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Abstract

We study the problem of subsampling in differ-
ential privacy (DP), a question that is the cen-
terpiece behind many successful differentially
private machine learning algorithms. Specifi-
cally, we provide a tight upper bound on the
Rényi Differential Privacy (RDP) (Mironov,
2017) parameters for algorithms that: (1) sub-
sample the dataset, and then (2) apply a ran-
domized mechanismM to the subsample, in
terms of the RDP parameters ofM and the
subsampling probability parameter. Our re-
sults generalize the moments accounting tech-
nique, developed by Abadi et al. (2016) for
the Gaussian mechanism, to any subsampled
RDP mechanism.

1 Introduction
Differential privacy (DP) is a mathematical definition
of privacy proposed by Dwork et al. (2006b). Ever
since its introduction, DP has been widely adopted
and as of today, it has become the de facto standard of
privacy definition in the academic world with also wide
adoption in the industry (Erlingsson et al., 2014; Ap-
ple, 2017; Uber Security, 2017). DP provides provable
protection against adversaries with arbitrary side in-
formation and computational power, allows clear quan-
tification of privacy losses, and satisfies graceful com-
position over multiple access to the same data. Over
the past decade, a large body of work has been devel-
oped to design basic algorithms and tools for achieving
differential privacy, understanding the privacy-utility
trade-offs in different data access setups, and on inte-
grating differential privacy with machine learning and
statistical inference. We refer the reader to (Dwork
and Roth, 2013) for a more comprehensive overview.

Rényi Differential Privacy (RDP, see Defini-
tion 4) (Mironov, 2017) is a recent refinement
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of differential privacy (Dwork et al., 2006b). It offers
a unified view of the ε-differential privacy (pure
DP), (ε, δ)-differential privacy (approximate DP),
and the related notion of Concentrated Differential
Privacy (Dwork and Rothblum, 2016; Bun and
Steinke, 2016). The RDP point of view is particularly
useful when the dataset is accessed by a sequence of
randomized mechanisms, as in this case a moments
accountant technique can be used to effectively keep
track of the usual (ε, δ) DP parameters across the
entire range {(ε(δ), δ)|∀δ ∈ [0, 1]} (Abadi et al., 2016).
A prime use case for the moments accountant technique
is the NoisySGD algorithm (Song et al., 2013; Bassily
et al., 2014) for differentially private learning, which
iteratively executes:

θt+1 ← θt + ηt

(
1

|I|
∑
i∈I
∇fi(θt) + Zt

)
(1)

where θt is the model parameter at tth step, ηt is
the learning rate, fi is the loss function of data point
i, ∇ is the standard gradient operator, I is an in-
dex set of size m drawn uniformly from {1, ..., n}, and
Zt ∼ N (0, σ2I). Adding Gaussian noise (also known
as the Gaussian mechanism) is a standard way of
achieving (ε, δ)-differential privacy (Dwork et al., 2006a;
Dwork and Roth, 2013; Balle and Wang, 2018). Since
in the NoisySGD case the randomized algorithm sub-
samples the mini-batch I randomly before adding the
Gaussian noise, the overall scheme could be viewed as a
subsampled Gaussian mechanism. Therefore, with the
right setting of σ, each iteration of NoisySGD can be
thought of as a private release of a stochastic gradient.

More generally, a subsampled mechanism first takes
a subsample of the dataset generated through some
subsampling procedure1, and then applies a known ran-
domized mechanismM on the subsampled data points.
It is important to exploit the randomness in subsam-
pling because if M is (ε, δ)-DP, then (informally) a

1There are different subsampling methods, such as Pois-
son subsampling, sampling without replacement, sampling
with replacement, etc.
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subsampled mechanism obeys (O(γε), γδ)-DP for some
γ < 1 related to the sampling procedure. This is often
referred to as the “privacy amplification” lemma2 — a
key property that enables NoisySGD and variants to
achieve optimal rates in convex problems (Bassily et al.,
2014), and to work competitively in Bayesian learn-
ing (Wang et al., 2015) and deep learning (Abadi et al.,
2016) settings. We also note that privacy amplification
is the key technical tool for characterizing learnability
in statistical learning (Wang et al., 2016) and achieving
tight sample complexity bounds for simple function
classes (Beimel et al., 2013; Bun et al., 2015).

While privacy amplification by subsampling is a very
important tool for designing good private algorithms,
computing the RDP parameters for a subsampled mech-
anism is a non-trivial task. A natural question, with
wide ranging implications for designing successful dif-
ferentially private algorithms is the following: Can we
obtain good bounds for privacy parameters of a sub-
sampled mechanism in terms of privacy parameters of
the original mechanism? With the exception of the
special case of the Gaussian mechanism under Poisson
subsampling analyzed in (Abadi et al., 2016), there is
no analytical formula available to generically convert
the RDP parameters of a mechanismM to the RDP
parameters of the subsampled mechanism.

