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Abstract

Covariate shift is a prevalent setting for su-
pervised learning in the wild when the train-
ing and test data are drawn from di↵erent
time periods, di↵erent but related domains,
or via di↵erent sampling strategies. This pa-
per addresses a transfer learning setting, with
covariate shift between source and target do-
mains. Most existing methods for correcting
covariate shift exploit density ratios of the
features to reweight the source-domain data,
and when the features are high-dimensional,
the estimated density ratios may su↵er large
estimation variances, leading to poor predic-
tion performance. In this work, we investi-
gate the dependence of covariate shift correc-
tion performance on the dimensionality of the
features, and propose a correction method
that finds a low-dimensional representation
of the features, which takes into account fea-
ture relevant to the target Y , and exploits
the density ratio of this representation for im-
portance reweighting. We discuss the factors
a↵ecting the performance of our method and
demonstrate its capabilities on both pseudo-
real and real-world data.

1 Introduction

We are concerned with the learning problem where
we are given labeled training (source-domain) data
(xtr

1

, ytr
1

), ..., (xtr

n

, ytr
n

tr

) ✓ X ⇥ Y, generated from joint
distribution P tr

XY

, and aim to find a function that
can predict the target Y from the features X on test
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(target-domain) data (xte

1

, yte
1

), ..., (xte

n

, yte
n

te

) ✓ X ⇥Y,
generated by P te

XY

, where the labels yte are not ob-
served. While most o↵-the-shelf supervised learning
algorithms assume that P tr

XY

= P te

XY

, this might not
be the case in practice. For example, consider the
task of predicting a prognostic outcome in cancer pa-
tient cohorts given abundant clinical and molecular
data such as gene expression. The data would often
be collected from di↵erent populations and may be
generated and processed under di↵erent lab conditions
for the training and test cohorts. In this case, assum-
ing that the joint distributions in the two domains are
identical may lead to poor prediction performance.

Covariate shift (aka sample selection bias) [1, 2, 3] is
the transfer learning setting in which P tr

XY

6= P te

XY

where the distribution of the features changes be-
tween the training and test domains (P tr

X

6= P te

X

),
with the assumption that P tr

Y |X = P te

Y |X . The gen-
eral approach to accounting for this particular dis-
tribution di↵erence is to re-weight the source-domain
labeled data such that the weighted data and the
target-domain data have the same distribution, and
then incorporate this weight information into the ap-
propriate supervised learning procedure [4, 5, 6, 7].
More formally, the goal is to the minimize the risk
under the test data distribution, given by Rte(l) =
E
(X,Y )⇠P

te

XY

[l(x, y; ✓)]. Density ratio-based covariate
shift correction aims to find a re-weighting function
�(x) such that the reweighted risk in the source do-
main given by Rtr

�

(l) = E
(X,Y )⇠P

tr

XY

[�(x)l(x, y; ✓)]
matches the risk under the test data distribution (i.e.
Rtr

�

(l) = Rte(l)). The optimal function � is given by

the density ratio �(x) = P

te

X

(x)

P

tr

X

(x)

.

In density ratio-based covariate shift correction, while
�̂ is a consistent estimator of the density ratio, it can
su↵er high variance in the finite sample case, as ini-
tially demonstrated in [8]. A key contributing factor
to this variance in the estimate is the dimensionality of
the data, and this is very apparent if one attempts to
estimate the densities pte(x) and ptr(x) from data and
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then calculate their ratio. In high dimensions, divid-
ing by an estimated quantity like a density can amplify
the error [9]. To avoid estimating the density and per-
forming the division explicitly, various methods have
been developed to find the density ratio directly via
criteria such as moment matching [5], KL divergence,
[4], and relative Pearson divergence via least squares
density estimation [7], and thus achieve better statis-
tical and/or computational e�ciency. However, even
if � is estimated very accurately, the prediction risk
in the target domain may su↵er high variance if the
dimensionality of the features is high. This indicates
that reducing the data dimensionality may improve
prediction performance in the target domain.

