-GP 31.1 (0.2)
MMDGAN-GP-L2 31.4 (0.3)
SMMDGAN 31.5 (0.4)
SN-SWGAN 28.5 (0.2)

of referred baseline evalution. VGrow-JS and VGrow-KL
achieve better performance than the remaining referred base-
lines. In a word, the quantitative results in Table 2 and Table
3 illustrate the effectiveness of our VGrow model.

6. Conclusion
We propose the VGrow framework to learn deep generative
models. We discuss connections of our proposed VGrow
method with VAE, GAN and flow-based methods. We eval-
uated VGrow on several divergences, including a newly
discovered “logD” divergence which serves as the objective
function of the logD-trick GAN. Experimental results on
benchmark datasets demonstrate that VGrow can generate
high-fidelity images in a stable and efficient manner, achiev-
ing competitive performance with state-of-the-art GANs.
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Figure 3. IS-OL learning curves on MNIST, FashionMNIST and
CIFAR10. The training of VGrow is very stable until 3500 outer
loops on MNIST and FashionMNIST (4500 outer loops on CI-
FAR10).

(a) real MNIST (b) generated MNIST

(c) real FashionMNIST (d) generated FashionMNIST

(e) real CIFAR10 (f) generated CIFAR10

(g) real CelebA (h) generated CelebA

Figure 4. Real samples and generated samples obtained by VGrow-
KL on MNIST, FashionMNIST, CIFAR10 and CelebA.
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Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton,
A. Demystifying MMD GANs. In ICLR, 2018.

Bousquet, O., Gelly, S., Tolstikhin, I., Simon-Gabriel, C.-J.,
and Schoelkopf, B. From optimal transport to genera-
tive modeling: the VEGAN cookbook. arXiv preprint
arXiv:1705.07642, 2017.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018.

Che, T., Li, Y., Jacob, A. P., Bengio, Y., and Li, W. Mode
regularized generative adversarial networks. In ICLR,
2017.

Denton, E. L., Chintala, S., szlam, a., and Fergus, R. Deep
generative image models using a Laplacian pyramid of
adversarial networks. In NIPS, 2015.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. In ICLR, 2015.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using Real NVP. In ICLR, 2017.
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Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. A.
Generative visual manipulation on the natural image man-
ifold. In ECCV, 2016.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In ICCV, 2017.


