
Deep Generative Learning via Variational Gradient Flow
Supplementary Material

We here include proofs, hyperparameter settings and net-
work architectures.

1. Proofs
In this section we give detailed proofs for the main theory
in the paper.

Lemma 1.1. Let δFδq (q) : R
d → R denote the first variation

of F [·] at q, then
(
δF
δq (q)

)
(x) = f ′(r(x)) where r(x) =

q(x)
p(x) .

Proof. For any w(x), define the function η(s) = F [q +
sw] : R→ R. The chain rule and direct calculation shows
η′(s)

∣∣
s=0

= 〈 δFδq (q), w〉 =
∫
f ′(r(x))w(x)dx.

Lemma 1.2.

d

dt
F [qt] = −EX∼qt [‖vt(X)‖2]

Proof. Follow the expression 10.1.16 in (Ambrosio et al.,
2008) (section E of chapter 10.1.2, page 233).

Theorem 1.1. For any g ∈ H(qt), if the vanishing condi-
tion lim

‖x‖→∞
‖f ′(rt(x))qt(x)g(x)‖ = 0 is satisfied, then

〈
δL
δh

[0],g

〉
H(qt)

= 〈f ′′(rt)∇rt,g〉H(qt).

Proof. For any g ∈ H(qt), define η(s) = Df (Ts,g#qt‖p)
as a function of s ∈ R+. Let θg(s) = Ts,g#qt/p.
By definition, L[g] = η(s) = Df (Ts,g#qt‖p) =∫
p(x)f(θg(s))dx. Since η′(s)

∣∣
s=0

= 〈 δLδh [0],g〉H(qt), we
need calculate the derivative of η(s) at s = 0. Since

(Ts,g#qt)(x) = qt(T−1s,g(x))|det(∇xT−1s,g(x))|,

by the chain rule, we get

η′(s)
∣∣
s=0

=

∫
p(x)[f ′(θg(s))θ

′
g(s)]

∣∣
s=0

dx,

where

θ′g(s)
∣∣
s=0

=
1

p(x)

{
[qt(T−1s,g(x))]′

∣∣
s=0
|det(∇xT−1s,g(x))|

∣∣
s=0

+ qt(T−1s,g(x))
∣∣
s=0

[|det(∇xT−1s,g(x))|]′
∣∣
s=0

}
.

By definition, θg(s)
∣∣
s=0

= qt(x)
p(x) = rt(x). We claim that

θ′g(s)
∣∣
s=0

=
1

p(x)
{−g(x)T∇qt(x)− qt(x)∇ · g(x)}

= − 1

p(x)
∇ · [qt(x)g(x)].

Indeed, recall that

Ts,g(X) = X+ sg(X).

We get
T−1s,g(X) = X− sg(X) + o(s),

and
T−1s,g

∣∣
s=0

(X) = X.

Then it follows that

[qt(T−1s,g(x))]′
∣∣
s=0

= lim
s→0

qt(T−1s,g(x))− qt(x)
s

= −g(x)T∇qt(x),

and

|det(∇xT−1s,g(x))|
∣∣
s=0

= 1, qt(T−1s,g(x))
∣∣
s=0

= qt(x).

We finish our claim by calculating

[|det(∇xT−1s,g(x))|]′
∣∣
s=0

=[explog(|det(∇xT−1
s,g(x))|)]′

∣∣
s=0

=|det(∇xT−1s,g(x))|
∣∣
s=0

[log |det(∇xT−1s,g(x))|]′|
∣∣
s=0

= lim
s→0

log |det(∇xT−1s,g(x))| − log |det(I)|
s

= lim
s→0

log |det(I− s∇xg(x))| − log |det(I)|+ o(s)

s

=− tr(∇xg(x)) = −∇ · g(x).

Thus

η′g(s)
∣∣
s=0

=

∫
p(x) · [f ′(θg(s)) · θ′g(s)]

∣∣
s=0

dx

=−
∫
f ′(rt(x))∇ · [qt(x)g(x)]dx

=

∫
qt(x)g(x)

T∇f ′(rt(x))−∇ · [f ′(rt(x))g(x)]dx

=

∫
qt(x)f

′′(rt(x))[∇rt(x)]Tg(x)dx

=〈f ′′(rt(x))∇rt(x),g(x)〉H(qt),

Deep Generative Learning via Variational Gradient Flow

where the fourth equality follows from integral by part and
the vanishing assumption.

Theorem 1.2. The evolving distribution qt under the in-
finitesimal pushforward map Ts,vt

satisfies the Vlasov-
Fokker-Planck equation.

