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Abstract
Previous work has examined structure
learning in log-linear models with /¢;-

regularization, largely focusing on the case
of pairwise potentials. In this work we con-
sider the case of models with potentials of
arbitrary order, but that satisfy a hierarchi-
cal constraint. We enforce the hierarchical
constraint using group ¢;-regularization with
overlapping groups. An active set method
that enforces hierarchical inclusion allows us
to tractably consider the exponential num-
ber of higher-order potentials. We use a
spectral projected gradient method as a sub-
routine for solving the overlapping group /;-
regularization problem, and make use of a
sparse version of Dykstra’s algorithm to com-
pute the projection. Our experiments indi-
cate that this model gives equal or better test
set likelihood compared to previous models.

1 Introduction

The statistical learning community has devoted a sub-
stantial amount of recent effort towards parameter es-
timation in graphical models with ¢;-regularization.
The appeal of these methods is that they formulate
structure learning (selecting the set of edges present
in the model) as a convex optimization problem. This
approach was initially examined for the class of Gaus-
sian graphical models (Banerjee et al., 2008), but these
techniques were then extended to pairwise log-linear
models of discrete data.

The discrete case is much harder than the Gaussian
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case, because of the potentially intractable normal-
izing constant. To address this problem, one can
use pseudo-likelihood (Wainwright et al., 2006; Hofling
and Tibshirani, 2009) or other approximate methods
(Lee et al., 2006; Banerjee et al., 2008). Another com-
plicating factor in the discrete case is that each edge
may have multiple parameters. This arises in multi-
state models as well as conditional random fields. In
these scenarios, we can use group f;-regularization
to ensure all the parameters associated with an edge
are set to zero simultaneously (Dahinden et al., 2007;
Schmidt et al., 2008).

A natural extension is to use group ¢;-regularization
to learn the structure of log-linear models with higher-
order factors. Dahinden et al. (2007) considered a gen-
eralization of pairwise models where all potentials up
to a fixed order are considered. However, this approach
is only practical when the number of nodes p or the
maximum size of the factors m is very small, since if
we allow for m-way factors there are (?) possible sub-
sets of size m to examine. Further, if we allow factors
of arbitrary size then there are 2P factors to consider.

In this paper, we consider using group /;-
regularization for convex structure learning in the spe-
cial case of hierarchical log-linear models, where a
factor is only included if all its subsets are also in-
cluded. Similar to (Bach, 2008), we develop an active
set method that can incrementally add higher order
factors. This method uses the hierarchical property to
rule out most of the possible supersets, and converges
to a solution satisfying a set of necessary optimality
conditions. Key to the convex parameterization of the
space of hierarchical log-linear models is that we allow
the groups to overlap. However, this results in a more
difficult optimization problem. We tackle this by us-
ing a spectral projected gradient method, where the
projection step is computed using R. Dykstra’s (1983)
algorithm. We show that allowing for such higher or-
der interactions can result in improved prediction ac-
curacy over pairwise models.
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2 Log-Linear Models

In log-linear models (Bishop et al., 1975), we can write
the probability of a vector x € {1,2,...,k}? as a glob-
ally normalized product of potential functions ¢ 4(x)
defined for each possible subset A of S £ {1,2,...,p},

p) 2 2 [T exp(@a(x),

ACS

where the normalizing constant Z enforces that the
distribution sums to one,

223 ][ exp(6a(x)).

x' ACS

Each potential function ¢4 is only allowed to depend
on the variables in the subset A. We consider a full
parameterization of these potential functions. For ex-
ample, if A is the set {3,4} and both z3 and z4 are
binary, then

¢3.4(x) =I(x3 = 1,24 = w11
+I(zs =1,24 = 2)wi
+ (x5 =2,24 = )wa
+ (23 = 2,24 = 2)ws 9,

where each potential ¢ 4 has as its own set of param-
eters'. We will use the short-hand w4 to refer to all
the parameters associated with the potential ¢4, and
we will use w to refer to the concatenation of all wy4.
In general, when A contains m elements that can each
take k values, ¢4(x) will have k™ indicator functions
and w4 will contain the k™ corresponding parameter
values.

