
Categorical Feature Compression via Submodular Optimization

MohammadHossein Bateni * 1 Lin Chen * 1 2 Hossein Esfandiari * 1 Thomas Fu * 1 Vahab S. Mirrokni * 1

Afshin Rostamizadeh * 1

Abstract
In the era of big data, learning from categorical
features with very large vocabularies (e.g., 28
million for the Criteo click prediction dataset)
has become a practical challenge for machine
learning researchers and practitioners. We design
a highly-scalable vocabulary compression algo-
rithm that seeks to maximize the mutual informa-
tion between the compressed categorical feature
and the target binary labels and we furthermore
show that its solution is guaranteed to be within
a 1 − 1/e ≈ 63% factor of the global optimal
solution. To achieve this, we introduce a novel re-
parametrization of the mutual information objec-
tive, which we prove is submodular, and design a
data structure to query the submodular function in
amortized O(log n) time (where n is the input vo-
cabulary size). Our complete algorithm is shown
to operate in O(n log n) time. Additionally, we
design a distributed implementation in which the
query data structure is decomposed across O(k)
machines such that each machine only requires
O(nk) space, while still preserving the approxima-
tion guarantee and using only logarithmic rounds
of computation. We also provide analysis of sim-
ple alternative heuristic compression methods to
demonstrate they cannot achieve any approxima-
tion guarantee. Using the large-scale Criteo learn-
ing task, we demonstrate better performance in
retaining mutual information and also verify com-
petitive learning performance compared to other
baseline methods.

1. Introduction
In modern large scale machine learning tasks, the presence
of categorical features with extremely large vocabularies

*Equal contribution 1Google, New York, NY, USA 2Department
of Electrical Engineering, Yale University, New Haven, CT, USA.
Correspondence to: Lin Chen <lin.chen@yale.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

is a standard occurrence. For example, in tasks such as
product recommendation and click-through rate prediction,
categorical variables corresponding to inventory id, web-
page identifier, or other such high cardinality values, can
easily contain anywhere from hundreds of thousands to tens
of millions of unique values. The size of machine learning
models generally grows at least linearly with the vocabulary
size and, thus, the memory required to serve the model, the
training and inference cost, as well as the risk of overfitting
become an issue with very large vocabularies. In the partic-
ular case of neural networks model, one generally uses an
embedding layer to consume categorical inputs. The num-
ber of parameters in the embedding layer is O(nh), where
n is the size of the vocabulary and h is the number of units
in the first hidden layer.

To give a concrete example, the Criteo click prediction
benchmark has about 28 million categorical feature values
(CriteoLabs, 2014), thus resulting in an embedding layer
more than 1 billion parameters for a modestly sized first
hidden layer. Note, this number dwarfs the number of param-
eters found in the remainder of the neural network. Again,
to give a concrete example, even assuming a very deep
fully connected network of depth 102 with hidden layers of
size 103, we have (103 × 103)102 = 108 parameters in the
hidden network – still an order of magnitude smaller than
the embedding layer alone. This motivates the problem of
compressing the vocabulary into a smaller size while still
retaining as much information as possible.

In this work, we model the compression task by considering
the problem of maximizing the mutual information between
the compressed version of the categorical features and the
target label. We first observe a connection between this
problem and the quantization problem for discrete mem-
oryless channels, and note a polynomial-time algorithm
for the problem (Kurkoski & Yagi, 2014; Iwata & Ozawa,
2014). The resulting algorithm, however, is based on solv-
ing a quadratic-time dynamic program, and is not scalable.
Our main goal in this paper is to develop a scalable and
distributed algorithm with a guaranteed approximation fac-
tor. We achieve this goal by developing a novel connection
to submodular optimization. Although in some settings,
entropy-based set functions are known to be submodular,
this is not the case for the mutual information objective

Categorical Feature Compression via Submodular Optimization

we consider (mutual information with respect to the target
labels). Our main insight is in proving the submodularity
of a particular transformation of the mutual information
objective, which still allows us to provide an approxima-
tion guarantee on the quality of the solution with respect
to the original objective. We also provide a data structure
that allows us to query this newly defined submodular func-
tion in amortized logarithmic time. This logarithmic-time
implementation of the submodular oracle empowers us to in-
corporate the fastest known algorithm for submodular maxi-
mization (Mirzasoleiman et al., 2015), which leads us to a
sequential quasi-linear-time (1− 1/e− ε)-approximation
algorithm for binary vocabulary compression. Next, we
provide a distributed implementation for binary vocabulary
compression. Previous distributed algorithms for submodu-
lar maximization assume a direct access the query oracle on
every machine (e.g., see (Barbosa et al., 2015; Mirrokni &
Zadimoghaddam, 2015; Mirzasoleiman et al., 2013)). How-
ever, the query oracle itself requires O(n) space, which may
be restrictive in the large scale setting. In this work, we
provide a truly distributed implementation of the submod-
ular maximization algorithm of (Badanidiyuru & Vondrák,
2014) (or similarly (Kumar et al., 2015)) for our application
by distributing the query oracle. In this distributed imple-
mentation we manage to decompose the query oracle across
O(k) machines such that each machine only requires O(nk)
space to store the partial query oracle. As a result, we suc-
cessfully provide a distributed (1− 1/e− ε)-approximation
algorithm for vocabulary compression in logarithmic rounds
of computation. Our structural results for submodularity of
this new set function is the main technical contribution of
this paper, and can also be of independent interest in other
settings that seek to maximize mutual information.

