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Abstract

Predicting medicines for patients with co-morbidity has long been recognized as a hard
task due to complex dependencies between diseases and medicines. Efforts have been
made recently to build high-order dependency between diseases and medicines by extract-
ing knowledge from electronic health records (EHR). But current works failed to utilize
additional knowledge and ignored the data skewness problem which lead to sub-optimal
combination of medicines. In this paper, we formulate the medicines prediction task in
multi-instance multi-label learning framework considering the multi-diagnoses as input
instances and multi-medicines as output labels. We propose a knowledge-guided multi-
instance multi-label networks called KG-MIML-Net where two types of additional knowl-
edge are incorporated into a RNN encoder-decoder model. The utilization of structural
knowledge like clinical ontology provides a way to learn better representation called tree
embedding by utilizing the ancestors’ information. Contextual knowledge is a global sum-
marization of input instances which is informative for personal prediction. Experiments
are conducted on a real world clinical dataset which showed the necessity to combine both
contextual and structural knowledge and the KG-MIML-Net performs better than baselines
up to 4+% in terms of Jaccard similarity score.

Keywords: Healthcare, Deep learning, Multi-Instance Multi-Label Learning

1. Introduction

Today abundant health data such as electronic health records (EHR) enables researchers
and doctors to build better computational models for various healthcare related tasks (Xiao
et al., 2018a). Among them, medicines prediction task considers how to make effective
medicines prescription for patient with complicated conditions. For example, as shown
in figure 1, two real patients in MIMIC-III dataset Johnson et al. (2016) are recorded
as electronic health records (EHR) which consist of three parts including lab tests & de-
mographics, diagnoses and prescriptions (medicines). To broaden the use of the designed
algorithm, we formulate the medicines prediction task in multi-instance multi-label (MIML)
learning framework Zhou et al. (2009) considering the multi-diagnoses as input instances
and multi-medicines as output labels.
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Figure 1: Two real patients’ electronic health records in MIMIC-III dataset.

Thus, the medicines prediction task in MIML learning framework is to learn a function
from EHR data to predict medicines given unseen diagnoses. As shown in figure 1, nine
different medicines are predicted for patient No.12 given his six diagnoses including heart
diseases (414), hypertension (401) and so on. When delving into this task, challenges come
in two main aspects:

• Complex dependencies exists not only in the mapping between bag of instances
and labels, but also among the instances or labels. On the one hand, there is an inner
order among diagnoses by severity. Patient No.12 has more severe heart disease than
postsurgical states and have more severe diseases of esophagus compared to patient
No.65. On the other hand, the medicines are ordered by taken time. So it is crucial for
the model to have the ability to learn complex dependencies, and contextual knowledge
can be a summarization of instances to help the model perform better.

• Data skewness exists in both instance space and label space. The figure 2 shows the
50 most common diagnoses in MIMIC-III dataset. The less common seen diagnoses
will not be fully trained which result in bad performance.

Given its importance, MIML learning methods have been successfully applied in many
ares such as image classification Zha et al. (2008), relation extraction Surdeanu et al. (2012),
video annotation Xu et al. (2011) and protein function prediction Wu et al. (2014). We
broadly classify the existing MIML learning methods into two categories, traditional ma-
chine learning based approaches and deep learning based approaches which is described

832



KG-MIML-Net

in detail in related work. Briefly speaking, traditional machine learning based methods
mentioned several clues to address the problem where complicated objects have multiple
semantic meanings but most of them lack the ability to model high-order dependency and
assume the representation of instances or labels are given first. Compared to traditional
machine learning based approaches, deep learning based methods have shown their powerful
abilities to learn robust representation and build complex dependencies which significantly
outperform the traditional methods in text and image datasets.