Proof. Similar to the proof of equation (13) in (Liu, 2017).
We present the detail here for completeness. The proof of
Theorem 1.1 shows that,

qt(T−1s,vt
(x)) = qt(x)− svt(x)T∇qt(x) + o(s),

and

|det(∇xT−1s,vt
(x))| = −s∇ · vt(x) + o(s).

Then by the Taylor expansion,

log(Ts,vt#qt)(x)

= log qt(T−1s,vt
(x)) + log |det(∇xT−1s,vt

(x))|

= log qt(x)− s
vt(x)

T∇qt(x)
qt(x)

− s∇ · vt(x) + o(s)

= log qt(x)−
s

qt(x)
(vt(x)

T∇qt(x)

+ qt(x)∇ · vt(x)) + o(s).

Let q̃(x) denote the density of Ts,vt#qt, then

q̃(x)− qt(x)
s

=
qt(log q̃ − log qt)

s
= −∇ · (qt(x)vt(x)) + o(s).

Let s→ 0, we get the desired result.

Lemma 1.3. Let (X, Y) be a random variable pair admit-
ting p(x, y) with the binary random variable Y ∼ p(y)
taking the value in {−1,+1}. Denote q(x) = p(x|Y =

−1), p(x) = p(x|Y = 1) and r(x) = q(x)
p(x) . Let

d∗(x) = argmin
d(x)

E(X,Y)∼p(x,y) log(1 + exp(−d(X)Y)).

If p(Y = 1) = p(Y = −1), then r(x) = exp(−d∗(x)).

Proof. d∗(x) is the minimizer of

min
d(x)

E(X,Y)∼p(x,y) log(1 + exp(−d(X)Y))

=min
d(x)

∫
p(x, y) log(1 + exp(−d(x)y))dxdy

=min
d(x)
{
∫
p(y = 1)p(x|y = 1) log(1 + exp(−d(x)))dx

+

∫
p(y = −1)p(x|y = −1) log(1 + exp(d(x)))dx}.

The above criterion is a functional of d(·). By setting the
first variation to zero yields

exp(−d∗(x)) = p(y = 1)p(x|y = 1)

p(y = −1)p(x|y = −1)
,

i.e. r(x) = exp(−d∗(x)).

Theorem 1.3. At the population level, the logD-trick GAN
(Goodfellow et al., 2014) minimizes the “logD” divergence
Df (q(x)‖p(x)), with f(u) = (u+ 1) log(u+ 1)− 2 log 2,
where q(x) is the distribution of generated data.

Proof. By definition,

Df (q(x)‖p(x))

=

∫
p(x)f

(
q(x)

p(x)

)
dx

=

∫
(p(x) + q(x)) log

(
p(x) + q(x)

p(x)

)
dx− 2 log 2

=2KL(p(x)+q(x)2 ‖p(x))

At the population level, the objective function of the logD-
trick GAN (Goodfellow et al., 2014) is

max
D

EX∼p(x)[logD(X)] + EZ∼pZ [log(1−D(G(Z)))],

min
G
−EX∼p(x)[logD(X)]− EZ∼pZ [logD(G(Z))],

where pZ is the simple low-dimensional reference distri-
bution. Denote q(·) as the distribution of G(Z). Then the
losses of D and G are equivalent to

max
D

EX∼p(x)[logD(X)] + EX∼q(x)[log(1−D(X))],

min
G
−EX∼p(x)[logD(X)]− EX∼q(x)[logD(X)].

The optimal discriminator is D∗(x) = p(x)
p(x)+q(x) . Substitut-

ing this D∗ into the G criterion, we get

− EX∼p(x)[logD
∗(X)]− EX∼q(x)[logD

∗(X)]

=EX∼p(x)

[
log p(X)+q(X)

p(X)

]
+ EX∼q(x)

[
log p(X)+q(X)

p(X)

]
=Df (q(x)‖p(x)) + 2 log 2.

Deep Generative Learning via Variational Gradient Flow

Proof of the relation between VGrow and SVGD

Proof. Let f(u) = u log u. Let g in a Stein class associated
with qt. By the proof of Theorem 1.1, we know,〈

δL
δh

[0],g

〉
H(qt)

=〈f ′′(rt)∇rt,g〉H(qt)

=

∫
g(x)T

∇rt(x)
rt(x)

qt(x)dx

=

∫
g(x)T∇ log rt(x)qt(x)dx

=EX∼qt(x)[g(x)
T∇ log qt(X)− g(x)T∇ log p(X)]

=EX∼qt(x)[g(x)
T∇ log qt(X) +∇ · g(x)]

− EX∼qt(x)[g(x)
T∇ log p(X) +∇ · g(x)]

=EX∼qt(x)[Tqtg]− EX∼qt(x)[Tpg]
=− EX∼qt(x)[Tpg],

where the last equality is obtained by restricting g in a Stein
class associated with qt, i.e., EX∼qt(x)Tqtg = 0.

