Categorical Feature Compression via Submodular Optimization

A. Supplement
A.1. Proof of technical lemmas

Proof of Lemma 1

Proof. Let Z and Z' be the random variables corresponding to F'(S U {s}) and F'(S) respectively. Note that we have
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which is a convex function over ¢ € [0, 1]. Next, we have
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Notice that Z' = s’ implies that Z = s or Z = s’. Hence we have Pr[Z = s'| = Pr[Z = s']| + Pr[Z = s] and

Pr [Z=¢'| Pr [C=0|Z=5] + Pr[Z=s]| Pr [C=0|Z=s]

Pr(C=0[2"=4]= Pr[Z=s| + Pr|Z=s]

Now, if wesetp =Pr[Z =5, =Pr[Z=s],a =Pr[C =0|Z =s] and 8 = Pr[C = 0|Z = s], and combine the
previous two inline equalities, we have
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Some Basic Tools: In Lemmas 2 and 5 we show two basic properties of convex functions that later become handy in our

proof. We use the following property of convex functions to prove Lemma 2. For any convex function f and any three
numbers a < b < ¢ we have
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Note that this also implies
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Similarly we have
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Proof of Lemma 2:

Proof. First, we prove
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Recall that o < 8 < «, and p + ¢ = 1. Hence we have pa + ¢ < pa + g7, 8 < . We prove Inequality 15 in two cases of

pa+qy < fB,and § < pa+qy.
Case 1. In this case we have pa + g8 < pa + ¢y < 5 < . we have
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Case 2. In this case we have pa + g8 < 8 < pa + gy < . we have
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Next we use Inequality 15 to prove the lemma. By multiplying both sides of Inequality 15 by ¢(v — ) we have
flpa+qv) = f(pa+gB) < af () — af(B).

By rearranging the terms and adding pf(«) to both sides we have

(pf(a) +af(B) — flpa+qB) < (pf(a) +af(7)) — f(pa + q7),

as desired. O
Proof of Lemma 5:

Proof. We have
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By multiplying both sides by p + ¢’ we have
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By rearranging the terms and adding pf(«) to both sides we have
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as desired. 0

A.2. Empirical Evaluation Details

We implement the neural network using TensorFlow and train it using the AdamOptimizer (Abadi et al., 2016; Kingma &
Ba, 2014). The following set of neural network hyperparameters are tuned by evaluating 2000 different configurations on
the hold-out set as suggested by a Gaussian Process black-box optimization routine.

hyperparameter | search range
hidden layer size [100, 1280]
num hidden layers [1, 5]
learning rate [1e-6, 0.01]
gradient clip norm | [1.0, 1000.0]
Lo-regularization [0, 1e-4]