We also study a number of heuristic and baseline algorithms
for the problem of maximizing mutual information, and
show that they do not achieve a guaranteed approximation
for the problem. Furthermore, we study the empirical per-
formance of our algorithms on two fronts: First, we show
the effectiveness of our greedy scalable approximation al-
gorithm for maximizing mutual information. Our study
confirms that this algorithm not only achieves a theoreti-
cal guarantee, but also it beats the heuristic algorithms for
maximizing mutual information. Finally, we examine the
performance of this algorithm on the vocabulary compres-
sion problem itself, and confirm the effectiveness of the
algorithm in producing a high-quality solution for vocabu-
lary compression large scale learning tasks.

Organization. In the remainder of this section we review
related previous works and introduce the problem formally
along with appropriate notation. Then in Section 2, we
introduce the novel compression algorithm and correspond-
ing theoretical guarantees as well as analysis of some basic
heuristic baselines. In Section 3, we present our empirical

evaluation of optimizing the mutual information objective
as well as an end-to-end learning task.

1.1. Related Work

Feature Clustering: The use of vocabulary compression
has been studied previously, especially in text classification
applications where it is commonly known as feature (or
word) clustering. In particular, Baker & McCallum (1998)
and Slonim & Tishby (2001) both propose agglomerative
clustering algorithms, which start with singleton clusters
that are iteratively merged using a Jenson-Shannon diver-
gence based function to measure similarity between clusters,
until the desired number of clusters is found. Both algo-
rithms are greedy in nature and do not provide any guarantee
with respect to a global objective. In Dhillon et al. (2003),
the authors introduce an algorithm that empirically performs
better than the aforementioned methods and that also seeks
to optimize the same global mutual information objective
that is analyzed in this work. Their proposed iterative algo-
rithm is guaranteed to improve the objective at each iteration
and arrive at a local minimum, however, no guarantee with
respect to the global optimum is provided. Furthermore,
each iteration of the algorithm requires O(mn) time (where
m is the size of the compressed vocabulary) and the number
of iterations is only guaranteed to be finite (but potentially
exponential). Later in this work, we compare the empirical
performance of this algorithm with our proposed method.

Input DMC Output QuantizerDMC
Quantization

Label Compression
function

Compressed
feature values

Vocabulary

Compression

Feature
values

Quantized
output

(To be designed)

Figure 1. Translation of terminologies of the DMC quantizer de-
sign problem and the feature compression problem.

Compression in Discrete Memoryless Channels: An area
from information theory that is closely related to our vocab-
ulary compression problem, and which our algorithm draws
inspiration from, is compression in a discrete memoryless
channels (DMC) (Cicalese et al., 2018; Zhang & Kurkoski,
2016; Iwata & Ozawa, 2014). In this problem, we assume
there is a DMC which (in machine learning terminology)
receive a class label and produces a corresponding categor-
ical feature value drawn according to a fixed underlying
distribution. The goal is to design a quantizer that maps the
space of categorical features in lower cardinatility set, while
preserving as much of the mutual information between the
class label and newly constructed vocabulary. In Figure 1,
we present a diagram that illustrates the DMC quantization
problem and vocabulary compression problem as well as
the translation of terminologies of these two problems. The

Categorical Feature Compression via Submodular Optimization

results of Kurkoski & Yagi (2014) are of particular interest,
as they show a cubic-time dynamic programming based al-
gorithm is able to provide an optimal solution in the case of
binary labels. Following this work, Iwata & Ozawa (2014)
improve the computational complexity of this approach to
quadratic time using the SMAWK algorithm (Aggarwal
et al., 1987). Such algorithms are useful in the smaller scale
regime, however, the use of a cubic- or even quadratic-time
algorithm will be infeasible for our massive vocabulary size
use cases. Finally, Mumey & Gedeon (2003) shows that in
the general case of greater than two class labels, finding the
optimal compression is NP-complete. In this work, we will
be focusing on the binary label setting.

Feature Selection: A related method for dealing with very
large vocabularies is to do feature selection, in which we
simply select a subset of the vocabulary values and remove
the rest (see Guyon & Elisseeff (2003) and the many refer-
ences therein). One can view this approach as a special case
of vocabulary compression, where we are restricted to only
singleton “clusters”. Restricting the problem by selecting
a subset of the vocabulary may have some benefits, such
as potentially simplifing the optimization problem and the
use of a simple filter to transform data at inference time.
However, the obvious downside to this restriction is the loss
of information and potentially poorer learning performance
(see introduction of Jiang et al. (2011)). In this work we
focus on the more general vocabulary compression setting.

Other Feature Extraction Approaches: Clustering fea-
tures in order to compress a vocabulary is only one approach
to lower dimensional feature extraction. There are of course
many classical approaches to feature extraction (see Chapter
15 of Mohri et al. (2018)), such as learning linear projections
(e.g., Principle Component Analysis, Linear Discriminant
Analysis) or non-linear transformations (e.g., Locally Linear
Embeddings, ISOMAP, Laplacian Eigenmaps). However,
these classical methods generally incur more than quasilin-
ear computational cost, for both learning and the application
the transformation, and are not feasible for our setting.