Thus, to address above mentioned challenges and limitations, we propose a novel deep
learning based knowledge guided MIML model called KG-MIML-Net. Instead of depend-
ing on previous given representation of instances or labels, we utilize the encoder-decoder
framework which can jointly learn and update embedding for instances and labels and
build mapping between bag of instances and bag of labels. The RNN structure is utilized as
the implementation of both encoder and decoder to better capture high-order dependency
among instances and labels as done in Sutskever et al. (2014). Moreover, a residual-
supervised attention mechanism is embedded to assign weights to instances by their im-
portance (severity). More importantly, two additional knowledge are extracted including
contextual knowledge and structural knowledge. Contextual knowledge in medical area can
be the personal summarization information like lab test and demographic. Structural knowl-
edge like instances&labels ontology is a tree-structure classification scheme such as ICD-9
(shown in figure 3) in medical area which has been used in representation learning Choi
et al. (2017) and concept linking Dai et al. (2018). In detail, we add a contextual layer
after decoder to combine the personal contextual knowledge, and structural knowledge is
utilized in a way that the representation of input instances as the leaf node in tree-structure
classification scheme is learned depending on its ancestors’. The representation of ances-
tors will be generated by the mean of their direct children. A Bi-LSTM will output the
tree-embedding given an instance and the tree-structure classification scheme.
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Figure 2: 50 most common diagnosis in MIMIC-III dataset

The contributions can be summarized as follows:
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• We formulate the medicines prediction problem in MIML learning and demonstrate
that the encoder-decoder model is a suitable choice for jointly modeling instances and
outputs as well as building high-order dependency between them.

• A residual-supervised attention mechanism is proposed to assign different weights to
instances and show better performance.

• We address the necessity to embed additional knowledge such as personal contextual
knowledge and ontology structural knowledge to show better performance.

• We show the effectiveness of KG-MIMIL-Net compared with several state-of-the-art
methods in MIML learning and traditional machine learning methods in real world
clinical dataset.

In summary, the reminder of the paper will be organized as follows. In section 2, the
related work will be given. Then problem formulation is introduced in section 3. The
encoder-decoder model will be introduced first followed with tree embedding module and
contextual layer module in section 4. The proposed model will be tested on the real world
clinical dataset which demonstrate its effectiveness compared to traditional and recent state-
of-art medicines prediction approaches in section 5. In section 6, a conclusion will be given.
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Figure 3: Hierarchical relation graph of ICD-9 ontology

2. Related Work

In multi-instance multi-label learning domain, various methods have been proposed. We
categorize existing approaches into machine learning based and deep learning based ap-
proaches.

Machine learning based MIML approaches consist of methods from three aspects. De-
generation algorithms Zhou and Zhang (2007); Zhou et al. (2012) are the simplest which
transformed and tackled the MIML task in multi-instance or multi-label learning framework.
However, MIMLBOOST and MIMLSVM Zhou and Zhang (2007) degeneration methods
will loss much information while transforming. Regularization based algorithms Zhang and
Zhou (2008); Zha et al. (2008); Zhou et al. (2008); Li et al. (2017) find a way to consider
the inner dependency among instances and labels by adding regularization term to the loss
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function. D-MimlSvm Zhou et al. (2008) trained linear functions for every label and mini-
mize the mean of these functions’ weight as a regularization term to capture the dependency
among labels. Specialized in image classification, mi-CRFs Li et al. (2017) captured latent
probability distribution of instances, spatial context among adjacent instances and corre-
lations between instances and labels into a conditional random fields (CRFs) framework.
Joint learning approaches such as MIML-RE Surdeanu et al. (2012) and MIMLFast Huang
and Zhou (2014) jointly model the instances and labels which are often combined with
regularization based methods. However the above methods assume the representation of
instances or labels are given in advance which lack the way to update the embedding for
instances or labels and can not build high-order dependency between or among instances
and labels. To address these issues, encoder-decoder RNN neural network is used to jointly
model high-order dependency between and among instances and labels.

Deep learning based MIML approaches showed powerful representation learning ability
from raw data. To list a few, DeepMIML Feng and Zhou (2017) exploited deep neural
network formation to generate instance representation for MIML and showed better perfor-
mance than traditional machine learning based MIML approaches on text and image data.
MIML-FCN+ Yang et al. (2017) proposed a two-stream fully convolutional network with a
novel Privileged Information(PI) loss which outperformed the state-of-the-art methods in
the application of multi-object recognition. In healthcare area, the state-of-the-art method
Leap Zhang et al. (2017) tackled the medicines prediction tasks by using a recurrent de-
coder to model label dependencies and content-based attention to capture label instance
mapping. Besides the instances and labels associated to an object, we showed additional
knowledge such as personal contextual knowledge and ontology structural knowledge can
be used to make better model in medicines prediction task.