Given a set of n sample data vectors x?, the gradient
of the average log-likelihood has a simple form. For
example, consider the parameter w; » in the potential
¢ 4(x) in the example above. The gradient is

1« ;
v11)1,25 Zlogp(x |W) =
i=1
n

I(z} = 1,2} = 2) — p(z3 = 1,24 = 2).

S|

=1

where p(z3, z4) is the marginal according to the model.
Thus we see that at a maximum likelihood solution
(where the gradient is zero), we must match the em-
pirical marginals to the model marginals.

In practice, it is typically not feasible to include a po-
tential ¢ 4 (x) for all 27 subsets. Under our parameter-
ization, removing the potential ¢4(x) from the model

!This model is over-parameterized and unidentifiable,
but the log-likelihood is convex and a unique optimum ex-
ists if we add a strictly convex regularizer.

is equivalent to setting all elements of w4 to zero (or
any other constant value). For example, we obtain
the class of pairwise models used in prior work when
w4 = 0 for all A with a cardinality greater than two
(removing the restriction that higher-order marginals
match the empirical frequencies). The prior work on
structure learning in pairwise log-linear models with
{1-regularization assigns each pairwise set of param-
eters w4 to a single group, and optimizes the log-
likelihood function subject to ¢;-regularization of the
norms of the groups (ie. group ¢;-regularization), en-
couraging sparsity in terms of the groups.

We can extend this prior work to the general case by
by solving the optimization problem (for A4 > 0)

min — Y logp(x'|w) + 3 Aallwalls, (1)

i=1 ACS

This is the approach taken in Dahinden et al. (2007),
who also consider a variant where only factors up to
a certain order are considered. A problem with this
formulation is that sparsity in the variable groups A
does not directly correspond to conditional indepen-
dencies in the model (except in the pairwise case). In
particular, in a log-linear model variable sets B and C
are independent given all other variables if and only
if all elements of w4 are zero for all A that contain
at least one element from B and at least one element
from C, see Whittaker (1990, Proposition 7.2.1).

Further, it should be quite clear that this optimiza-
tion problem can become very difficult if the number
of variables is non-trivial and we don’t enforce a cardi-
nality restriction. For example, in our experiments we
consider a model with 32 variables and 4 states, so the
above optimization problem would contain 432 groups,
each containing up to 43> parameters.

3 Hierarchical Log-Linear Models

As an alternative to using an explicit cardinality con-
straint, we consider fitting general log-linear models
subject to the following constraint:

Hierarchical Inclusion Restriction:
Ifwg=0and A C B, then wg = 0.

This is the class of hierarchical log-linear mod-
els (Bishop et al., 1975; Whittaker, 1990, §7). While a
subset of the space of general log-linear models, the set
of hierarchical log-linear is much larger than the set of
pairwise models, and can include interactions of any
order. Further, group-sparsity in hierarchical models
directly corresponds to conditional independence.

The hierarchical inclusion restriction imposes con-
straints on the possible sparsity pattern of w, beyond
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that obtained using (disjoint) group ¢;-regularization.
In the context of linear regression and multiple ker-
nel learning, several authors have recently shown
that group /;-regularization with overlapping groups
can be used to enforce hierarchical inclusion restric-
tions (Zhao et al., 2009; Bach, 2008). As an example,
if we would like to enforce the hierarchical inclusion re-
striction on the sets A C B, we can do this using two
groups: The first group simply includes the variables
in B, while the second group includes the variables
in both A and B. Regularization using these groups
encourages A to be non-zero whenver B is non-zero,
since when B is non-zero A is not locally penalized at
zero, see Zhao et al. (2009, Theorem 1).

Generalizing this basic idea, to enforce that the solu-
tion of our regularized optimization problem satisfies
the hierarchical inclusion restriction, we can solve the
convex optimization problem

n&n—Zlogp(XqW) + Z Aa( Z llwal[3)"/>.
i=1

ACS {B|ACB}

If we define the set of parameters w7 as the concate-
nation of the parameters w4 with all parameters wg
such that A C B, we can write this as

n
min— 3 logp(x[w) + 30 Aallwillr (2)
i=1 ACS

This is very similar to (1), except that the parame-
ters of higher-order terms are added to the correspond-
ing lower-order groups. By Theorem 1 of Zhao et al.
(2009) we can show that under reasonable assump-
tions a minimizer of (2) will satisfy hierarchical inclu-
sion (we give details in the appendix). Unfortunately,
there are several complicating factors in solving (2),
we address these in the next three sections, beginning
with the exponential number of groups to consider.