1.2. Notation

In the vocabulary compression problem we are given a cor-
related pair of random variables X (a categorical feature)
and C (a label), where X ∈ {1, 2, . . . , n} and C ∈ {0, 1}.
We aim to define a random variable Z ∈ {1, 2, . . . ,m}
as a function of X that maximizes the mutual information
with the label C, i.e., I(Z;C), where for general random
variables A and B taking values in A and B, respectively,

I(A;B) =
∑
A∈A

∑
B∈B

Pr [A,B] log
(Pr [A,B]

Pr [A] Pr [B]

)
. (1)

Note thatZ is a function ofX and hence we have I(Z;C) ≤
I(X;C). If we let m ≥ n, Z = X maximizes the mutual

information I(Z;C). We are interested in the nontrivial
case of m� n. Intuitively, we are compressing the vocab-
ulary of feature X from size n to a smaller size m, while
preserving the maximum amount of information about C.

2. Algorithm and Analysis
In this section, we first show how to transform the origi-
nal objective into a set function and then prove that this
set function is in fact submodular. Next, we describe the
components of a quasi-linear and parallelizable algorithm
to optimize the objective. Finally, we consider a few simple
intuitive baselines and show that they may create features
that fail to capture any mutual information with the label.

2.1. Objective Transformation

Without loss of generality assume Pr [C = 0|X = i] for
i ∈ {1, . . . , n} is sorted in increasing order. Once the
feature values are sorted in this order, Lemma 3 of Kurkoski
& Yagi (2014) crucially shows that in the optimum solution
each value ofZ corresponds to a consecutive subsequence of
{1, . . . , n}— this is a significant insight that we take from
the quantization for DMC literature. Thus, we will cluster
consecutive feature values into m clusters, with each cluster
corresponding to a value in the compressed vocabulary of
Z. Formally, define a function F (S) : 2{1,...,n−1} → R
as follows: Let S = {s1, . . . , sm−1}, and assume s1 <
s2 < · · · < sm−1. For simplicity, and without any loss in
quality, we set s0 = 0 and sm = n. Let Z be a random
variable constructed from X that has value i, if and only if
si−1 < X ≤ si. We define F (S) = I(Z;C). Notice that
we have

max
S⊆{2...n−1} : |S|=m−1

F (S) = max
Z

I(Z;C) ,

whereZ is a function ofX with vocabulary sizem. The non-
negativity of mutual information implies that the function
F (S) = I(Z;C) is always non-negative (Cover & Thomas,
2006, p. 28). The monotonicity is equivalent to I(Z1;C) ≤
I(Z2;C) for any S1 ⊆ S2 ⊆ {1, . . . , n− 1}, where Z1 and
Z2 are the random variables constructed from S1 and S2,
respectively. Since S2 represents a subdivision of S1, Z1

is a function of Z2. By the data-processing inequality, we
have I(Z1;C) ≤ I(Z2;C) (Cover & Thomas, 2006, p. 34).
In the following section, we show that the function F (S) is
in fact submodular.

2.2. Submodularity of F (S)

For a set S ⊆ {1, . . . , n−1} and a number s ∈ {1, . . . , n−
1} \S we define ∆sF (S) = F (S ∪{s})−F (S). Let s′ be
the item right before s when we sort S ∪ {s}. Note that, the
items that are mapped to s′ by F (S) are either mapped to s′

or s by F (S ∪ {s}). We first observe the following useful

Categorical Feature Compression via Submodular Optimization

technical lemma (the proof of all lemmas can be found in
the supplement).

Lemma 1. Define the quantities p = Pr [Z = s′],
q = Pr [Z = s], α = Pr [C = 0|Z = s′] and β =
Pr [C = 0|Z = s], then the following equality holds

∆sF (S) = pf(α) + qf(β)− (p+ q)f
(pα+ qβ

p+ q

)
, (2)

where f(·) the following convex function over (0, 1):

f(t) = t log
t

Pr [C = 0]
+ (1− t) log

1− t
Pr [C = 1]

. (3)

Next, we provide several inequalities that precisely analyze
expressions of the same form as (2) with various values of
α, β, p and q.

Lemma 2. Pick α ≤ β ≤ γ ∈ R, and p ∈ [0, 1]. Let
q = 1 − p and let f be an arbitrary convex function. We
have

pf(α)+qf(β)−f(pα+qβ) ≤ pf(α)+qf(γ)−f(pα+qγ).

Replacing p and q in Lemma 2 with p
p+q and q

p+q and mul-
tiplying both sides by p+ q implies the following corollary.

Corollary 3. Pick α ≤ β ≤ γ ∈ R, and p, q ∈ R+. Let f
be an arbitrary convex function. We have

pf(α) + qf(β)− (p+ q)f
(pα+ qβ

p+ q

)
≤ pf(α) + qf(γ)− (p+ q)f

(pα+ qγ

p+ q

)
.

Similarly, we have the following corollary (simply by look-
ing at f(−x) instead of f(x)).

Corollary 4. Pick γ ≤ α ≤ β ∈ R, and p, q ∈ R+. Let f
be an arbitrary convex function. We have

pf(α) + qf(β)− (p+ q)f
(pα+ qβ

p+ q

)
≤ pf(γ) + qf(β)− (p+ q)f

(pγ + qβ

p+ q

)
.

We require one final lemma before proceeding to the main
theorem.

Lemma 5. Pick α, β ∈ R, and p, q, q′ ∈ (0, 1] such that
q < q′. Let f be an arbitrary convex function. We have

pf(α) + qf(β)− (p+ q)f
(pα+ qβ

p+ q

)
≤ pf(α) + q′f(β)− (p+ q′)f

(pα+ q′β

p+ q′
)
.