To cope with this problem, there have also been ef-
forts to reduce the dimensionality used in estimating
the density ratio by searching for a low-dimensional
subspace where the marginal distributions of the
source and target domains are di↵erent; see, e.g., the
method of Least-Squares Hetero-distributional Sub-
space Search (LHSS) [10]. Another way to cope with
high dimensionality is by expanding the density ratio
in terms of eigenfunctions of a kernel-based operator
[11]. While these directions have shown improvements
in estimating the density ratio, they do not take into
account the relevance of the features to the target vari-
able Y ; as a consequence, they may risk discarding
useful information for prediction, and may still have
unnecessarily high variance in the estimated density
ratio (e.g., consider the case where a particular feature
is independent from Y and the remaining features but
has very di↵erent distributions across domains). Find-
ing alternative ways of reducing the dimensionality of
the features to improve prediction under covariate shift
is our goal. Furthermore, the finite-sample generaliza-
tion bounds performed thus far focus on the e↵ect of
sample size in the source and target domains. In this
study, we extend some of these results and analyze
them in terms of dimensionality, in order to provide
insight into the relationship between covariate shift
correction performance and the number of features.

Related Work The theory of domain adaptation
has been studied extensively in several settings; for in-
stance, see [12, 13, 14]. There has also been a rich body
of work done regarding covariate shift (sample selec-
tion bias) both from a theoretical and empirical points
of view. The consistency of the density ratio impor-
tance weights was established [8], and it was demon-
strated that in the finite sample scenario, the estimate
su↵ers higher variance. Sample selection bias was ap-
proached from a learning theoretic point of view [2],
and how various supervised learning algorithms be-
have was studied in this setting. Maximum-entropy
density estimation was also investigated under sample
selection bias [15]. As previously mentioned, several

prior studies have attempted to avoid estimating the
densities of the target and source domains and calcu-
lating the ratio explicitly with various methodologies;
see, e.g., [16, 4, 17, 6, 18]. Regarding the theoretical
properties of covariate shift correction, finite sample
analyses of the risk in the target domain have been
conducted [5], producing a transductive bound of the
empirical weighted risk for the kernel mean matching
(KMM) method (this result was stated in Corollary
1 below). Furthermore, the e↵ects of the estimation
error of �̂ on the risk in the target domain have been
analyzed for KMM [19]. The generalization error un-
der covariate shift has been provided without assuming
boundedness on the weights �, but instead assuming
that the second moment is bounded [20].

2 Motivation

To illustrate the problem more clearly, let us consider
one of the main transductive results on the empirical
weighted risk in the training data, proven in [5]:

Corollary 1[5] With probability 1 � � the following

bound on the expected risk in the target domain holds:

sup
l(·,·,✓)

| 1

n
tr

n

trX

i=1

�
i

l(xtr

i

, ytr
i

, ✓)� E
Y |X [

1

n
te

n

teX

i=1

l(xte

i

, yte
i

, ✓)]|

 ||�||CR
2 +

p
4 log(1/�)

n
tr

+

C(1 +
p
4 log(1/�))R

p
B2/n

tr

+ 1/n
te

,

where C and R are constants specific to the model
class of l(·, ·, ✓), and B is the upper bound of �.

Now consider an example in which data were gener-
ated according to a simple model given by: X

tr

⇠
0.5N ([0, ..., 0]d,⌃) + 0.5N ([0.5, ..., 0.5]d,⌃), X

te

⇠
0.5N ([1.5, ..., 1.5]d,⌃) + 0.5N ([2, ..., 2]d,⌃), P (Y =
1|X) = sigmoid(X

1

+ 5 tan(X
1

)), where we can range
d to explore the behavior of importance re-weighting
with varying dimensionality. One can appreciate that
in this toy example, the target Y only depends on the
first feature X

1

. However, when we plot this bound,
we see that the variance of the empirical risk estimate
grows with increasing dimensionality (as seen in Fig-
ure 1b). Furthermore, there are additional di�culties
that arise with the task of estimating �̂ from data,
in which the estimation error ||� � �̂||2 is also larger
with increasing dimensionality, as shown in Figure 1a.
Finally, to observe the e↵ect of these phenomena on
prediction accuracy, we plotted the classification accu-
racy using logistic regression for the above-mentioned
dataset in Figure 1c. It is clear that as the dimension-
ality increases, the prediction accuracy deteriorates.