In this paper, we tackle this central problem in private
data analysis and provide the first general result in this
area. Specifically, we analyze RDP amplification under
a sampling without replacement procedure: subsample,
which takes a data set of n points and outputs a sample
from the uniform distribution over all subsets of size
m ≤ n. Our contributions can be summarized as
follows:

(i) We provide a tight bound (Theorem 9) on the RDP
parameter (εM◦subsample(α)) of a subsampled mech-
anism (M ◦ subsample) in terms of the RDP pa-
rameter (εM(α)) of the original mechanismM and
the subsampling ratio γ := m/n. Here, α is the
order of the Rényi divergence in the RDP definition
(see Definition 4 and the following discussion). This
is the first general result in this area that can be
applied to any RDP mechanism. For example, in
addition to providing RDP parameter bounds for
the subsampled Gaussian mechanism case, our re-
sult enables analytic calculation of similar bounds
for other commonly used privacy mechanisms includ-
ing subsampled Laplace mechanisms, subsampled
randomized response mechanisms, subsampled “pos-
2Informally, this lemma states that, if a private algo-

rithm is run on a random subset of a larger dataset (and the
identity of that subset remains hidden), then this new algo-
rithm provides better privacy protection (reflected through
improved privacy parameters) to the entire dataset as a
whole than the original algorithm did.

terior sampling” algorithms under exponential family
models (Geumlek et al., 2017), etc. Even for the
subsampled Gaussian mechanism our bounds are
tighter than those provided by Abadi et al. (2016)
(albeit the subsampling procedure and the dataset
neighboring relation they use are slightly different
from ours).

(ii) Interestingly, our bound on the RDP parameter of
a subsampled mechanism indicates that as the order
of RDP α increases, there is a phase transition point
α∗ satisfying γα∗eεM(α∗) ≈ 1, where εM(α) is the
RDP parameter of the original mechanismM. For
α < α∗, the subsampled mechanism has an RDP pa-
rameter εM◦subsample(α) = O(αγ2(eεM(2)−1)), while
for α > α∗, the RDP parameter εM◦subsample(α) ei-
ther quickly converges to εM(α) which does not
depend on γ, or tapers off at O(γεM(∞)) which
happens when eεM(∞) − 1� 1/γ. The subsampled
Gaussian mechanism falls into the first category,
while the subsampled Laplace mechanism falls into
the second.

(iii) Our analysis reveals a new theoretical quantity of
interest that has not been investigated before — a
ternary version of the Pearson-Vajda divergence (for-
mally defined in Appendix C). A privacy definition
in terms of this divergence seems naturally coupled
with understanding the effects of subsampling, just
like how Rényi differential privacy (RDP) (Mironov,
2017) seems naturally coupled with understanding
the effects of composition.

(iv) From a computational efficiency perspective, we pro-
pose an efficient data structure to keep track of the
Rényi differential privacy parameters in its symbolic
form, and output the corresponding (ε, δ)-differential
privacy as needed using efficient numerical methods.
This avoids the need to specify a discrete list of
moments ahead of time as required in the moments
accountant method of Abadi et al. (2016) (see the
discussion in Section 3.2). Finally, our experiments
confirm the improvements in privacy parameters that
can be obtained by applying our bounds.

We end this introduction with a methodological remark.
The main result of this paper is the bound in Theorem 9,
which at first glance looks cumbersome. The remarks
following the theorem’s statement in Section 3.1 discuss
some of the asymptotic implications of this bound, as
well as its meaning in several special cases. These pro-
vide intuitive explanations justifying the tightness of
the bound. In practice, however, asymptotic bounds are
of limited interest: concrete bounds with explicit, tight
constants that can be efficiently computed are needed
to provide the best possible privacy-utility trade-off
in practical applications of differential privacy. Thus,
our results should be interpreted under this point of
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view, which is summarized by the leitmotif “in differ-
ential privacy, constants matter”. Also, due to space
constraints we have deferred many technical details to
the appendices.

2 Background and Related Work
In this section, we review some background about dif-
ferential privacy, some related privacy notions, and the
technique of moments accountant.

Differential Privacy and Privacy Loss Random
Variable. We start with the definition of (ε, δ)-
differential privacy. We assume X is the domain where
datapoints are drawn from. We call two datasets X
and X ′ neighboring (adjacent) if they differ in at most
one data point, meaning that we can obtain X ′ by
replacing one data point from X by another arbitrary
data point. We represent this as d(X,X ′) ≤ 1.
Definition 1 (Differential Privacy (DP)). A random-
ized algorithm M : Xn → Θ is (ε, δ)-DP if for every
pair of neighboring datasets X,X ′ ∈ Xn, and every
possible (measurable) output set E ⊆ Θ the following in-
equality holds: Pr[M(X) ∈ E] ≤ eε Pr[M(X ′) ∈ E]+δ.