4 Active Set Method

Using f(w) to denote the objective in (2), the sub-
differential of f(w) is

Of(w) ==V logp(x’|w) + > Aasgn(wh),
=1

ACS

where we use sgn(y) to denote a set-valued map that
for a real-vector y # 0 returns y/||y||> and for y =0
returns all values such that ||y|ls < 1 (we pad the
output of this signum function with zeroes so that it
has the right dimension). A vector w is a minimizer
of a convex function iff 0 € 9f(w) (Bertsekas et al.,
2003, §4).

We call A an active group if wp # 0 for some B such
that A C B. If A is not an active group and wg = 0
for some B C A, we call A an inactive group. Finally,
we define a boundary group as a group A satisfying
wp #0 forall BC A and we =0 forall A C C. (ie.
the boundary groups are the groups that can be made
non-zero without violating hierarchical inclusion).

The optimality conditions with respect to an active
group A reduce to

Vwa 2 logp(elw) = 3" Xawa/l[wgll-  (3)

i=1 BCA

If we treat all inactive groups as fixed, the optimality
conditions with respect to a boundary group A become

IVw, > logp(x[w)||2 < Aa. (4)

i=1

The combination of (3) and (4) constitute necessary
and sufficient conditions for a minimizer of (2) under
the constraint that inactive groups are fixed at zero.
These also comprise necessary (but not necessarily suf-
ficient) conditions for global optimality of (2).

We now consider an active set method that incremen-
tally adds variables to the problem until (3) and (4)
are satisfied, that uses hierarchical inclusion to exclude
the possibility of adding most variables. The method
alternates between two phases:

e Find the set of active groups, and the boundary
groups violating (4).

e Solve the problem with respect to these variables.

We repeat this until no new groups are found in the
first step, and at this point we have (by construction)
found a point satisfying (3) and (4). The addition of
boundary groups has an intuitive interpretation; we
only add the zero-valued group A if it satisfies hierar-
chical inclusion and the difference between the model
marginals and the empirical frequencies exceeds A 4.

Consider a simple 6-node hierarchical log-linear model
containing non-zero potentials on (1)(2)(3)(4)(5)(6)

(1,2)(1,3)(1,4)(4,5)(4,6)(5,6)(4,5,6). Though there are
20 possible threeway interactions in a 6-node model,
only one satisfies hierarchical inclusion, so our method
would not consider the other 19. Further, we do not
need to consider any fourway, fiveway, or sixway in-
teractions since none of these can satisfy hierarchical
inclusion. In general, we might need to consider more
higher-order interactions, but we will never need to
consider more than a polynomial number of groups
more than the number present in the final model. That
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is, hierarchical inclusion and the active set method
can save us from looking at an exponential number
of irrelevant higher-order factors?. Further, to stop us
from considering overly complicated models that do
not generalize well, to set the regularization parame-
ter(s) we start with the unary model and incrementally
decrease the regularization until a measure of general-
ization error starts to increase.

5 Projected Gradient Method

In step 1 of the active set method we must solve (2)
with respect to the active set.  This comprises
a group /;-regularization problem with overlapping
groups, and we note that the objective function is
non-differentiable when any group w’ has all ele-
ments zero. Besides a special case discussed in (Zhao
et al., 2009) where the solution can be computed
directly, previous approaches to solving group /;-
regularization problems with overlapping groups in-
clude a boosted LASSO method (Zhao et al., 2009)
and a re-formulation of the problem as a smooth ob-
jective with a simplex constraint (Bach, 2008). Unfor-
tunately, applying these methods to graphical models
would be relatively inefficient since it might require
evaluating the normalizing constant in the model (and
its derivatives) a very large number of times.

We solve this problem by writing it as an equivalent
differentiable but constrained problem. In particular,
we introduce a scalar auxiliary variable g4 to bound
the norm of each group w7, leading to a smooth ob-
jective with second-order cone constraints,

I‘Ein —log p(x|w) + Z Aaga, (5)
B ACs

st. Va, ga > [|whlla.