Given these observations, a question arises: is there a
way to automatically derive and make use of the rel-
evant low-dimensional representation of the features
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for the purpose of covariate shift correction? If we
could find such a low-dimensional representation to
capture all of the relevant information in the features
X relative to the target Y , then we would be able
to perform covariate shift correction on this represen-
tation and enjoy a low variance and high estimation
accuracy of the importance weights, as well as low
variance of the empirical risk. Note that the target-
domain risk can be expressed as the re-weighted source

domain risk: Rte(l) =
R
P tr

XY

· P

te

XY

P

tr

XY

l(x, y; ✓)dxdy =
R
P tr

XY

· P

te

X

P

tr

X

l(x, y; ✓)dxdy = Rtr

�

(l). Given features

X 2 RD, is it possible to find a function of the features
X, h : RD ! Rd such that the ratio �

h

(x) = p

te

(h(x))

p

tr

(h(x))

can be used to express the target-domain risk in term
of the re-weighted source domain risk (i.e. such that
Rte(l) = Rtr

�

h

(l))?

3 A Low-Dimensional Reweighting
Approach

Since covariate shift correction can su↵er in high di-
mensions, the goal is to find a principled way to repre-
sent X in a low-dimensional space, which means that
for X 2 RD, we need to find a function h : RD ! Rd

s.t. D > d, such that �
h

(x) = p

te

(h(x))

p

tr

(h(x))

is a den-
sity ratio that can be used to express the risk in the
target domain in the population case. For this pur-
pose, we develop the following result, inspired by the
idea of propensity score in causal e↵ect estimation [21].
It identifies some key properties that an appropriate
function h(x) needs to have.

Theorem 1: Suppose i) X ?? Y |h(X) and

that ii) the loss l(x, y, ; ✓) can be rewritten as

l
h

(h(x), y, ; ✓0), which involves h(x) instead of x.

Then density ratio �
h

(x) = p

te

(h(x))

p

tr

(h(x))

and �(x) =
p

te

(x)

p

tr

(x)

are loss-equivalent for covariate shift cor-

rection, in the sense that E
(X,Y )⇠P

te

XY

[l(x, y; ✓)] =
E
(h(X),Y )⇠P

tr

h(X),Y
[�(h(x))l

h

(h(x), y; ✓0)].

This result implies that �
h

:= �(h(x)) is just as op-
timal as � in terms of minimizing the target-domain
risk in the infinite sample case, but h(X) could poten-
tially have lower dimensionality and thus avoid nega-
tive e↵ects that high dimensionality has on prediction
performance in the covariate shift setting. Condition
ii) will hold if the optimal function f(x) can be rewrit-
ten as a function of h(x)–intuitively, if X ?? Y |h(X),
h(X) contains all information in X that is relevant to
Y , and hence the optimal prediction function f(x) is
also a function of h(x). (The e↵ect of the functional
class of f(x) will be discussed later.)

Now that we have established the main property re-

quired for h(X), we need to find a function h that sat-
isfies it. Thus, we identify two functions that satisfy
these properties for the purposes of classification and
regression respectively, in the following proposition:

Proposition 1: Suppose Y is binary. Then h(X) =
p(Y = 1|X) satisfies X ?? Y |h(X). Suppose Y is

continuous and that Y = f(X) + ✏, where ✏ is noise

and is independent from X. Then h(X) = E[Y |X].