Figure 2. Illustration of boundaries used in proof of Theorem 6.

Theorem 6 (Submodularity). For any pair of sets S1 ⊆
S2⊆{1, . . . , n−1} and any s∈{1, . . . , n−1}\S2 we have
∆sF (S1) ≥ ∆sF (S2).

Proof. Let s′1 and s′′1 be the items right before and right
after s when we sort S1 ∪ {s}. Also, let Z1 and Z ′1 be the
random variables corresponding to F (S1 ∪ {s}) and F (S1)
respectively. Similarly let s′2 and s′′2 be items right before
and right after s when we sort S2 ∪ {s}, and let Z2 and Z ′2
be the random variables corresponding to F (S2 ∪ {s}) and
F (S2) respectively.

Let us set p1 = Pr [Z1 = s′1], q1 = Pr [Z1 = s], α1 =
Pr [C = 0|Z1 = s′1] and β1 = Pr [C = 0|Z1 = s]. Sim-
ilarly let us set p2 = Pr [Z2 = s′2], q2 = Pr [Z2 = s],
α2 = Pr [C = 0|Z2 = s′2] and β2 = Pr [C = 0|Z2 = s].
Note that since S1 ⊆ S2, we have s′1, s

′′
1 ∈ S2 and hence

we have s′2 ≥ s′1 and s′′2 ≤ s′′1 (see Figure 2). Therefore, we
have following set of inequalities

p2 = Pr [Z2 = s′2] ≤ Pr [Z1 = s′1] = p1 , (4)
q2 = Pr [Z2 = s] ≤ Pr [Z1 = s] = q1 . (5)

Since in the definition of F (·) the elements are ordered by
Pr [C = 0|X = x], we have the following set of inequalities

α1 =Pr [C=0|Z1 =s′1] ≤ Pr [C=0|Z1 =s]=β1 , (6)
α2 =Pr [C=0|Z2 =s′2] ≤ Pr [C=0|Z2 =s]=β2 , (7)
α1 =Pr [C=0|Z1 =s′1] ≤ Pr [C=0|Z2 =s′2]=α2 , (8)
β2 =Pr [C=0|Z2 =s] ≤ Pr [C=0|Z1 =s]=β1 . (9)

Finally, we have

∆sF (S2)

(a)
= p2f(α2) + q2f(β2)− (p2 + q2)f

(p2α2 + q2β2
p2 + q2

)
(b)

≤ p2f(α2) + q2f(β1)− (p2 + q2)f
(p2α2 + q2β1

p2 + q2

)
(c)

≤ p2f(α1) + q2f(β1)− (p2 + q2)f
(p2α1 + q2β1

p2 + q2

)
(d)

≤ p1f(α1) + q2f(β1)− (p1 + q2)f
(p1α1 + q2β1

p1 + q2

)
(e)

≤ p1f(α1) + q1f(β1)− (p1 + q1)f
(p1α1 + q1β1

p1 + q1

)
(f)
= ∆sF (S1) ,

Categorical Feature Compression via Submodular Optimization

where (a) and (f) follow from equality 2, (b) follows from
Corollary 3 and inequalities (9) and (7), (c) follows from
Corollary 4 and inequalities (8) and (6), (d) follows from
Lemma 5 and inequality (4), and (e) follows from Lemma 5
and inequality (5). This completes the proof.

2.3. Submodular Optimization Algorithms

Given that we have shown F (·) is submodular, we now show
two approaches to optimization: a single machine algorithm
that runs in time O(n log n) as well as an algorithm which
allows the input to be processed in a distributed fashion, at
the cost of an additional logarithmic factor in running time.

Single Machine Algorithm: We will make use of a
1− 1/e− ε approximation algorithm for submodular maxi-
mization that makes only O(n) queries to ∆sF (S) (Mirza-
soleiman et al., 2015). First, fix an arbitrary small constant
ε (this appears as a loss in the approximation factor as well
as in the running time). The algorithm starts with an empty
solution set and then proceeds inm iterations where, in each
iteration, we sample a set of n log 1/ε

m elements uniformly
at random from the elements that have not been added to
the solution so far and then add the sampled element with
maximum marginal increase to the solution.

In general, we may expect that computing ∆sF (S) requires
at least Ω(|S|) time, which might be as large as m. How-
ever, we note that the algorithm of (Mirzasoleiman et al.,
2015) (similar to most other algorithms for submodular max-
imization) only queries ∆sF (S) for incrementally growing
subsets of the final solution S. In that case, we can compute
each incremental value of ∆sF (S) in logarithmic time us-
ing a data structure that costs O(n log n) time to construct
(see Algorithm 1). By using this query oracle, we do not
require communicating the whole set S for every query.
Moreover, we use a red-black tree to maintain S, and hence
we can search for neighbors (s′ and s′′) in logarithmic time.
Thus, combining the submodular maximization algorithm
that requires only a linear number of queries with the loga-
rithmic time query oracle implies the following theorem.

Theorem 7. For any arbitrary small ε > 0, there exists
a (1 − 1/e − ε)-approximation algorithm for vocabulary
compression that runs in O(n log n) time.