The objective function in this constrained optimiza-
tion is differentiable and convex, and when the con-
straints are satisfied it represents an upper bound on
the regularized likelihood (2). Further, at a minimizer
it will be the case that g4 = ||w?||2 for all A4, since oth-
erwise we could decrease the objective function while
remaining feasible by decreasing g4 to ||w¥]]2.

5.1 Spectral Projected Gradient

To solve (5), we use the spectral projected gradient
(SPG) method introduced by Birgin et al. (2000). This
has been shown to give good performance in a va-
riety of related applications (Figueiredo et al., 2007;
van den Berg and Friedlander, 2008; Schmidt et al.,
2008). SPG is an enhancement of the basic gradient

2We could apply the same procedure to solve (1), where
we treat all groups A with w4 = 0 as boundary groups.

projection method, where to improve the convergence
rate we use use the Barzilai-Borwein step-size a within
a non-monotonic backtracking-Armijo line search. For
minimizing a function f(w) over a convex set C, SPG
uses simple iterations of the form

W41 = PC(Wk — OéVf(Wk))

The function P¢(w) computes the Euclidean projec-
tion of a point w onto the convex set C,

Pe(w) = argmin [|x — wl|z.

In our problem, the projection for a single constraint
only affects the corresponding variables w? and g4,
and can be written as the solution of

argmin [|[x y] — (W} galll2, sty > ||x]l2-

This is isomorphic to Exercise 7.3(c) of (Boyd and Van-
denberghe, 2004), whose solution is

Pe(wi,ga) = (6)

(0,0),

(W%, 94),
1+ga/llwillz
2

if |[whllz < —ga,
if |[wille < g4,

(Wi [Iwiall2), if [[Willa > [gal.

Thus, it is simple to analytically compute the projec-
tion onto a single constraint.

5.2 Dykstra’s Algorithm

If the groups were disjoint, we could simply compute
the projection onto each constraint individually. But
because the groups overlap this will not work. Thus,
we would like to solve the problem of computing the
projection onto a convex set defined by the intersec-
tion of sets, where we can efficiently project onto each
individual set.

One of the earliest results on this problem is due to
von Neumann (1950, §13), who proved that the limit of
cyclically projecting a point onto two closed linear sets
is the projection onto the intersection of the sets. Breg-
man (1965) proposed to cyclically project onto a series
of general convex sets in order to find a point in their
intersection, but this method will not generally con-
verge to the projection. The contribution of Dykstra
(1983) was to show that by taking the current iterate
and removing the difference calculated from the previ-
ous cycle, then subsequently projecting this value, that
the cyclic projection method converges to the optimal
solution for general convex sets. Deutsch and Hundal
(1994) have shown that Dykstra’s algorithm converges
at a geometric rate for polyhedral sets. Algorithm 1
gives pseudo-code for Dykstra’s algorithm (we obtain
Bregman’s method if we fix I; at 0).
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Algorithm 1: Dykstra’s Cyclic Projection Algorithm

Input: Point w and sets Cy,Cs,...,C,
Output: Projection of w onto C =i, C;
Wo < W
Vi, I; <0
while w; is changing by more than € do
for i =1 to qdo
wj < Pe, (w1 — 1)
I; + w; — (Wj,l — Iz)
j—Jg+1
end for
end while

Desipte its simplicity, Dykstra’s algorithm is not
widely used because of its high storage requirements.
In its unmodified form, applying Dykstra’s algorithm
to compute the projection in (5) would be impractical,
since for each group we would need to store a copy of
the entire parameter vector. Fortunately, in (5) each
constraint only affects a small subset of the variables.
By taking advantage of this it is straightforward to de-
rive a sparse variant of Dykstra’s algorithm that only
needs to store a copy of each variable for each group
that it is associated with. This leads to an enormous
reduction in the memory requirements. Further, al-
though using Dykstra’s algorithm rather than an an-
alytic update leads to a relatively high iteration cost
for the SPG method, SPG requires fewer function (and
gradient) evaluations than previous methods for over-
lapping group {;-regularization. This leads to a net
computational gain in our framework since the func-
tion and graident evaluations will typically be much
more expensive than applying Dykstra’s algorihtm.