3. Problem Formulation

In this section, the definition of Knowledge-Guided Multi-instance Multi-label Learning
will be given first which is the extension of Multi-instance Multi-label learning. Then an
example based on figure 1 demonstrates the medicines prediction task in Knowledge Guided
MIML learning framework.

Definition 1 (Knowledge-Guided Multi-instance Multi-label Learning) The goal
of Knowledge-Guided Multi-instance Multi-label Learning (KG-MIML) is to learns a func-
tion f : 2X → 2Y from training data D = {(X1, Y1), (X2, Y2), · · · , (XN , YN )} and knowledge
(G, {ci,wi}N1 ), then it can predict the label set for a previously unseen bag, where Xi ⊂ X is

a set of instances {x(i)1 , x
(i)
2 , · · · , x(i)zi }, x

(i)
j ∈ X , (j = 1, 2, · · · , zi), Yi ⊂ Y is a set of labels

{y(i)1 , y
(i)
2 , · · · , y(i)li }, y

(i)
k ∈ Y, (k = 1, 2, · · · , li), G = (E ,R) and {ci,wi}N1 are the structural

knowledge and contextual knowledge set respectively. Here zi is the number of instances in
Xi, li is the number of labels in Yi, E is the entity set, R is the relation set, ci is personal
context and wi is instance weight for i-th object.

For example, the No.65 patient can be represented as an object (Xi, Yi) in D and
Xi={‘414’, ‘411’, ‘530’, ‘272’, ‘401’, ‘V45’}, Yi ={A12B, N02B, A06A, C07A, D04A, C10A,
A01A, C03C, A02B, N05C}. That’s to say, the patient have zi = 6 diseases and pre-
scribed li = 10 medicines by doctors. Additional, the contextual knowledge consists of
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Table 1: Notations

notation description

X ,Y instance set and label set
Xi ⊂ X multi-instance set for i-th object
Yi ⊂ Y multi-label set for i-th object
D ∈ RN training set {(Xi, Yi)}N1
x
(i)
j ∈ Xi j-th instance in i-th object’s instances set

y
(i)
k ∈ Yi k-th label in i-th object’s labels set
zi number of instances for i-th object
li number of labels for i-th object

{ci,wi}N1 contextual knowledge set
ci ∈ Rd personal context for i-th object
wi ∈ Rzi instance weight for i-th object
G = (E ,R) structural knowledge with entity set E and relation set R
ei ∈ E i-th entity
p ∈ R partent relation

personal context ci and instance weight wi like ci = [12.88, 3.11, 8.18, · · · , 72, 0, 83, 172.72]
and wi = [0.1, 0.3, · · · , 0.5], the structural knowledge is the ontology such as ICD-9 tree
described in figure 3. The medicines prediction problem is to predict Yi given Xi and
knowledge (G, ci,wi).

Specifically, structural knowledge in medicines prediction task is a kind of directed
acyclic tree. Label set Y ⊂ E are all entities in leaf nodes. The entities not in leaf nodes
can be assumed as the virtual nodes which are high-level categories of their child entities.
The relation R = {p} consists of only one relation called parent relation p, i.e, p(ei) is
the parent of ei. As shown in figure 3, the diseases ‘414.01’ in ICD-9 code means ‘CAD
NATIVE CORONARY VESSEL’. p(‘414.01’) can find the parent node ‘414’ which means
‘Other forms of chronic ischemic heart disease’. Further p(‘414’) can find the parent node
‘410-414’ which means ‘Ischemic heart disease’. The parent information can be used to
better learned representation for its child nodes.

For conciseness, the notations and their meanings can be found in table 1.

4. Method

As shown in figure 4, the overall model is correspondent with the RNN encoder-decoder
model framework discussed in 4.1. We enhance the encoder module by adding supervised
attention mechanism(B) discussed in which can pay different attention to the instances
(diagnoses) and further enhance the ability of decoder by adding contextual layer(C) to
fuse the personal contextual knowledge discussed in subsection 4.2. To tackle the data
skewness problem, the tree embedding module(A) based on ontology structural knowledge
is put before encoder and decoder which will be discussed in subsection 4.3. To reduce
clutter, we will describe the algorithms for a single patient and drop the superscript (i) or
subscript i whenever it is unambiguous.
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Figure 4: Overall framework of KG-MIML-Net.

4.1. Basic RNN encoder-decoder model

For completeness, we will briefly introduce the variational RNN called long short term
memory (LSTM) and the encoder-decoder framework.