The definition ensures that it is information-
theoretically impossible for an adversary to infer
whether the input dataset is X or X ′ beyond a cer-
tain confidence. Here, ε, δ are what we call privacy
budget parameters and the smaller they are, the
stronger the privacy guarantee is. A helpful way
to work with differential privacy is in terms of tail
bounds on the privacy loss random variable. Let
M(X) andM(X ′) be the probability distribution in-
duced byM on neighboring datasets X and X ′ respec-
tively. The privacy loss random variable is defined as:
LX,X

′

M := log(M(X)(θ)/M(X ′)(θ)) where θ ∼M(X).
Up to constant factors, (ε, δ)-DP (Definition 1) is equiv-
alent to requiring that the probability of the privacy
loss random variable being greater than ε is at most δ
for all neighboring datasets X,X ′.3

Classical design of differentially private mechanisms
takes the privacy parameters ε, δ as inputs and then
the algorithm carefully introduces some randomness
to satisfy the privacy constraint (Definition 1), while
simultaneously trying to achieve good utility. However,
this paradigm has shifted a bit recently as it has become
apparent that a more fine-grained analysis tailored for
specific mechanisms can yield more favorable privacy-
utility trade-offs and better privacy budget parameters
under composition (See, e.g., Dwork and Rothblum,
2016; Abadi et al., 2016; Balle and Wang, 2018).

A common technique for achieving differential privacy
while working with a real-valued function f : Xn → R

3For meaningful guarantees, δ is typically taken to be
“cryptographically” small.

is via addition of noise calibrated to f ’s sensitivity
Sf , which is defined as the maximum of the absolute
distance |f(X)− f(X ′)| where X,X ′ are adjacent in-
puts.4 In this paradigm, the Gaussian mechanism is
defined as: G(X) := f(X) +N (0, S2

fσ
2). A single ap-

plication of the Gaussian mechanism to a function f
with sensitivity Sf satisfies (ε, δ)-differential privacy if5
δ ≥ 0.8 · exp(−(σε)2/2) and ε ≤ 1 (Dwork and Roth,
2013, Theorem 3.22)

Stochastic Gradient Descent and Subsampling
Lemma. A popular way of designing differentially
private machine learning models is to use Stochastic
Gradient Descent (SGD) with differentially private re-
leases of (sometimes clipped) gradients evaluated on
mini-batches of a dataset (Song et al., 2013; Wang
et al., 2015; Bassily et al., 2014; Foulds et al., 2016;
Abadi et al., 2016). Algorithmically, these methods are
nearly the same and are all based on the NoisySGD
idea presented in (1). They differ primarily in how they
keep track of their privacy loss. Song et al. (2013) uses
a sequence of disjoint mini-batches to ensure each data
point is used only once in every data pass. The results
in (Bassily et al., 2014; Wang et al., 2016; Foulds et al.,
2016) make use of the privacy amplification lemma
to take advantage of the randomness introduced by
subsampling. The first privacy amplification lemma ap-
peared in (Kasiviswanathan et al., 2011; Beimel et al.,
2013), with many subsequent improvements in different
settings. For the case of (ε, δ)-DP, (Balle et al., 2018)
provide a unified account of privacy amplification tech-
niques for different types of subsampling and dataset
neighboring relations. In this paper, we work in the
subsampling without replacement setup, which satisfies
the following privacy amplification lemma for (ε, δ)-DP.

Definition 2 (Subsample). Given a dataset X of n
points, the procedure subsample selects a random sample
from the uniform distribution over all subsets of X of
size m. The ratio γ := m/n is defined as the sampling
parameter of the subsample procedure.

Lemma 3 (Ullman (2017)6). IfM is (ε, δ)-DP, then
the subsampled mechanismM◦subsample obeys (ε′, δ′)-
DP with ε′ = log

(
1 + γ(eε − 1)

)
and δ′ = γδ.

Roughly, the lemma says that subsampling with prob-
ability γ < 1 amplifies an (ε, δ)-DP algorithm to
an (O(γε), γδ)-DP algorithm for a sufficiently small
choice of ε. The overall differential privacy guaran-
tees in (Wang et al., 2015; Bassily et al., 2014; Foulds
et al., 2016) were obtained by keeping track of the

4The restriction to a scalar-valued function is intended
to simplify this presentation, but is not essential.

5Balle and Wang (2018) show that a more complicated
relation between ε and δ yields an if and only if statement.

6This result follows from Ullman’s proof, though the
notes state a weaker result. See also (Balle et al., 2018).
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privacy loss over each iterative update of the model
parameters using the strong composition theorem in
differential privacy (Dwork et al., 2010), which gives
roughly (Õ(

√
kε), Õ(kδ))-DP7 for k iterations of an

arbitrary (ε, δ)-DP algorithm (see Appendix B for a
discussion about various composition results for DP).

The work of Abadi et al. (2016) was the first to take
advantage of the fact thatM is a subsampled Gaus-
sian mechanism and used a mechanism-specific strong
composition result. Their technique, referred to as
moments accountant, is described below.