2. Hyperparameter Settings
For the real data, we set the batch size to be 64 and use
RMSProp as the SGD optimizer to train neural networks.
The learning rate is 0.0001 for both the deep sampler and
the deep classifier except for 0.0002 on MNIST for VGrow-
JF. Inputs to samplers are vectors generated from a 128
dimensional standard normal distribution on all the datasets.
Meta-parameters of VGrow are listed in Table 1 where IL
denotes the number of inner loops in each outer loop.

Table 1. Meta-parameter values in VGrow

Parameter Value

s 0.5
` 128
N 1280
IL 20

3. Network Architectures
Deep samplers and classifiers are parameterized with resid-
ual networks. Each ResNet block has a skip-connection.
The skip-connection takes upsampling / downsampling of
its input if necessary or 1×1 convolution if not. The upsam-
pling is nearest-neighbor upsampling and the downsampling
is achieved with mean pooling. Details concerning the net-
works are listed in Table 2, 3, 4, 5. We use c to denote the
number of image channels, i.e. c = 1 or c = 3.

Table 2. ResNet sampler with 32× 32× c resolution.

Layer Details Output size

Latent noise z ∼ N (0, I) 128

Fully connected Linear 2048
Reshape 4× 4× 128

ResNet block ReLU 4× 4× 128
Upsampling 8× 8× 128

Conv3× 3, BN, ReLU 8× 8× 128
Conv3× 3 8× 8× 128

ResNet block ReLU 8× 8× 128
Upsampling 16× 16× 128

Conv3× 3, BN, ReLU 16× 16× 128
Conv3× 3 16× 16× 128

ResNet block ReLU 16× 16× 128
Upsampling 32× 32× 128

Conv3× 3, BN, ReLU 32× 32× 128
Conv3× 3 32× 32× 128

Conv ReLU, Conv3× 3, Tanh 32× 32× c

Table 3. ResNet classifier with 32× 32× c resolution.

Layer Details Output size

ResNet block Conv3× 3 32× 32× 128
ReLU, Conv3× 3 32× 32× 128

Downsampling 16× 16× 128

ResNet block ReLU, Conv3× 3 16× 16× 128
ReLU, Conv3× 3 16× 16× 128

Downsampling 8× 8× 128

ResNet block ReLU, Conv3× 3 8× 8× 128
ReLU, Conv3× 3 8× 8× 128

ResNet block ReLU, Conv3× 3 8× 8× 128
ReLU, Conv3× 3 8× 8× 128

Fully connected ReLU, GlobalSum pooling 128
Linear 1

References
Ambrosio, L., Gigli, N., and Savaré, G. Gradient flows: in

metric spaces and in the space of probability measures.
Springer Science & Business Media, 2008.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In NIPS, 2014.

Liu, Q. Stein variational gradient descent as gradient flow.
In NIPS, 2017.

Deep Generative Learning via Variational Gradient Flow

Table 4. ResNet sampler with 64× 64× c resolution.

Layer Details Output size

Latent noise z ∼ N (0, I) 128

Fully connected Linear 2048
Reshape 4× 4× 128

ResNet block ReLU 4× 4× 128
Upsampling 8× 8× 128

Conv3× 3, BN, ReLU 8× 8× 128
Conv3× 3 8× 8× 128

ResNet block ReLU 8× 8× 128
Upsampling 16× 16× 128

Conv3× 3, BN, ReLU 16× 16× 128
Conv3× 3 16× 16× 128

ResNet block ReLU 16× 16× 128
Upsampling 32× 32× 128

Conv3× 3, BN, ReLU 32× 32× 128
Conv3× 3 32× 32× 128

ResNet block ReLU 32× 32× 128
Upsampling 32× 32× 128

Conv3× 3, BN, ReLU 32× 32× 128
Conv3× 3 64× 64× 128

Conv ReLU, Conv3× 3, Tanh 64× 64× c

Table 5. ResNet classifier with 64× 64× c resolution.

Layer Details Output size

ResNet block Conv3× 3 64× 64× 128
ReLU, Conv3× 3 64× 64× 128

Downsampling 32× 32× 128

ResNet block ReLU, Conv3× 3 32× 32× 128
ReLU, Conv3× 3 32× 32× 128

Downsampling 16× 16× 128

ResNet block ReLU, Conv3× 3 16× 16× 128
ReLU, Conv3× 3 16× 16× 128

Downsampling 8× 8× 128

ResNet block ReLU, Conv3× 3 8× 8× 128
ReLU, Conv3× 3 8× 8× 128

Fully connected ReLU, GlobalSum pooling 128
Linear 1