LSTM has been utilized in many areas like machine translation, time-series prediction.
A common architecture for LSTM is composed of a memory cell, an input gate, an output
gate and a forget gate. When LSTM is trained with backpropagation through time, the
gradient will not vanish because its cell store the state for either long or short time periods.
To model the relation among instances, we can input xj into LSTM one by one, the xj will
be transformed to output state oj depended on previous hidden state hj−1 as follows:

fj = σg(Wjxj + Ufhj−1 + bf )

ij = σg(Wixj + Uihj−1 + bi)

oj = σg(Woxj + Uohj−1 + bo)

cj = ft � cj−1 + ij � σc(Wcxj + Uchj−1 + bc)

hj = oj � σh(cj)

(1)

where the forget gate f controls the extent to which a value remains in the cell c, the input
gate i controls the extent to which a new value flows into the cell and the output gate o
controls the extent to which the value in the cell is used to compute the output activation
of LSTM. For simplicity, we represent the j-th output of LSTM for input instance xj as
follows:

hj = g(xj ; hj−1) (2)

where g is the simple form for LSTM unit of instances.
The encoder-decoder model firstly encodes a variable-length sequence into a fixed-length

vector representation and then decodes a given fixed-length vector representation back into
a variable-length sequence (e.g. p(y1, y2, · · · , yk|x1, x2, · · · , xj). The instances are input to

837



Shang Hong Zhou Wu Li

encoder sequentially and encoder summaries all inputs to a context vector called g. Then
the decoder utilizes the context vector g to sequentially predict labels at step k as follows:

yk = argmax
y∈Y

p(y|y1, y2, · · · , yk−1,hk−1,g) (3)

The intuition to utilize RNN encoder-decoder is for two main reasons:

• RNN encoder-decoder is suitable for multi-instance multi-label learning. It naturally
accepts multiple instances and predicts multiple labels sequentially which can jointly
learn representation for both instances and labels.

• Relation among instances and labels is hard to build. RNN has powerful ability to
build high-order dependency.

4.2. Residual-Supervised Attention Mechanism and Contextual Layer

We show the expanded view of RNN encoder-decoder framework in figure 4 as follows:

x2 xjx1 …

y2 yky1

h2h1 hk…h1 h2 hj…

encoder decoder

g contextual layer

w1 w2 wj

Figure 5: Residual-Supervised attention mechanism and Contextual layer.

Residual-Supervised attention mechanism as shown in figure 5 (left part) assigns differ-
ent weight to different instances (diseases) in a supervised way as follows:

g =
z∑
j

wjh
enc
j (4)

where hencj ∈ Rd is the hidden state of encoder in j-th step and wj ∈ w is the instance
weight. The attention vector is connected to contextual layer behaving like the residual
link He et al. (2016) which skips the decoder module to pass the supervised instances
information to output space directly.

The contextual layer (CL) as shown in figure 5 right part fuses the contextual knowledge
c into decoder’s sequential outputs as follows:

ok = Wc[c,g] + hdeck (5)
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where Wc ∈ R|Y|×2d is the transformation matrix to transform concatenated [c,g] vector to
decoder’s output feature space, hdeck ∈ R|Y| is the decoder hidden state and ok is the k-th
step contextual layer’s output. A softmax layer can be added after ok to make prediction.

The above mentioned two units will make medicines prediction personalized based on
severity of diseases and personal context which improve the performance of medicines pre-
diction and meanwhile make it more personalized.

4.3. Tree Embedding Module

414.01 414.2 …

414

411.1 411.8 …

411

410-414

rooth1

h2

h3

h4

h1

h2

h3

h4

Figure 6: Tree Embedding.

The tree ontology is the inner structure in input space or output space which can be
utilized to better learn tree embedding (TE) for fine-grained entity in leaf node using the
ancestors’ information as shown in figure 6.

In detail, the representation of the i-th leaf node is xi, the index of the parent’s i-th leaf
node can be found using relation function p(·). The representation of the parent node xp(i)
can be generated by its child as follows:

xp(i) =
1

N

∑
{k|p(k)=p(i),0≤k≤|Y |}

xk (6)

The tuition to represent parent node as the mean sum of its child nodes’ representation
is that the parent node is a virtual node in the tree ontology which should have equal
distance to every child node.