Distributed Algorithm: Again, fix an arbitrary small num-
ber ε > 0 (for simplicity assume εk and n

εk are integers).
In this distributed implementation we use εk machines, re-
quires O(nεk) space per machine, and uses a logarithmic
number of rounds of computation.

To define our distributed algorithm we start with the (non-
distributed) submodular maximization algorithm of (Badani-
diyuru & Vondrák, 2014), which provides a 1 − 1/e − ε
approximate solution using O(n log n) queries to the sub-
modular function oracle. The algorithm works by defining a

Algorithm 1 Data structure to compute ∆sF (S)

Procedure: Initialization
Input: Sorted list of probabilities Pr [C = 0|X = xi] and
probabilities Pr [X = xi].

1: Initiate a red-black tree data structure S.
2: Insert 0 and n into S.
3: p<0 ← 0
4: pC=0|<0 ← 0
5: for i = 1 to n do
6: p<i ← p<i−1 + Pr [x = xi]

7: pC=0|<i ←
pC=0|<i−1×p<i−1+Pr[C=0|X=xi]×Pr[x=xi]

p<i
.

8: end for
Procedure: Query ∆sF (S)
Input: A number s∈{1, . . . , n−1}\S

1: s′ ← largest element smaller than s in S.
2: s′′ ← smallest element larger than s in S.
3: p = p<s − p<s′
4: q = p<s′′ − p<s
5: α =

pC=0|<s×p<s−pC=0|<s′×p<s′
p

6: β =
pC=0|<s′′×p<s′′−pC=0|<s×p<s

q

7: Return pf(α) + qf(β)− (p+ q)f
(
pα+qβ
p+q

)
where f(·)

is defined by equation (3).
Procedure: Insert s to S
Input: A number s∈{1, . . . , n−1}\S

1: Insert s into S.

decreasing sequence of thresholds w0, w1, . . . , wlog 1
1−ε

(n),

where w0 is the maximum marginal increase of a single
element, and wi = (1− ε)iw0. The algorithm proceeds in
log 1

1−ε
(n) rounds, where in round i the algorithm iterates

over all elements and inserts an element s into the solu-
tion set S if ∆sF (S) ≥ wi. The algorithm stops once it
has selected k elements or if it finishes log 1

1−ε
(n) rounds,

whichever comes first. As usual, this algorithm only queries
∆sF (S) for incrementally growing subsets of the final solu-
tion S, and hence we can use Algorithm 1 to solve vocabu-
lary compression in O(n log2 n) time.

Now, we show how to distribute this computation across
multiple machines. First, for all j ∈ {1, . . . , εk − 1}, we
select the (j nεk)-th element and add it to the solution set S.
This decomposes the elements into εk continuous subsets
of elements, each of size n

εk , and each of which we assign
to one machine. Note that ∆sF (S) only depends on the
previous item and next item of s in S and, due to the way
that we created the initial solution set S and decomposed
the input elements, the previous item and next item of s
are always both assigned to the same machine as s. Hence
each machine can compute ∆sF (S) locally. However, we
assigned the first εk − 1 to the solution set blindly and
their marginal gain may be very small. Intuitively, we are

Categorical Feature Compression via Submodular Optimization

potentially throwing away some of our selection budget for
the ease of computation. Next we show that by forcing these
elements into the solution we do not lose more than ε on the
approximation factor.

First of all, notice that if we force a subset of the element
to be included in the solution, the objective function is
still submodular over the remaining elements. That is, the
marginal impact of an element s (i.e., ∆sF (S)) shrinks as
S grows. Next we show that if we force εk−1 elements into
the solution, it does not decrease the value of the optimum
solution by more than a (1− ε) factor. This means that if we
provide a (1− 1/e− ε)-approximation to the new optimum
solution, it is a (1− ε)× (1− 1/e− ε) ≤ (1− 1/e− 2ε)
approximate solution to the original optimum.

Let S∗ be a solution of size k that maximizes F (·). De-
compose S∗ into 1

ε subsets of size εk. Note that by sub-
modularity the value of F (S∗) is more than the sum of the
marginal impacts of each 1

ε subset (given the remainder of
the subsets). Therefore, by the pigeonhole principle, the
marginal impact of one of these subsets of S∗ is at most
εF (S∗). If we remove this subset from S∗ and add the
εk − 1 forced elements, we find a solution of size (at most)
k that contains all of the forced elements and has value at
least (1− ε)F (S∗) as desired. Hence, by forcing these ini-
tial εk − 1 elements to be in the solution we lose only an ε
fraction on the approximation factor.

Now, to implement the algorithm of (Badanidiyuru &
Vondrák, 2014), in iteration i, each machine independently
finds and inserts all of its elements with marginal increase
more than wi. If the number of selected elements exceeds k,
we remove the last few elements to have exactly k elements
in the solution. This implies the following theorem.

Theorem 8. For any arbitrary small ε > 0, there exists
a (1 − 1/e − ε)-approximation (log n)-round distributed
algorithm for vocabulary compression with O(nk) space per
machine and O(n log2 n) total work.

2.4. Heuristic Algorithms

In this subsection we review a couple of heuristics that can
serve as simple alternatives to the algorithm we suggest and
show that they can, in fact, fail entirely for some inputs. We
also provide an empirical comparison to these, as well as
the algorithm of Dhillon et al. (2003), in Section 3.