Cumulant Generating Functions, Moments Ac-
countant and Rényi Differential Privacy. The
moments accountant technique of Abadi et al. (2016)
centers around the cumulant generating function (CGF,
or the log of the moment generating function) of the pri-
vacy loss random variable: KX,X′

M (λ) := logE[eλL
X,X′
M ].

This function can also be written as8:

KX,X′

M (λ) = logEθ∼M(X)

[(M(X)(θ)

M(X ′)(θ)

)λ]

= logEθ∼M(X′)

[(M(X)(θ)

M(X ′)(θ)

)λ+1
]
.

Recall that two random variables with identical CGFs
are identically distributed (almost everywhere). In
other words, KX,X′

M (λ) characterizes the distribution
of the privacy loss random variable. We also define
the maximum of this function over pairs of neighboring
datasets as KM(λ) := supd(X,X′)≤1K

X,X′

M (λ).

Before explaining the details behind the moments ac-
countant technique, we introduce the notion of Rényi
differential privacy (RDP) (Mironov, 2017) as a gener-
alization of differential privacy that uses the α-Rényi
divergences betweenM(X) andM(X ′).

Definition 4 (Rényi Differential Privacy). We say that
a mechanism M is (α, ε)-RDP with order α ∈ (1,∞)
if Dα(M(X)‖M(X ′)) ≤ ε for all neighboring datasets
X,X ′, where

Dα(M(X)‖M(X ′)) :=
1

α− 1
KX,X′

M (α− 1).

As α→∞ RDP reduces to (ε, 0)-DP (pure DP), i.e.,
a randomized mechanism M is (ε, 0)-DP if and only
if for any two adjacent inputs X and X ′ it satisfies
D∞(M(X)‖M(X ′)) ≤ ε. For α→ 1, the RDP notion
reduces to Kullback-Leibler based privacy notion, which
is equivalent to a bound on the expectation of the
privacy loss random variable. For a detailed exposition

7The Õ(·) notation hides various logarithmic factors.
8The second identity follows from a change of measure.

of the guarantee and properties of Rényi differential
privacy that mirror those of differential privacy, see
(Mironov, 2017, Section III). Here, we highlight two
key properties that are relevant for this paper.
Lemma 5 (Adaptive Composition of RDP (Mironov,
2017, Proposition 1)). IfM1 that takes dataset as input
obeys (α, ε1)-RDP, andM2 that takes the dataset and
the output ofM1 as input obeys (α, ε2)-RDP, then their
composition obeys (α, ε1 + ε2)-RDP.
Lemma 6 (RDP to DP conversion (Mironov, 2017,
Proposition 3)). IfM obeys (α, ε)-RDP, thenM obeys
(ε+ log(1/δ)/(α− 1), δ)-DP for all 0 < δ < 1.

RDP Functional View. While RDP for each fixed
α can be used as a standalone privacy measure, we
emphasize its functional view in which ε is a function
of α for 1 ≤ α ≤ ∞, and this function is completely
determined byM. This is denoted by εM(α), and with
this notation, mechanismM satisfies (α, εM(α))-RDP
in Definition 4. In other words,

sup
X,X′:d(X,X′)≤1

Dα(M(X)‖M(X ′)) ≤ εM(α).

Here εM(α) is referred to as the RDP parameter. We
use εM(∞) to denote the case where α = ∞, which
indicates that the mechanismM is (ε, 0)-DP (pure DP)
with ε = ε(∞). We drop the subscript from εM when
M is clear from the context.

Our goal is, given a mechanism M that satisfies
(α, ε(α))-RDP, to investigate the RDP parameter of
the subsampled mechanismM◦ subsample, i.e., to get
a bound on εM◦subsample(α) such that the mechanism
M◦ subsample satisfies (α, εM◦subsample(α))-RDP.

Note that εM(α) is equivalent to the CGF KM(λ) up
to a scaling transformation (with α = λ+ 1) as noted
by the following remark.
Remark 7 (RDP⇔ CGF). A randomized mechanism
M obeys (λ+ 1,KM(λ)/λ)-RDP for all λ.

The idea of moments accountant (Abadi et al., 2016)
is to essentially keep track of the evaluations of CGF
at a list of fixed locations through Lemma 5 and then
Lemma 6 allows one to find the smallest ε given a
desired δ or vice versa using:

δ ⇒ ε : ε(δ) = min
λ

log(1/δ) +KM(λ)

λ
, (2)

ε⇒ δ : δ(ε) = min
λ
eKM(λ)−λε. (3)

Using the convexity of KM(λ) and monotonicity of
KM(λ)/λ in λ (Van Erven and Harremos, 2014, Corol-
lary 2, Theorem 3), we observe that the optimization
problem in (3) is log-convex and the optimization prob-
lem (2) is unimodal/quasi-convex. Therefore, the opti-
mization problem in (2) (similarly, in (3)) can be solved
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to an arbitrary accuracy τ in time log(λ∗/τ) using the
bisection method, where λ∗ is the optimal value for λ
from (2) (similarly, (3)). The same result holds even if
all we have is (possibly noisy) blackbox access to KM(·)
or its derivative (see more details in Appendix G).