When every node’s representation has been updated from the bottom to top, the target
leaf node and its ancestors will be input into a bi-directional LSTM (Bi-LSTM) to generate
a fixed-dimensional representation which captures the information of the target node and
its ancestors.

hif ,h
i
b = Bi-LSTM(xi,h

i−1
f ,hi−1b )

ei = [hif ,h
i
b]

(7)

where hif , hib ∈ Rd is the forward and backward output of Bi-LSTM at i-th step and ei
concatenates the hidden state to produce the tree-embedding for xi.
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4.4. Training and Inference

As shown in figure 4, the input instance x
(i)
j ∈ Xi and y

(i)
k ∈ Yi will be first transformed

to embedding vector x
(i)
k and y

(i)
k using embedding look up matrix φ(·). Then we search

ancestor nodes of x
(i)
k in hierarchical relation graph to transfer to embedding e

(i)
k and feed

into encoder sequentially. The global context embedding will be produced by encoder as g
using residual-supervised attention mechanism. Then the decoder will utilize g fusing with
contextual information c to predict sequentially. The training algorithm is shown in detail
in Alg. 1

Algorithm 1 Training algorithm

1: Input: Training dataset D = {(X1, Y1), (X2, Y2), · · · , (Xm, Ym)} and knowledge
(G, {ci,wi}Ni )

2: Output: Optimal θ∗

3: Initialize: transform instances xi, yj to vector xi = φ(xi) and yi = φ(yi) Sample B
samples from training set

4: for sample (Xi, Yi) in B do
5: for xi in Xi do
6: Use Eq.6 and Eq.7 to get ei
7: Input ei to encoder and Use Eq.2 to calculate hi
8: end for
9: Use Eq.4 to calculate g

10: for yi in Yi do
11: Use Eq.2 to calculate hi
12: Use Eq.5 to calculate output oi
13: ŷi ← argmax Softmax(oi)
14: end for
15: Use Eq.8 to update parameter θ ← θ −∆θL(B; θ)
16: end for
17: return θ∗ ← θ

The model is to find an optimal parameter θ by minimizing the cross entropy loss given
training dataset D as follows:

L(D; θ) = −
∑

(Xi,Yi,)∈D

log p(Yi|Xi, ci,wi,G; θ)

= −
∑

(Xi,Yi)∈D

li∑
j

log p(yj |y1, y2, · · · , yj−1, Xi, ci,wi,G; θ)

(8)

For unseen bag (Xi, ci,wi), the simple greedy prediction approach is utilized which will
sequentially predict K number of labels {y1, y2, · · · , yk} where K is a hyper-parameter.

5. Experiments

In this section, we demonstrate the effectiveness of our proposed model KG-MIML-Net on real-
world dataset MIMIC-III. We compare KG-MIML-Net with several state-of-the-art methods
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from multi-instance multi-label learning and heathcare area. Then we also studied the effect
of different components proposed in our method where we use Attention, Tree-embedding,
Context and ALL to denote the single residual-supervised-attention module, single tree-
embedding module, single contextual layer module and the combination of the above three
mentioned module embedded on basic encoder-decoder framework. At last, we make a case
study with current state-of-the-art method in medicines prediction task. We make the source
code of KG-MIML-Net publicly available at https://github.com/sjy1203/KG-MIML-Net.

5.1. Dataset

Table 2: Statistics of MIMIC-III Dataset.
MIMIC-III Dataset Diseases (ICD-9) Drugs (NDC)

# of patients 46520

# of distinct codes 6986 4212

Avg # of sequence length 14 89

Max # of sequence length 540 2378

Source of data. MIMIC-III Johnson et al. (2016) is an openly available dataset
developed by the MIT Lab for Computational Physiology, comprising deidentified health
data associated with ∼40,000 critical care patients. We exploit the diagnosis data and
medication data from table diagnoses icd and prescriptions and further extract the lab test
and demographic information. Basic statistics of dataset about our task can be found in
table 2. Drug in MIMIC-III is in National Drug Code (NDC) version which is a unique
10-digit, 3-segment number. Diagnosis in MIMIC-III is in International Classification of
Diseases 9 version (ICD-9). The ICD-9 ontology 1and ATC ontology2 can be used to
generate the tree embedding.