In the covariate shift setting, the main premise is that
although P (Y = 1|X) and E[Y |X] do not change, they
are too complex to be reliably estimated by a simple
method from a finite labeled sample in the source do-
main (otherwise, there would be no need for covariate
shift correction since P tr

Y |X = P te

Y |X). We need a way

to estimate a rather simple function ĥ(X) that satis-
fies the conditional independence property required by
Theorem 1 using source-domain data.

3.1 Approximating the Low-Dimensional

Representation

Our approach involves finding a low-dimensional rep-
resentation of X via a random vector h(X) = h =
[h

1

(X)...h
d

(X)], such that X ?? Y |h(X). We can use
kernel methods and covariance operators in Hilbert
Space to express the degree to which h(X) satisfies the
conditional independence property, which was widely
applied in su�cient dimension reduction [22, 23].

Denote by x 2 RD⇥1 a data vector, let X 2 RD⇥n be
the data matrix, where the data vectors x are stacked
as columns, and Y 2 R1⇥n be a one-dimensional vec-
tor of the target variable observations. Let k be a pos-
itive semidefinite kernel function with corresponding
RKHS H

k

and a feature map  : RD ! H
k

(s.t. for
x
1

, x
2

2 X , k(x
1

, x
2

) = h (x
1

), (x
2

)iH
k

). Similarly,
let kernel l correspond to a feature map ⇢ : Y ! H

l

and kernel m correspond to a feature map of h(X),
given by � : Rd ! H

m

(in this paper we use the Gaus-
sian RBF kernel k(x

1

, x
2

) = exp(�||x
1

� x
2

||2/�2).
Then, the cross-covariance operator U

Y,X

from H
k

to
H

l

is given by the following relationship:

hg,U
Y,X

fiH
l

:= E
XY

[f(X)g(Y )]� E
X

[f(X)]E
Y

[g(Y )],

for all f 2 H
k

, g 2 H
l

, and it means this linear op-
erator acts with the inner product to express the co-
variance between f(X) and g(Y ) [22]. The conditional
covariance operator is defined as [24, 22]:

U
Y Y |h(X)

:= U
Y,Y

� U
Y,h(X)

U�1

h(X),h(X)

U
h(X),Y

.

It can be shown that this operator can be used to
express independence properties between X and Y .
More specifically [22]:,

X ?? Y |h(X) , U
Y,Y |h(X)

� U
Y,Y |X = 0.
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Figure 1: (a): Estimation L
2

error of � in Gaussian mixture toy dataset (b): Term 1 of bound. (c): Classification
accuracy.

The conditional dependence between Y and X given
h(X) can be minimized by minimizing the trace
of the conditional covariance operator, given by
Tr[U

Y Y |h(X)

]. Given a finite labeled training sam-
ple, the operators U

Y,Y

, U
Y,h(X)

and U
h(X),h(X)

can
be estimated in the source domain by 1

n

tr

⇢(Y)⇢(Y)T ,
1

n

tr

⇢(Y)�(h(X))T and �(h(X))�(h(X))T respectively.

The estimated trace of the conditional covariance op-
erator Tr[Û

Y Y |h(X)

] can then be estimated using ker-
nel Gram matrices in the source domain (please see
Appendix for details). Furthermore, it can be mini-
mized if h(X) is represented by a linear projection of
X given by: ĥ(X) = W

T

X, where W 2 RD⇥d has
orthonormal columns to prevent extracting redundant
information from X. This means that we are search-
ing for a subspace onto which to project the data such
that X and Y are independent given the projection,
yielding the following problem to find W:

argmin
W

C(W) = Tr[Û
Y Y |ˆh(X)

] (1)

s.t. WT

W = I (2)

This problem can be solved by conjugate gradient de-
scent on the Grassman manifold [25].