For other useful properties of the CGF and an ele-
mentary proof of its convexity and how it implies the
monotonicity of the Rényi divergence, see Appendix H.

Other Related Work. A closely related notion to
RDP is that of zero-concentrated differential privacy
(zCDP) introduced in (Bun and Steinke, 2016) (see
also (Dwork and Rothblum, 2016)). zCDP is related
to CGF of the privacy loss random variable as we note
here.

Remark 8 (Relation between CGF and Zero-concen-
trated Differential Privacy). If randomized mechanism
M obeys (ξ, ρ)-zCDP for some parameters ξ, ρ, then
the CGF satisfies KM(λ) ≤ λξ + λ(λ + 1)ρ. On the
other hand, ifM’s privacy loss r.v. has CGF KM(λ),
thenM is also (ξ, ρ)-zCDP for all (ξ, ρ) such that the
quadratic function λξ + λ(λ+ 1)ρ ≥ KM(λ).

In general, the RDP view of privacy is broader than
the CDP view as it captures finer information. For
CDP, subsampling does not improve the privacy pa-
rameters (Bun et al., 2018). A truncated variant of the
zCDP has been very recently proposed by Bun et al.
(2018) and they studied the effect of subsampling in
tCDP. While this independent work attempts to solve
a problem closely related to ours, they are not directly
comparable in that they deal with the amplification
properties of tCDP while we deal with that of Rényi
DP (and therefore CDP without truncation). A simple
consequence of this difference is that the popular sub-
sampled Gaussian mechanism explained above, that is
covered by our analysis, is not directly covered by the
amplification properties of tCDP.

3 Our Results
In this section, we present our main result, an am-
plification theorem for Rényi Differential Privacy via
subsampling. We first provide the upper bound, and
then discuss the optimality of this bound. Based on
these bounds, in Section 3.2, we discuss an implementa-
tion of a data structure that can efficiently track RDP
privacy parameters under composition.

3.1 Privacy Amplification for RDP

We start with our main theorem that bounds
εM◦subsample(α) for the mechanism M ◦ subsample in
terms of εM(α) of the mechanism M and sampling
parameter γ used in the subsample procedure. Missing
details from this Section are collected in Appendix C.

Theorem 9 (RDP for Subsampled Mechanisms).

Given a dataset of n points drawn from a domain X
and a mechanismM that takes an input from Xm for
m ≤ n, let the randomized algorithmM◦ subsample be
defined as: (1) subsample without replacement m data-
points of the dataset (sampling parameter γ = m/n),
and (2) apply M to the subsampled dataset. For all
integers α ≥ 2, if M obeys (α, ε(α))-RDP, then the
subsampled mechanismM◦ subsample obeys (α, ε′(α))-
RDP where,

ε′(α) ≤ 1

α− 1
log

(
1 + γ2

(
α

2

)
min

{
4(eε(2) − 1),

eε(2) min{2, (eε(∞) − 1)2}
}

+

α∑
j=3

γj
(
α

j

)
e(j−1)ε(j) min{2, (eε(∞) − 1)j}

)
.

The bound in the above theorem might appear com-
plicated, and this is partly because of our efforts to
get a precise non-asymptotic bound (and not just a
O(·) bound). Some additional practical considerations
related to evaluating the bound in this theorem such
as computational resources needed, numerical stability
issues, etc., are discussed in Appendix G. The phase
transition behavior of this bound, noted in the introduc-
tion, is probably most easily observed through Figure 3
(Appendix A), where we empirically illustrates the be-
havior of this bound for the commonly used subsampled
mechanisms. Before discussing the proof idea, we make
a few remarks about this result.

Generality. Our results cover any Rényi differentially
private mechanism, including those based on any expo-
nential family distribution (see Geumlek et al., 2017,
and our exposition in Appendix I). As mentioned ear-
lier, previously such a bound (even asymptotically)
was only known for the special case of the subsampled
Gaussian mechanism (Abadi et al., 2016).

Pure DP. In particular, Theorem 9 also covers pure-
DP mechanisms (such as Laplace and randomized re-
sponse mechanisms) with a bounded ε(∞). In this case,
we can upper bound everything within the logarithm
of Theorem 9 with a binomial expansion:

1+

α∑
j=1

γj
(
α

j

)
ejε(α)(eε(∞)−1)j =

(
1+γeε(α)(eε(∞)−1)

)α
,

which results in a bound of the form

ε′(α) ≤ α

α− 1
log
(
1 + γeε(α)(eε(∞) − 1)

)
.