Bucketing Algorithm: This algorithm splits the range
of probabilities [0, 1] into k equal size intervals
[0, 1/k), [1/k, 2/k), . . . , [(k − 1)/k, 1]. Then it uses these
intervals (or buckets) to form the compressed vocabulary.
Specifically, each interval represents all elements i such that
Pr [C = 0|X = i] ∈ [(j−1)/k, j/k). Note that there exists
a set Sb that such that F (Sb) correspond to the mutual infor-
mation of the outcome of the bucketing algorithm and the la-

bels. First we show that it is possible to give an upper bound
on the mutual information loss, i.e., I(X;C)− F (Sb).

Theorem 9. Let Z be the random variable provided
by the bucketing algorithm. The total mutual informa-
tion loss of the bucketing algorithm is bounded as fol-
lows: I(X;C) − I(Z;C) ≤ ∆max, where ∆max =
maxj

(
maxr∈[(j−1)/k,j/k) f(r)−minr∈[j−1

k , jk)
f(r)

)
and

f(·) is defined in equation (3).

Proof. Note that as we showed in Subsection 2.2 we have

F (S) =
∑
z∼Z

Pr [Z = z] f(Pr [C = 0|Z = z])

=
∑
z∼Z

Pr [Z = z] f
(
Ex∈z

[
Pr [C = 0|X = x]

])
.

(10)

On the other hand we have

I(X;C) =
∑
x∼X

Pr [X = x] f(Pr [C = 0|X = x])

=
∑
z∼Z

∑
x∈z

Pr [X = x] f(Pr [C = 0|X = x])

=
∑
z∼Z

Pr [Z = z]
∑
x∈z

Pr [X = x]

Pr [Z = z]
f(Pr [C = 0|X = x])

=
∑
z∼Z

Pr [Z = z]Ex∈z

[
f
(

Pr [C = 0|X = x]
)]
. (11)

Let j be the index of the interval corresponding
to z. Then, by convexity of f(·), we have
Ex∈z

[
f
(

Pr [C = 0|X = x]
)]
≤ maxr∈[j−1

k , jk)
f(r) and

f
(
Ex∈z

[
Pr [C = 0|X = x]

])
≥ minr∈[j−1

k , jk)
f(r).

Therefore we have

Ex∈z

[
f
(
Pr [C=0|X=x]

)]
−f
(
Ex∈z

[
Pr [C=0|X=x]

])
≤ max
r∈[(j−1)/k,j/k)

f(r)− min
r∈[(j−1)/k,j/k)

f(r) ≤ ∆max .

This together with Equations (10) and (11) show that
I(X;C)− F (S) ≤

∑
z∼Z Pr [Z = z] ∆max = ∆max and

completes the theorem.

The above theorem states that the information loss of the
bucketing algorithm is no more than how much f(·) changes
within one interval of size 1/k. Note that this is an absolute
loss and is not comparable to the approximation guaran-
tee that we provide submodular maximization. The main
problem with the bucketing algorithm is that it is to some
extent oblivious to the input data and, thus, will fail badly
for certain inputs as shown in the following proposition.

Proposition 10. There is an input X to the bucketing algo-
rithm such that I(X;C) > 0 and I(Z;C) = 0, where Z is
the output of the bucketing algorithm.

Categorical Feature Compression via Submodular Optimization

Proof. Fix a number j. In this example for half of the
items we have Pr [C = 0|X = x] = j+1/3

k and for the other
half we have Pr [C = 0|X = x] = j+2/3

k . We also set the
probability of all values of X to be the same, and hence
Pr [C = 0] = j+0.5

k . The mutual information of X with the
label is non-zero since Pr [C = 0] 6= Pr [C = 0|X = x].
However, the bucketing algorithm merges all of the elements
in the range [jk ,

j+1
k), thereby merging all values together

giving us I(Z;C) = 0 and completing the proof.

Note, we can further strengthen the previous example by
giving a tiny mass to all buckets, so that all values do not
collapse into a single bucket. However, still in this case, the
bucketing method can only hope to capture a tiny fraction
of mutual information since the vast majority of mass falls
into a single bucket.

Frequency Based Filtering: This is very simple compres-
sion method (more precisely, a feature selection method)
that is popular in practice. Given a vocabulary budget, we
compute a frequency threshold τ which we use to remove
any vocabulary value that appears in fewer than τ instances
of our dataset and which results in a vocabulary of the de-
sired size. Even though the frequency based algorithm is not
entirely oblivious to the input, it is oblivious to the label and
hence oblivious to conditional distributions. Similar to the
bucketing algorithm with a simple example in the following
theorem we show that the frequency based algorithm fails
to provide any approximation gaurantee.

Proposition 11. There is an inputX to the frequency based
algorithm such that I(X;C) > 0 and I(Z;C) = 0, where
Z is the outcome of the frequency based algorithm.

Proof. Assume we have n = 3k values for X , namely
x1, . . . , xn. For all i ∈ {1, . . . , k} define Pr [X = xi] =
2/n, and for all i ∈ {k+ 1, . . . , n} we have Pr [X = xi] =
0.5/n. Note that the first k values are the most frequent
values, however, we are going to define them such that they
are independent of the label.