6 Large-Scale Applications

Thus far, we have ignored the potential intractability
of evaluating the normalizing constant of the model,
and the issue that the size of the factors grows expo-
nentially with their order. In practice, both of these
issues might need to be addressed in order to apply
the methodology described here. This section outlines
one possible solution for each of these issues.

6.1 Pseudo-Likelihood

In general, calculating the negative log-likelihood and
its gradient will be intractable, since they require com-
puting the logarithm of the normalizing constant and
its gradient (respectively). To address this, we con-
sidered using a variant on Besag’s pseudo-likelihood
(Besag, 1975). Specifically, we considered optimizing
the (regularized) product of the conditional distribu-

tions rather than the joint distribution,

1 p
m“iln— Z Zlogp(acﬂxi,j,W) + Z Aal|wa-

i=1 j=1 ACS

2.

This optimization takes the form of a set of multino-
mial logistic regression problems, each with overlap-
ping group /;-regularization. However, note that these
multinomial logistic regression problems are not inde-
pendent, since several parameters are shared across the
problems. Because calculating the local normalizing
constants in these individual problems is straightfor-
ward, the (convex) pseudo-likelihood approximation
can be applied when the number of variables (or states)
is large. Optimizing the regularized pseudo-likelihood
instead of the joint likelihood involves only a trivial
modification of the objective function passed to the
SPG routine. Applying a variational approximation
to the joint likelihood (see Wainwright and Jordan,
2008) would be an equally straightforward extension.

6.2 Weighted Ising Parameterization

One way to reduce the number of parameters present
in the model is with a more parsimonious parameter-
ization of the factors. In our experiments, we con-
sidered a weighted Ising-like parameterization. Here,
each factor contains a weight for configurations where
all nodes take the same state, but their is no dinstinc-
tion between other configurations. For the example in
Section 2, the (log-)potentials would have the form

t3a(x) =1(z3 = 1,24 = Dwy + I(zs = 2,24 = 2)ws.

These potentials are far more parsimonious since each
factor has only k parameters (rather than k™), but in
using these potentials we lose the ability to model arbi-
trary discrete distributions. Nevertheless, these poten-
tials capture the most important statistical regularities
present in many data sets.

7 Experiments

Our  experiments  considered  building  gen-
erative models of the following data sets:
Name n P | k | Source
VOC10 | 9963 | 10 | 2 | Everingham et al.
Jokes 24983 | 10 | 2 | Goldberg et al.
Yeast 2417 | 14 | 2 | Elisseeff and Weston
AWMA | 2602 16 | 2 | Qazi et al.
Flow 5400 | 11 | 3 | Sachs et al.
VOC20 | 9963 | 20 | 2 | Everingham et al.
Traffic 4413 | 32 | 4 | Chechetka and Guestrin

For the VOC data set we concentrated on a model of
the 10 most frequent labels (VOC10) as well as the full
label set (VOC20). For the Jokes data set we used the
10 jokes rated by all users. We concentrated only on

713



Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials

2 oo N

5200[ "+ Pairwise-L2 .
g Pairwise-L1 = L |
Ie) == Threeway-12 S g
< = = =Threeway-L1 [~
T 5150 | =——Hum-L1 r !
= D
; .

o *.
£ 51004 D
.
% .
o 5050 -
@ ~
[« ~a
e\ . - -~
, g ~e.
© 5000
5
[0)
2
4950

regularization parameter

107 107 10° 10
regularization parameter

x 10 | |

1o Pairwise-lsing-L2
Pairwise-Ising-L1
‘‘‘‘‘ Threeway-Ising-L2
= = = Threeway-Ising-L1 B K
e HL[M-Ising-L1 .