This bound converges to log
(
1 + γeε(∞)(eε(∞) − 1)

)
as

α→∞, which gives quantitatively the same result as
the privacy amplification result in Lemma 3 for the
pure (ε, 0)-DP, modulo an extra eε(∞) factor which
becomes negligible as ε(∞) gets smaller.
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Bound under Additional Assumptions. The
bound in Theorem 9 could be strengthened under addi-
tional assumptions on the RDP guarantee. We defer a
detailed discussion on this topic to Appendix C.2 (see
Theorem 21), but note that a consequence of this is
that one can replace e(j−1)ε(j) min{2, (eε(∞) − 1)j} in
the above bound with an exact evaluation given by the
forward finite difference operator of some appropriately
defined functional. We also note that these additional
assumptions hold for the Gaussian mechanism.

In particular, with subsampled Gaussian mechanism for
functions with sensitivity 1 (i.e., ε(α) = α/(2σ2)) the
dominant part of the upper bound on ε′(α) arises from
the term min{4(eε(2) − 1), eε(2) min{2, (eε(∞) − 1)2}}.
Firstly, since the Gaussian mechanism does not have
a bounded ε(∞) term, this term can be simplified as
min{4(eε(2) − 1), 2eε(2)}. Let us consider the regimes:
(a) σ2 “large”, (b) σ2 “small”. When σ2 is large,
4(eε(2) − 1) = 4(e1/σ2 − 1) ≤ 8/σ2 becomes the domi-
nant term in min{4(eε(2) − 1), 2eε(2)}. In this case, for
small α and γ, the overall ε′(α) bound simplifies to
O(γ2α/σ2) (matching the asymptotic bound given in
Appendix C.7). When σ2 is small, then 2eε(2) = 2e1/σ2

becomes the dominant term in min{4(eε(2)−1), 2eε(2)}.
Note the small σ2 regime is not covered by the results
of Abadi et al. (2016).

Integer to Real-valued α. The above calculations
rely on a binomial expansion and thus only work for
integer α’s. To apply it to any real-valued, we can
use the relation between RDF and CGF mentioned in
Remark 7, and the fact that CGF is a convex function
(see Lemma 37 in Appendix H). The convexity ofKM(·)
implies that a piecewise linear interpolation yields a
valid upper bound for all α ∈ (1,∞).
Corollary 10. Let b·c and d·e denotes the floor
and ceiling operators. Then, KM(λ) ≤ (1 − λ +
bλc)KM(bλc) + (λ− bλc)KM(dλe).

The bound on KM(λ) can be translated into a RDP
parameter bound as noted in Remark 7.

Proof Idea. The proof of Theorem 9 is given in
Appendix C.1; here we give an overview of the proof
strategy. LetM′ =M◦ subsample, p(θ) =M′(X)(θ)
and q(θ) = M′(X ′)(θ). The starting observation is
that, by the binomial expansion, for integer α ≥ 2 the
CGF KX,X′

M′ (α− 1) can be written as

Eq
[(

p

q

)α]
=

α∑
j=0

(
α

j

)
Eq

[(
p

q
− 1

)j]

≤ 1 +

α∑
j=2

(
α

j

)
Eq

[∣∣∣∣pq − 1

∣∣∣∣j
]
,

where we used Eq[pq − 1] = 0. Given this expansion,

we note that the expectation terms correspond to the
classical Pearson-Vajda divergence of order j between p
and q; the rest of the analysis then reduces to bounding
these divergences in terms of the Rényi DP parameter
ofM for any neighboring X and X ′. This is achieved
by introducing a ternary divergence between triples of
distributions, and showing that a new privacy definition
(ternary-|χ|α-DP) in terms of our ternary divergence
exhibits a simple amplification by subsampling prop-
erty (Proposition 16, Appendix C.1). To leverage this
powerful observation we propose a number of ways of
converting a ternary-|χ|α-differential privacy guaran-
tee back to RDP (Lemmas 17, 18, 19, Appendix C.1).
Each of these conversion strategies yield different coef-
ficients in the sum inside the logarithm defining α′(ε);
our bound accounts for all these strategies at once by
taking the minimum of these coefficients.

A Lower Bound. We now discuss whether the bound
in Theorem 9 can be improved. First, we provide a
short answer: it cannot be improved in general.
Proposition 11. Let M be a randomized algorithm
that takes a dataset in X γn as an input. If M
obeys (α, ε(α))-RDP for a function ε : R+ → R+

and that there exists x, x′ ∈ X such that ε(α) =
Dα(M([x, . . . , x, x′])‖M([x, . . . , x, x])) for all integer
α ≥ 1 (e.g., this condition is true for all output per-
turbation mechanisms for counting queries), then the
RDP function ε′ forM◦ subsample obeys the following
lower bound for all integers α ≥ 1:

ε′(α) ≥ α

α− 1
log(1− γ) +

1

α− 1
log
(

1 + α
γ

1− γ

+

α∑
j=2

(
α

j

)( γ

1− γ
)j
e(j−1)ε(j)

)
.