For all i ∈ {1, . . . , k} let Pr [X = xi|C = 0] = 1/2, and
for all i ∈ {k+1, . . . , 2k} let Pr [X = xi|C = 0] = 0, and
for all i ∈ {2k + 1, . . . , 3k} let Pr [X = xi|C = 0] = 1.
Note that we have Pr [C = 0] = 1

2 . Therefore the mutual
information of the k most frequent values with the label is
zero, which implies for a certain vocabulary budget, and
thereby frequency threshold, I(Z;C) = 0. Observe that
even if we merge the last 2k values and use it as a new value
(as opposed to ignoring them), the label corresponding the
the merged value is 0 with probability half, and hence has
no mutual information with the label. However, we have
I(X;C) =

∑
x∼X Pr [X = x] f(Pr [C = 0|X = x]) =∑2k

i=k+1
0.5
n = 0.5×2k

3k = 1
3 > 0, which completes the

proof.

3. Empirical Evaluation
In this section we report our empirical evaluation of the
optimization the submodular function F (S) described in the
previous section. All the experiments are performed using
the Criteo click prediction dataset (CriteoLabs, 2014), which
consists of 37 million instances for training and 4.4 million
held-out points.1 In addition to 13 numerical features, this
dataset contains 26 categorical features with a combined
total vocabulary of more than 28 million values. These
features have varying vocabulary sizes, from a handful up
to millions of values. Five features, in particular, have more
than a million distinct feature values each.

In order to execute a mutual information based algo-
rithm, we require estimates of the conditional probabilities
Pr [C = 0|X = xi] and marginal probabilities Pr [X = xi].
Here, we simply use the maximum likelihood estimate based
on the empirical count, i.e. given a sample of feature value
and label pairs

(
(x̂1, ĉ1), . . . , (x̂k, ĉk)

)
, we have Pr

∧
[X =

xi] = 1
k

∑k
j=1 1{x̂j = xi} and Pr

∧
[C = 0|X = xi] =

1
k

∑k
j=1 1{ĉj=0∧x̂j=xi}

Pr
∧

[X=xi]
. We note that such estimates may

sometimes be poor, especially when certain feature values
appear very rarely. Evaluating more robust estimates is
outside the scope of the current study, but an interesting
direction for future work.

3.1. Mutual information evaluation

We first evaluate the ability of our algorithm to maximize the
mutual information retained by the compressed vocabulary
and compare it to other baseline methods.

In particular, we compare our algorithm to the iterative divi-
sive clustering algorithm (Dhillon et al., 2003), as well as
the frequency filtering and bucketing heuristics introduced
in the previous section. The divisive clustering algorithm
resembles a version of the k-means algorithm where k is
set to be the vocabulary size and distances between points
and clusters are defined in terms of the KL divergence be-
tween the conditional distribution of the label variable given
a feature value and the conditional distribution of the label
variable given a cluster center. Notice that due to the large
size of the dataset, we cannot run the dynamic programming
algorithm introduced by Kurkoski & Yagi (2014) which
would find the theoretically optimal solution. For ease of
reference, we call our algorithm SUBMODULAR, and the
other algorithms DIVISIVE, BUCKETING and FREQUENCY.

Note that our algorithm, as well as previous algorithms,
seek to maximize the mutual information between a single
categorical variable and the label, while in the Criteo dataset

1Note, we use the labeled training file from this challenge and
chronologically partitioned it into train/hold-out sets.

Categorical Feature Compression via Submodular Optimization

we have several categorical variables that we wish to ap-
ply a global vocabulary size budget to. In the case of the
FREQUENCY heuristic, this issue is addressed by sorting the
counts of feature values across all categorical variables and
applying a global threshold. In the case of SUBMODULAR,
we run the almost linear-time algorithm for each categorical
variable to obtain a sorted list of feature values and their
marginal contributions to the global objective. Then we sort
these marginal values and pick the top-score feature values
to obtain the desired target vocabulary size. Thus, both SUB-
MODULAR and FREQUENCY are able to naturally employ
global strategies in order to allocate the total vocabulary
budget across different categorical features.

For the DIVISIVE and BUCKETING algorithms, a natural
global allocation policy is not available, as one needs to
define an allocation of the vocabulary budget to each cate-
gorical feature a priori. In this study, we evaluate two natural
allocation mechanisms. The uniform allocation assigns a
uniform budget across all categorical features, whereas the
MI allocation assigns a budget that is proportional to the
mutual information of the particular categorical feature.

The original vocabulary of over 28 million values is com-
pressed by a factor of up to 2000. Using the methods men-
tioned above, we obtain vocabularies of size 10K, 20K, 40K,
80K, 120K and 160K. Then we compute the loss in average
mutual information, which is defined as follows: let Xi

denote the mutual information of uncompressed categorical
feature i with the label and Zi denote mutual information
of the corresponding compressed feature, then the average
mutual information loss is equal to (

∑
iXi−Zi)/(

∑
j Xj).

vocabulary size (thousands)

av
er

ag
e

M
I l

os
s

(lo
g-

sc
al

e)

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

25 50 75 100 125 150

submodular divisive (MI) divisive (U)

Figure 3. The average mutual information loss of several compres-
sion methods measured on to the Criteo dataset.

For the heuristic FREQUENCY algorithm, the measured loss
ranges from 0.520 (for budget of 160K) to 0.654 (for budget
of 10K), while for BUCKETING the loss ranges from 5 ×
10−6 to 5 × 10−3. As expected, the mutual information
based methods perform significantly better, in particular,
the loss for SUBMODULAR ranges from 9 × 10−7 to 3 ×
10−9 and consistently outperforms the DIVISIVE algorithm

(regardless of allocation strategy). Figure 3 provides a closer
look at the mutual information based methods. Thus, we
find that not only is our method fast, scalable and exhibits a
theoretical 1−1/e lower bound on the performance, but that
in practice it maintains almost all the mutual information
between data points and the labels.

vocabulary size (thousands)

lo
g-

lo
ss

0.444

0.446

0.448

0.45

0.452

0.454

25 50 75 100 125 150

frequency submodular divisive (MI) divisive (U)

Figure 4. The log-loss of a neural network model trained with com-
pressed vocabularies of several sizes and using several different
compression methods.