@
o
1

®
N
1

@®
[§)
I

@
1

test-set negative log-likelihood

N
®
I

x10* | ) x10"
- T
1.356 [ Pairwise-L2 - [ 11 Palirwise-12
B Pairwise-L1 1 ! B Pairwise-L1
Ie) | == Threeway-12 ] L O 8035 == Threeway-12
£ 1.885) = Threeway-L1 ] 1 £ = = =Threeway-L1
[0) || M-L] Ll [ [0) e H| | ML T
% 1.354 1 ' 57
5 : : L 803
% 1,353 ' 1 %’)
2 N ! >
B 1.352 B B
o) B o)
2 ' 2
< 1.351 A T 802 e e
© o ©
3 : 3
‘rl, 1.35 %
L 8 8015
1,349
T T T T T
10 10 10° 10' 107
regularization parameter
x10° |
tio Palirwise-12 tion Palirwise-12
3 5750 Pairwise-L1 8 Pairwise-L1
t Rl | EETEN Threeway-12 O 186 == Threeway-12
£ = = = Threeway-L1 £ = = = Threeway-L1
[0} [ | M-L1 [0} s H| | M-L1
X 5700 ~ 4 >
] ] m g
5 5084 .
o ko) .
0 5650 0 .
£ £ 1.82 *e
B 5600 3 -
@ o] ~ .
c C g8 =~ S
ko) ko) mTimey
& 5550 3 RS
B T £
N & 178
5500 -
T T T T
107 10° 10° 107

regularization parameter

regularization parameter

T T T
10" 107 10° 10
regularization parameter

Figure 1: Test set negative log likelihood versus strength of regularizer for various methods and datasets. Top
row, from left to right, the data sets are VOC10, Jokes, and Yeast. Bottom row, from left to right, the data sets
are AWMA Flow (full potentials), and Flow (Ising potentials).

the labels in the Yeast data set, while we ignored the
interventions in the Flow data.

Our first experiment considered the first five data
sets, where we used exact likelihood calculation and
considered both the full and Ising parameterizations.
On each data set we compared our hierarchical log-
linear model with overlapping group /¢;-regularization
(labeled as HLLM-L1 in the figures) to fitting log-
linear models restricted to both pairwise and three-
way potentials with both ¢s-regularization and group
£;-regularization. While the /s-regularized models do
not yield a sparse structure, we tested these models be-
cause they may still perform well at prediction. Note
that unlike the pairwise and threeway models, an /5-
regularized version of the hierarchical log-linear model
is infeasible. We trained on a random half of the data
set, and tested on the remaining half as the regular-
ization parameter A was varied. For the pairwise and
threeway models, we set A4 to the constant A. For the
hierarchical model, we set A4 to A2141=2 where | 4] is
the cardinality of A. For all the models, we did not
regularize the unary weights and we fixed the unary
weight of one state to zero for each node.

The results of these experiments are plotted in Fig-
ure 1. For the Flow data set, we plot the results us-
ing both Ising and full potentials. For the other data
sets the difference between parameterizations was very
small so we only plotted the results with full potentials.

We see that threeway interactions seem to improve
performance over pairwise models on many data sets,
and that sometimes higher order interactions can offer
a further advantage. The highest-order factor selected
by the HLLM-L1 model with the lowest prediction er-
ror for each of the data sets was 4 (for Yeast), 5 (for
Jokes, AWMA and Sachs), and 6 (for VOC10). For
the VOC10 and AWMA data sets, there was only a
single factor of the highest order selected.

To test the scalability of our method we next examined
the VOC20 and Traffic data sets, using the pseudo-
likelihood and the Ising parameterization discussed
in §6 (here, we also enforced a cardinality restriction
of 4). Note that the previous paper that used (dis-
joint) group ¢; for learning log-linear models (Dahin-
den et al., 2007) only considered up to 5 variables,
while (Dobra and Massam, 2008) considered a log lin-
ear model with up to 16 variables, but used stochas-
tic local search to identify the structure. The latter
uses iterative proportional fitting to fit the parameters
of each (non-decomposable) model, which is computa-
tionally very expensive. We plot the test-set pseudo-
likelihood against the regularization parameter for the
different models in Figure 2, where we again see that
relaxing the pairwise assumption leads to better pre-
dictive results. Our method can in principle be used
to learn models with higher-order interactions on even
larger data sets.
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Figure 2: Test set negative log pseudo-likelihood versus strength of regularizer for VOC20 (left) and Traffic
(middel) data sets. Right: False positives of different orders against training set size for the first model along
the regularization path where the HLLM-L1 selects a superset of the true data-generating model.