The idea behind the proof of this result is simple: for
datasets of size n of the form X = [x, . . . , x, x′] and
X ′ = [x, . . . , x, x] it is possible to apply a variation of
the binomial expansion in the proof of Theorem 9 to ob-
tain a closed-form expression for Dα(M′(X)‖M′(X ′))
in terms of Dj(M(X̃)‖M(X̃ ′)) for j = 2, . . . , α. Here
X̃ and X̃ ′ are datasets obtained by removing the first
(1 − γ)n elements from X and X ′ respectively. See
Appendix C.6 for the detailed calculation.

Let us compare the above lower bound to our upper
bound in Theorem 9 in two regimes. When αγeε(α) �
1, such that α2γ2eε(2) < 1 is the dominating factor in
the summation, we can use the bounds x/(1 + x) ≤
log(1 + x) ≤ x to get that both the upper and lower
bound are Θ(αγ2eε(2)). In other words, they match up
to a constant multiplicative factor. For other parameter
configurations, note that γ/(1 − γ) > γ, our bound
in Theorem 9 (with the 2e(j−1)ε(j)) is tight up to an
additive factor α

α−1 log((1− γ)−1) + log(2)
α−1 which goes
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to 0 as γ → 0 and α → ∞. We provide explicit
comparisons of the upper and lower bounds in the
numerical experiments presented in Section 4.

The longer answer to this question of optimality is more
intricate. The RDP bound can be substantially im-
proved when we consider more fine-grained per-instance
RDP in the same flavor as the per-instance (ε, δ)-DP
(Wang, 2018). The only difference from the standard
RDP is that now ε is parameterized by a pair of fixed
adjacent datasets. This point is illustrated in Ap-
pendix C.7, where we discuss an asymptotic approx-
imation of the Rényi divergence for the subsampled
Gaussian mechanism.

3.2 Analytical Moments Accountant

The results above allow us to build an analytical mo-
ments accountant supporting composition and subsam-
pling of differentially private mechanisms. This is a
data structure that tracks the CGF function of a se-
quence of mechanisms in symbolic form, some of which
can be subsampled mechanisms. The data structure
allows data analysts to query the smallest ε from a
given δ (or vice versa) for (ε, δ)-DP using (2) (or (3)).

More formally, the data structure maintains the CGF
K = KM1

+ . . .+KMk
corresponding to the compo-

sition of the (potentially adaptive) sequence of mech-
anisms M1,M2, ..,Mk applied to the same dataset.
The function K is represented in symbolic form, and
the data structure offers three operations: (i) compo-
sition of an additional mechanism to update K; (ii)
evaluation of the RDP parameter ε(α) of the composed
mechanism; and (iii) conversion to an (ε, δ)-DP guar-
antee. The conversion to RDP is straightforward using
the one-to-one relationship between CGF and RDP
(see Remark 7) with the exception of RDP at α = 1
(Kullback-Leibler privacy) and α = +∞ (pure DP),
which we keep track of separately. The conversion to
(ε, δ)-DP is obtained by solving the univariate optimiza-
tion problems described in (2) and (3).

We design the data structure to be numerically stable,
and efficient in both space and time. In particular, it
tracks CGFs with O(1) time to compose a new mecha-
nism and uses space only linear in the number of unique
mechanisms applied (rather than the number of total
mechanisms applied). Using the convexity of CGFs and
the monotonicity of RDP, we are able to provide δ ⇒ ε
conversion to (ε, δ)-DP to within accuracy τ in oracle
complexity O(log(λ∗/τ)), where λ∗ is the optimal value
for λ. Similarly, for ε⇒ δ queries.

Note that for subsampled mechanisms the direct evalu-
ation εM◦subsample(α) of the upper bounds in Theorem 9
is already polynomial in α. To make the data structure
truly scalable, we devise a number of ways to approxi-

mate the bounds that takes only O(log(α)) evaluations
of εM(·). More details about our analytical moments
accountant and substantiations to the above claims are
provided in Appendix G.

Practically, our analytical moments accountant is bet-
ter than the moment accountants proposed by Abadi
et al. (2016) in several noteworthy ways: (1) it allows
one to keep track the CGF’s of all λ ≥ 1 in symbolic
form without paying infinite memory, whereas moments
account (Abadi et al., 2016) requires a predefined list
of λ’s and pays a memory proportional to the size of
the list; (2) it completely avoids numerical integration
used by moments account; and finally (3) it supports
subsampling for generic RDP mechanisms while the
original moments accountant was built for supporting
only Gaussian mechanisms. All of this translates into
an efficient and accurate way for tracking ε’s and δ’s
when composing differentially private mechanisms.

4 Experimental Evaluation

In this section, we present numerical experiments to
demonstrate our upper and lower bounds of RDP for
subsampled mechanisms and the usage of analytical
moments accountant. Due to space constraints, we
only consider the Gaussian mechanism here; further
experiments with Laplace and randomized response
mechanisms are presented in Appendix A.