Data processing. Every patient is associated with more than one diagnosis and drug,
so the sequence within diagnoses and drugs is determined by diagnosis priority and drug
taken time. The 3 segments of the NDC identify the labeler, the product, and the commer-
cial package size without the ontology information. So we first transform the NDC code to
ATC code and filter the least common diagnosis as done in Zhang et al. (2017) which result
in 2000 different diagnoses and 306 different medicines. Then we choose the first-24 hour
clinical measurements and medicines as labels. We assume the first-24 hour is the most
important time for patient. The clinical measurements is a 101 dimension vector including
lab tests (e.g. aniongap, bands), demographics (e.g. height, age and weight) and so on.
Finally, the dataset has 43201 samples.

5.2. Comparison Methods

We compare the proposed method with the following methods:

• K-most frequent: The simple baseline choose K medicines for a disease which is
the most common K medicines co-occur with that disease. K is the hyper parameter
determined according to the performance in evaluation set.

1. https://github.com/clinicalml/embeddings/blob/master/eval/icd9Tree.txt
2. https://en.wikipedia.org/wiki/Anatomical Therapeutic Chemical Classification System
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• MLP: The diseases and medicines are firstly transformed to multi-hot vector, the a
3-layer MLP is carried to make multi-label prediction. A global threshold is used to
select positive medicines. The value of the threshold and hyper parameters are tuned
on a validation set using grid search.

• MIMLfast: The traditional state-of-art MIML method transfered instances to label
specific space and considered sub-concepts for each label. The representation of in-
stances should be given first, so we use the skip-gram Mikolov et al. (2013) method
to pre-generate the instances’ representation. We utilize the code3 in matlab version
and keep the default setting to predict multi-label results.

• Leap: Leap models label instance mapping and label dependency by attention mech-
anism and RNN which is currently the state-of-art method.

5.3. Evaluation

We randomly divide the dataset into the training, validation and testing set in a 8:1:1
ratio. For deep learning models, the best size of embedding and hidden dimensions are 100
and 200, respectively. The Leap and our model are implemented using PyTorch (a deep
learning framework with extensive support for accelerating training using GPUs), and all
the methods are trained on Ubuntu 16.04 with 8GB memory and Nvidia 1080 GPU. We use
Adam Kingma and Ba (2014) as the optimization algorithm for all deep learning models
for 30 training epochs.

We measure the relative quality of model performances by using common multi-label
metric Jaccard similarity score also called multi-label accuracy. The Jaccard similarity score
is defined as the size of the intersection divided by the size of the union of ground truth
label set and predicted label.

Jaccard similarity score =
1

|T |

|T |∑
i

Yi ∩ Ŷi
Yi ∪ Ŷi

(9)

where |T | is the number of samples in test set.
Table 3 shows the performance of the aforementioned metric on MIMIC-III dataset.

The K-most frequent method is not effective because the co-occurrence matrix is easy to be
influenced as the number of diagnoses and medicines associated with each patient is large
due to high severity of patients at ICU.

Both MLP and MIMLfast lack the way to learn representation for instances and labels,
when instances are represented as multi-hot vector, the method assumes equal contribution
of all the instances where in our task different patients have different severity of diseases.
The MIMLfast methods work poorly on the MIMIC-III dataset because it highly relies
on the given representation of instances. The unsupervised learning method like Skip-
gram Kiros et al. (2015) is not capable of learning effective representation for MIMLfast
from complicated MIMIC-III dataset.

Leap outperforms the traditional methods which shows the RNN can be utilized to
build high-order dependency among labels and incorporate attention mechanism to assign

3. http://lamda.nju.edu.cn/code MIMLfast.ashx
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different weight to instances . But the performance is constrained because it ignores the
additional knowledge like the contextual information and ontology.

KG-MIML-Net consistently outperforms traditional methods by 8+% and Leap by 4+%
with respect to Jaccard similarity score. The reason is that KG-MIML-Net effectively captures
the label and instances dependency by RNN-encoder-decoder, more importantly it fully
utilize the additional knowledge like contextual knowledge and structural knowledge. The
compared methods among KG-MIML-Net shows 1+% and 3+% performance boost by single
tree embedding and contextual layer module with respect to Leap. All proposed module
can be combined to make better performance.