3.2 Estimating Importance Weights via

Kernel Mean Matching

Given the kernel k
m

corresponding to the feature map
� of the projection x

W

= W

T

x, the importance
weights �̂ can be estimated using the common ap-
proach of KMM [18]:

�̂
W

=argmin
�

|| 1

n
tr

n

trX

i=1

�
i

�(xtr

Wi

)� 1

n
te

n

teX

i=1

�(xte

Wi

)||

(3)

s.t. �
i

= [0, B], 8i, |
n

trX

i=1

�
i

� n
tr

|  n
tr

⇠ (4)

where a good value for ⇠ is O(B/
p
n
tr

) [5]. This prob-
lem is a quadratic program in terms of kernel oper-
ations and can be easily solved with standard pack-
ages. Thus, the procedure for finding the importance

weights using a low-dimensional representation of X
consists of two steps:

(1) Use the source-domain labeled training data to
solve problem in equation 1 to obtain W such that
Y ?? X|WTX.

(2) Obtain �̂
W

by solving problem in equation 3 on
the projected unlabeled data x

W

in the source and
target domains using the operator W.
After these two steps are completed, �̂

W

can be used
along with the projections x

Wi

, ..., .x
Wn

to do covari-
ate shift correction and subsequently apply a super-
vised learning algorithm on the reweighted projected
source-domain data points.

An important design choice of this algorithm is d, the
dimensionality of the projection W

TX. To select this
value, we perform 5-fold cross-validation on the source-
domain data, and select the dimensionality that yields
the lowest average cost C(W) (from equation 1) across
the hold-out samples.

4 Theoretical Analysis

In this study, we first shall analyze the generalization
error in the target domain with a fixed X distribu-
tion. Before we do so, let us outline the main nota-
tion we will use. Our aim is to bound the quantity
|Rte(l

ˆ

�

W

)�Rte(l⇤)|, where (1) Rte(l⇤) is the optimal

risk in the target domain and it is given by Rte(l⇤) =
E
Y |X [ 1

n

te

P
n

te

i=1

l⇤(xte

i

, yte
i

, ✓)] for test data pairs

(xte

1

, yte
1

), ..., (xte

n

te

, yte
n

te

), where l⇤ = argmin
l2H Rte(l);

(2) Rte(l
ˆ

�

W

) is the true risk arising from the loss ap-
plied on reweighted and dimensionality-reduced data
using estimated weights �̂

W

, and it is given by
Rte(l

ˆ

�

W

) = E
Y |X [ 1

n

te

P
n

te

i=1

l
ˆ

�

W

(xte

i

, yte
i

, ✓)]. Here,

l
ˆ

�

W

(xte

i

, yte
i

, ✓) = l(h
ˆ

�

W

(xte

i

), yte
i

), where h
ˆ

�

W

is a hy-
pothesis function on X that has been learned from
re-weighted projected training data using �̂

W

. The
expected risk in the target domain with projected fea-
tures is Rte

W

(l) = E
y|x[ 1

n

te

P
n

te

i=1

l(W |xte

i

, yte
i

, ✓)], and

the optimal function l⇤
W

= argmin
l2G Rte

W

(l). As we
shall see (and this is more explicit in the proof), this
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generalization error decomposes into terms that arise
from the variance of the empirical risk estimate (like in
the bound in Corollary 1), and terms that arise from
the estimation error of �̂

W

. Before we present our
analysis, we need to make some assumptions on the
loss function that were first made in [5, 19]:

A1 The kernel k is a product kernel, and it satis-
fies k(x,y) =

Q
d

i=1

k(x(i), y(i)). It is also bounded:
k(x,x)   < 1.

A2 [5]: The loss function l(x, ✓) satisfies: l(x, ✓) =
h�(X),⇥i, and such that ⇥  C. Similarly,
l(x, y, ✓) = h (x, y),⇤i, where ||⇤||  C and
|| (x, y)||  R,||�(x)||  R (same constant is used
for convenience). Thus, l(x, ✓) and l(x, y, ✓) each be-
long to a corresponding RKHS. We shall further as-
sume that this RKHS corresponds to a product ker-
nel as defined in A1. We also assume the loss l is
�-admissible, as defined by Cortes et al. [19], and dif-
ferentiable. We provide more detail on this assump-
tion in the Appendix, and it is satisfied by many loss
functions including the quadratic cost.