The RDP guarantees of the Gaussian mechanism are
given by εGaussian,σ(α) = α/2σ2, where σ2 represents
the variance of the Gaussian perturbation9. The ex-
periments in this section are performed under the
“low privacy regime” σ = 5, which corresponds to
(0.2

√
2 log(1.25/δ), δ)-DP; the “high privacy regime”

is considered in Appendix A. The subsampling ratio γ
is taken to be 0.001.

In Figure 1a, we plot the overall (ε, δ)-DP for δ = 10−8

as we compose the subsampled Gaussian mechanism
600, 000 times. The ε is obtained as a function of δ
for each k separately by calling the δ ⇒ ε query in
our analytical moments accountant. Our results are
compared to the algorithm-independent techniques for
differential privacy including naïve composition and
strong composition. The strong composition baseline
is carefully calibrated for each k by choosing an appro-
priate pair of (ε̃, δ̃) forM such that the overall (ε, δ)-
DP guarantee that comes from composing k rounds
of M ◦ subsample using Kairouz et al. (2015) obeys
that δ < 10−8 and ε is minimized. Each round is de-
scribed by the (log(1 + γ(eε̃ − 1)), γδ̃)-DP guarantee
using the standard subsampling lemma (Lemma 3) and
ε̃ is obtained as a function of δ̃ via (2).

Not surprisingly, both our approach and strong compo-
9We assume the underlying function has sensitivity 1.
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sition give a O(
√
k) scaling while the naïve composition

exhibits O(k) scaling. An interesting observation for
the subsampled Gaussian mechanism is that the RDP
approach initially performs worse than the naïve com-
position and strong composition with the standard sub-
sampling lemma. Our RDP lower bound certifies that
this is not due to an artifact of our analysis but rather
a fundamental limitation of the approach that uses
RDP to obtain (ε, δ)-DP guarantees. We believe this
is a manifestation of the same phenomenon that leads
to the sub-optimality of the classical analysis of the
Gaussian mechanism (Balle and Wang, 2018), which
also relies on the conversion of a bound on the CGF
of the privacy loss into an (ε, δ)-DP guarantee, and
might be addressed using the necessary and sufficient
condition for (ε, δ)-DP in terms of tail probabilities of
the privacy loss random variable given in (Balle and
Wang, 2018, Theorem 5). Luckily, such an artifact does
not affect the typical usage of RDP: as the number of
rounds of composition continues to grow, we end up
having about five orders of magnitude smaller ε.

We also conducted numerical comparisons between the
upper and lower bounds for ε′(α) given in Theorem 9
and Proposition 11 respectively. Our evaluation shows
these bounds are tight up to constant factors. As we
can see from the Figure 1b, the upper and lower bounds
match up to a multiplicative constant. There is a phase
transition in both the upper and lower bound, which
occurs at about γαeε(α) ≈ 1. We also plot an asymp-
totic approximation obtained under the assumption
that the size of the input dataset grows n→∞ while
the subsampling ratio γ = m/n is kept constant. In
fact, we derive two asymptotic approximations: one in
the case of “good” data and one for “bad” data. The
approximations and the definitions of “good” and “bad”
data can be found in Appendix C.7. The “bad” data ap-
proximation matches almost exactly with lower bound
up to the phase transition point. The Gaussian approx-
imation for the “good” data is smaller than the lower
bound, especially in the low-privacy regime, highlight-
ing that we could potentially obtain additional gains
by performing a dataset dependent analysis.

5 Conclusion

In this paper, we have studied the effect of subsampling
(without replacement) in amplifying Rényi differential
privacy (RDP). Specifically, we established a tight up-
per and lower bound for the RDP parameter for the
randomized algorithmM◦subsample that first subsam-
ples the data set then appliesM to the subsample, in
terms of the RDP parameter of M. In addition, we
designed a data structure called analytical moments
accountant which composes RDP for randomized algo-
rithm (including subsampled ones) in symbolic forms
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Figure 1: Experimental results for subsampled Gaus-
sian mechanism with σ = 5 and γ = 0.001. (a) DP
guarantees after composition of k mechanisms obtained
with RDP composition, strong composition and naïve
composition. (b) RDP guarantees as a function of α
obtained with our upper and lower bounds, as well as
asymptotic approximations for two data regimes.

and allows efficiently conversion of RDP to (ε, δ)-DP
for any δ (or ε) of choice. These results substantially
expands the scope of the mechanisms with RDP guar-
antees to cover subsampled versions of Gaussian mech-
anism, Laplace mechanism, Randomized Responses,
posterior sampling and so on, which facilitates flexible
differentially private algorithm design. We compared
our approach to the standard approaches that use sub-
sampling lemma on (ε, δ)-DP directly and then applies
strong composition, and in our experiments we notice
an order of magnitude improvement in the privacy
parameters with our bounds when we compose the
subsampled Gaussian mechanism over multiple rounds.
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