Figure 7 (a) illustrates the performance of Leap and KG-MIML-Net over 30 training
epochs and (b) shows the performance of KG-MIML-Net with different module component
over training epochs. We can see the same result with the performance in table 3 and an
interesting observation is that the combination of proposed modules not only have better
accuracy score but also more stable during training.

Table 3: MIMIC-III Drug Prediction test results.
Methods Jaccard similarity score

K-most frequent 0.2659

MLP 0.2187

MIMLfast 0.1706

Leap 0.3026

KG-MIML-Net

Attention 0.3012
Tree Embedding 0.3188
Context 0.3385
ALL 0.3466

(a) (b)

Figure 7: Jaccard similarity score in evaluation dataset along 30 epochs.

5.4. Case Study

In Table 4, we show an example of drugs prescribed for two patient given his context
information and diagnoses. Diagnoses are encoded by ICD-9 starting with severer diagnosis
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from left to right, and drugs encoded by ATC where bold denotes matching against ground-
truth. They have the same diseases native coronary vessel encoded as ‘41401’, hypertension
encoded as ‘4019’, type-2 diabetes encoded as ‘25000’ and ‘2720’ for Hypercholesterolemia.

The female patient in the right part have severer Type-2 diabetes than the male in the
left part. The higher anion gap measurement for the female patient also show the more risk
to have diabetes.

Leap method prescribes the same set drugs for the two patients with three wrongly
prescribed drugs. In contrast to Leap, KG-MIML-Net prescribes most common set of drugs
for the two patients and predicts four different drugs for them. The correct number of
medicines is one more than the current state-art-of method in this random case.

Table 4: An Example of Recommended Medicines by Leap and KG-MIML-Net on MIMIC-III
dataset.

No.14156 No.17542

Personal Context
aninopgap: 9, albumin:3.19,

band: 10.04, age: 67,
gender: male, weight: 104, height: 180

aninopgap: 12, albumin:3.19,
band: 10.04, age: 56,

gender: female weight:88, height: 157
Diagnoses (ICD-9) ‘41401’, ‘4019’, ‘2720’, ‘25000’ ‘41401’, ‘25000’, ‘4019’, ‘2720’

Predicted Drugs (Leap)
‘A02BA’, ‘N02BE’, ‘B05CX’, ‘A12CA’, ‘A12AA’, ‘A10AB’,
‘N07AA’, ‘A01AD’, ‘A06AA’, ‘C01CA’, ‘A07AA’, ‘M01AB’,

‘N01AX’, ‘A02BX’, ‘C01DA’, ‘A01AB’, ‘A03FA’, ‘N02AA’, ‘A06AD’

Predicted Drugs
(KG-MIML-Net)

‘A02BA’, ‘N02BE’, ‘B05CX’, ‘N07AA’,‘M01AB’, ‘J01DB’,
‘C01DA’, ‘A03FA’, ‘A06AD’, ‘N01AX’, ‘A06AA’, ‘A12CA’,

‘A12AA’, ‘A10AB’, ‘C01CA’, ‘N02AA’
‘A01AB’, ‘A02AA’ ‘A02BX’, ‘C01DA’

6. Conclusion

In this paper, we propose KG-MIML-Net, an end to end learning model for medicines pre-
diction that jointly models drug disease dependency. KG-MIML-Net formulate the medicines
prediction problem in knowledge-guided multi-instance multi-label learning framework.
Based on RNN encoder-decoder framework, residual-supervised attention, contextual layer
and tree-embedding module is embedded to overcome complex dependencies and data skew-
ness problem by incorporating the contextual and structural knowledge. Throughout ex-
periments, we successfully demonstrated the performance of KG-MIML-Net by 4+% over all
baselines.

Future works on the one hand will focus on extending our model by adding more knowl-
edge like drug-drug interactions (Ma et al., 2018; Xiao et al., 2018b) to make safe medicines
prediction, on the other hand, it may be an valuable idea to combine longitudinal patient
history to further improve prediction performance.

Acknowledgment

This work was supported by Peking University Medicine Seed Fund for Interdisciplinary
Research. We also thank NVIDIA for the support of a GPU.

844



KG-MIML-Net

References

Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F Stewart, and Jimeng Sun.
GRAM: Graph-based Attention Model for Healthcare Representation Learning. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 787–795. ACM, 2017.