3.2. Learning evaluation

Our focus thus far has been in optimizing the mutual in-
formation objective. In this section we also evaluate the
compressed vocabularies in an end-to-end task to demon-
strate its application in a learning scenario. Given a com-
pressed vocabulary we train a neural network model on the
training split and measure the log-loss on the hold out set
(futher details in supplement Section A.2).2 In Figure 4
we see that the mutual information based methods perform
comparably to each other and significantly outperform pop-
ular heuristic method FREQUENCY. We observe that our
scalable quasi-linear compression algorithm with provable
approximation guarantees also performs competitively in
end-to-end learning.

4. Conclusion
In this work we have shown the first scalable quasi-linear
compression algorithm for maximizing mutual information
with the label that also exhibits and 1− 1/e factor approx-
imation guarantee. The algorithm, as well as our insights
into constructing a submodular objective function, might
be of interest in other applications as well (for example,
quantization in DMC). One future line of work is extending
this work to the multiclass (non-binary) setting.

Acknowledgements

LC was support by the Google PhD Fellowship.

2In order to alleviate the potential issue of poor condi-
tional/marginal distribution estimates we initially start with only
features values that appear in at least 100 instances.

Categorical Feature Compression via Submodular Optimization

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: a system for large-scale machine learning.
In OSDI, volume 16, pp. 265–283, 2016.

Aggarwal, A., Klawe, M. M., Moran, S., Shor, P., and
Wilber, R. Geometric applications of a matrix-searching
algorithm. Algorithmica, 2(1-4):195–208, 1987.

Badanidiyuru, A. and Vondrák, J. Fast algorithms for max-
imizing submodular functions. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pp. 1497–1514. SIAM, 2014.

Baker, L. D. and McCallum, A. K. Distributional clustering
of words for text classification. In Proceedings of the 21st
annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 96–103.
ACM, 1998.

Barbosa, R., Ene, A., Nguyen, H., and Ward, J. The power
of randomization: Distributed submodular maximization
on massive datasets. In International Conference on
Machine Learning, pp. 1236–1244, 2015.

Cicalese, F., Gargano, L., and Vaccaro, U. Bounds on
the entropy of a function of a random variable and their
applications. IEEE Transactions on Information Theory,
64(4):2220–2230, 2018.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory (Wiley Series in Telecommunications and Signal
Processing). Wiley-Interscience, New York, NY, USA,
2006.

CriteoLabs. Display Advertising Challenge,
2014. URL https://www.kaggle.com/c/
criteo-display-ad-challenge.

Dhillon, I. S., Mallela, S., and Kumar, R. A divisive
information-theoretic feature clustering algorithm for text
classification. Journal of machine learning research, 3
(Mar):1265–1287, 2003.

Guyon, I. and Elisseeff, A. An introduction to variable and
feature selection. Journal of machine learning research,
3(Mar):1157–1182, 2003.

Iwata, K.-i. and Ozawa, S.-y. Quantizer design for outputs of
binary-input discrete memoryless channels using smawk
algorithm. In Information Theory (ISIT), 2014 IEEE
International Symposium on, pp. 191–195. IEEE, 2014.

Jiang, J.-Y., Liou, R.-J., and Lee, S.-J. A fuzzy self-
constructing feature clustering algorithm for text clas-
sification. IEEE transactions on knowledge and data
engineering, 23(3):335–349, 2011.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A.
Fast greedy algorithms in mapreduce and streaming. ACM
Transactions on Parallel Computing (TOPC), 2(3):14,
2015.

Kurkoski, B. M. and Yagi, H. Quantization of binary-input
discrete memoryless channels. IEEE Transactions on
Information Theory, 60(8):4544–4552, 2014.

Mirrokni, V. and Zadimoghaddam, M. Randomized compos-
able core-sets for distributed submodular maximization.
In Proceedings of the forty-seventh annual ACM sympo-
sium on Theory of computing, pp. 153–162. ACM, 2015.

Mirzasoleiman, B., Karbasi, A., Sarkar, R., and Krause,
A. Distributed submodular maximization: Identifying
representative elements in massive data. In Advances in
Neural Information Processing Systems, pp. 2049–2057,
2013.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák,
J., and Krause, A. Lazier than lazy greedy. In AAAI, pp.
1812–1818, 2015.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of machine learning. MIT press, 2018.

Mumey, B. and Gedeon, T. Optimal mutual information
quantization is np-complete. In Proc. Neural Inf. Coding
(NIC) Workshop, 2003.

Slonim, N. and Tishby, N. The power of word clusters
for text classification. In 23rd European Colloquium on
Information Retrieval Research, volume 1, pp. 200, 2001.

Zhang, J. A. and Kurkoski, B. M. Low-complexity quanti-
zation of discrete memoryless channels. In Information
Theory and Its Applications (ISITA), 2016 International
Symposium on, pp. 448–452. IEEE, 2016.