We next sought to assess the performance of the
HLLM-L1 model for structure estimation. We created
a 10-node synthetic data set that includes all unary
factors as well as the factors (2,3)(4,5,6)(7,8,9,10)
(a non-hierarchical model), where the model weights
were generated from a AN(0,1) distribution. In
Figure 2 (right), we plot the number of false positives
of different orders present in the first model along
the regularization path that includes all three factors
in the true structure against the number of training
examples (we define a false positive as a factor where
none of its supersets are present in the true model).
For example, with 20000 samples the order of edge
additions was (with false positives in square brackets)
(8,10)(7,9)(9,10)(7,10)(4,5)(8,9)(2,3)(4,6)(8,9,10)(7,8)
(7,8,9)(7,8,10)(5,6)[1,8][5,9][3,8][3,7](4,5,6)[1,7)(7,9,10)
(7,8,9,10) (at this point it includes all three factors in
the true structure, with 5 pairwise false positives and
no higher-order false positives). In the figure, we see
that the model tends to include false positives before
it adds all true factors, but the number decreases as
the sample size increases. Further, there tend to be
few higher-order false positives; although it includes
spurious pairwise factors even with 150000 samples,
the model includes no spurious threeway factors
beyond 30000 samples, no spurious fourway factors
beyond 10000 samples, and no fiveway factors for any
sample size (the plot begins at 5000).

We next examined the coronary heart disease
data set analyzed in (Edwards and Havrének,
1985). The first fifteen factors added along the
HLLM-L1 regularization path on this data set are:
(B,C)(A,C)(B.E)(A,E)(C.E)(D,E) (A,D)(B,F)(E.F)

[C,D][A,F](A,D,E)(D,F)[D,E,F][A,B]. The first seven
factors are the union of the minimally sufficient hi-
erarchical models from the analysis by Edwards and
Havranek. These are also the factors with posterior
mode greater than 0.5 for a prior strength of 2 and
3 in the hierarchical models of (Dobra and Massam,

2008), while the first eight are the factors selected with
a prior strength of 32 and 64. With a prior strength
of 128 Dobra and Massam (2008) find the ninth factor
introduced by our model, as well as the factor (D,F)
introduced later. The remaining factor with this prior
strength is the factor (B,C,F), that is not found until
much later in the regularization path in our model. In
contrast, the first three-way factor introduced by our
model is (A,D,E). This factor is present in both of the
accepted graphical model in (Edwards and Havrének,
1985), and is the only threeway factor with a poste-
rior greater than 0.5 (under a Laplace approximation)
in the graphical models of (Dobra and Massam, 2008)
for a prior strength of 1, 2, 3, 32, and 64. The other
factors (that we denoted with square brackets) are not
recognized in the prior work, and may represent false
positives due to the use of a point estimate with this
small sample size.

8 Discussion

Jacob et al. (2009) consider a different notion of over-
lapping groups to encourage a sparsity pattern that is
a union of groups. They represent each variable as a
combination of auxiliary variables and penalize these
(disjoint) variables. We could enforce hierarchical in-
clusion in this framework by adding to each group all
subsets of the group, as opposed to all supersets in (2).
An advantage of this is that the projection is given ex-
plicitly by (6), but a disadvantage is that it would be
grossly over-parameterized (we would have an auxil-
iary variable for every subset of each non-zero factor).

We proposed an efficient way to learn sparse log-linear
models with higher-order interactions using overlap-
ping group ¢;-regularization, that uses an active set
method and Dykstra’s algoirthm within an SPG rou-
tine. Our experiments indicate that the model gives
improved predictive performance on several data sets.

715



Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials

The SPG algorithm may be useful for other problems
with overlapping group /;-regularization, while Dyk-
stra’s algorithm could alternately be used within the
optimal method of Nesterov (2003) or projected quasi-
Newton methods (Schmidt et al., 2009). The main
outstanding issue in this work is deriving an efficient
way to test (or bound) sufficient optimality conditions
for (2) as in (Bach, 2008), and deriving an efficient
search for sub-optimal inactive groups.

Appendix

To show that minimizers of (2) satisfy hierarchical in-
clusion, assume we have a minimizer w of (2) that does
not. Then there exists some A such that w4 = 0 and
some B such that A C B and wg # 0. This implies
group A is active and must satisfy (3). Using w4 = 0,
we have that ||V, logp(x|W)||2 is exactly 0, and as-
suming this does not happen by chance it contradicts
that w4 is a minimizer.
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