Jian Dai, Meihui Zhang, Gang Chen, Ju Fan, Kee Yuan Ngiam, and Beng Chin Ooi. Fine-
grained Concept Linking using Neural Networks in Healthcare. In Proceedings of the 2018
International Conference on Management of Data, pages 51–66. ACM, 2018.

Ji Feng and Zhi-Hua Zhou. Deep MIML Network. In AAAI, pages 1884–1890, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

Sheng-Jun Huang and Zhi-Hua Zhou. Fast Multi-instance Multi-label Learning. AAAI,
2014.

Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark.
MIMIC-III, A Freely Accessible Critical Care Database. Scientific Data, 3:160035, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. CoRR,
abs/1412.6980, 2014.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Skip-thought Vectors. In Advances in Neural Information
Processing Systems, pages 3294–3302, 2015.

Xingyue Li, Shouhong Wan, Chang Zou, and Bangjie Yin. Multi-instance Multi-label
Learning for Image Categorization Based on Integrated Contextual Information. In In-
ternational Conference on Image and Graphics, pages 639–650. Springer, 2017.

Tengfei Ma, Cao Xiao, Jiayu Zhou, and Fei Wang. Drug Similarity Integration Through
Attentive Multi-view Graph Auto-Encoders. In IJCAI, 2018.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint arXiv:1301.3781, 2013.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D Manning. Multi-
instance Multi-label Learning for Relation Extraction. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 455–465. Association for Computational Linguistics,
2012.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural
Networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

845



Shang Hong Zhou Wu Li

Jian-Sheng Wu, Sheng-Jun Huang, and Zhi-Hua Zhou. Genome-wide Protein Function
Prediction through Multi-instance Multi-label Learning. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 11(5):891–902, 2014.

Cao Xiao, Edward Choi, and Jimeng Sun. Opportunities and challenges in developing deep
learning models using electronic health records data: a systematic review. Journal of the
American Medical Informatics Association, 2018a.

Cao Xiao, Ying Li, Inci M Baytas, Jiayu Zhou, and Fei Wang. An MCEM Framework for
Drug Safety Signal Detection and Combination from Heterogeneous Real World Evidence.
Scientific reports, 8(1):1806, 2018b.

Xin-Shun Xu, Xiangyang Xue, and Zhi-Hua Zhou. Ensemble Multi-instance Multi-label
Learning Approach for Video Annotation Task. In Proceedings of the 19th ACM Inter-
national Conference on Multimedia, pages 1153–1156. ACM, 2011.

Hao Yang, Joey Tianyi Zhou, Jianfei Cai, and Yew Soon Ong. MIML-FCN+: Multi-instance
Multi-label Learning via Fully Convolutional Networks with Privileged Information. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
5996–6004. IEEE, 2017.

Zheng-Jun Zha, Xian-Sheng Hua, Tao Mei, Jingdong Wang, Guo-Jun Qi, and Zengfu Wang.
Joint Multi-label Multi-instance Learning for Image Classification. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,
2008.

Min-Ling Zhang and Zhi-Hua Zhou. M3MIML: A Maximum Margin Method for Multi-
instance Multi-label Learning. In 2008 Eighth IEEE International Conference on Data
Mining, pages 688–697. IEEE, 2008.

Yutao Zhang, Robert Chen, Jie Tang, Walter F Stewart, and Jimeng Sun. Leap: Learning to
Prescribe Effective and Safe Treatment Combinations for Multimorbidity. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1315–1324. ACM, 2017.

Zhi-Hua Zhou and Min-Ling Zhang. Multi-instance Multi-label Learning with Application
to Scene Classification. In Advances in Neural Information Processing Systems, pages
1609–1616, 2007.

Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-Feng Li. MIML: A Framework
for Learning with Ambiguous Objects. CORR abs/0808.3231, 112, 2008.

Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li. Multi-instance Learning by Treating Instances
as Non-iid Samples. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 1249–1256. ACM, 2009.

Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-Feng Li. Multi-instance Multi-
label Learning. Artificial Intelligence, 176(1):2291–2320, 2012.

846


	Introduction
	Related Work
	Problem Formulation
	Method
	Basic RNN encoder-decoder model
	Residual-Supervised Attention Mechanism and Contextual Layer
	Tree Embedding Module
	Training and Inference

	Experiments
	Dataset
	Comparison Methods
	Evaluation
	Case Study

	Conclusion