A3 The features after projection wT

1

X, ..., wT

d

X, where
w

i

is the i-th column of W, are independent.

This is assumed for the sake of simplicity of the analy-
sis (if needed, one can further apply a linear transfor-
mation to make the outputs independent). Using these
quantities defined in the target domain along with the
assumptions stated above, we provide a bound on the
generalization error in terms of the dimensionality of
the features X:

Theorem 2: Assume that A1, A2 and A3 hold

and let for each projected feature i, ||�
W

(wT

i

x)||2
2


Q,�

W

(wT

i

x)  T 8i 2 1, ..., d. Furthermore, let the

importance weights �̂
W

be a result of the KMM pro-

cedure using a feature map � : X ! H which cor-

responds to a kernel function k that satisfies A1, and
such that ||�(X

j

)||  U 8j 2 1, ..., d. Let K be the ker-

nel Gram matrix for kernel k, K

1

, K

2

,...,K

d

be the

kernel Gram matrices of k(x(1), y(1)), .., k(x(d), y(d))
respectively, and let �̃ be the smallest among the min-

imum eigenvalues �min(K1

), ...,�min(Kd

). Then with

probability 1 � � the following bound in the target do-

main holds:

|Rte(l
ˆ

�

W

)�Rte(l⇤)|  |Rte(l⇤
W

)�Rte(l⇤)|+
(2 +

p
2 log(6/�))CUd

n

trp
Q

d

+

C(1 +
p
2 log(6/�))Ud

q
T 2d/n

tr

+ 1/n
te

+
�22

�
(
⇠T d

p
n
tr

+


1
2

�̃d/2

s
T 2d

n
tr

+
1

n
te

(1 +
p

2 log(6/�))),

where � is a hyper-parameter that controls regulariza-
tion over the hypothesis set. The proof for this result
can be found in the Appendix. The first term on the
RHS corresponds to the bias that arises from the di↵er-
ence between the optimal hypothesis function given by
covariate shift correction in the originalD-dimensional
space and the one given by covariate shift correction
in the reduced d-dimensional space (our method). The
second and third terms correspond to the variance of
the empirical risk estimate, and the fourth term cor-
responds to the estimation error in �̂

W

.

We can see from this bound that the dimensionality
of the dataset is present in each term. Let us first as-
sume that there is no bias in covariate shift correction
after dimensionality reduction. For instance, consider
an example where the true generating process for Y is
Y = f(RTX) + ✏, where E[✏] = 0. This implies that
X ?? Y |RTX. Let the sample size be infinite. Sup-
pose that we use the correct functional form for pre-
diction, resulting in the optimal function under origi-
nal covariate shift correction (using all of the features)
given by Ŷ = f⇤(R⇤TX), whereR⇤ is a projection ma-
trix and f⇤ is a nonlinear function. Our method can
find W such that X ?? Y |WTX, so it follows that
P (Y |RTX) = P (Y |RTX,X) = P (Y |WTX,X) =
P (Y |WTX) (because the information of W

TX and
R

TX is contained in X and because of the condi-
tional independence relations). This implies that we
have f 0 such that E(Y |RTX) = E(Y |WTX), indi-
cating that the optimal decision function under the
original covariate shift setting and the one after di-
mensionality reduction are the same. This means that
f⇤(R⇤TX) = f 0(WTX). Therefore, one only needs to
use a low-dimensional representation W

TX and learn
f 0 instead of using all of the features of X and learn
both R and f⇤. If f 0 and f⇤ are in the same function
class, there will be no bias, implying that the first term
of the RHS will be equal to 0. In this case, the first
term in the risk will vanish.

One should note, however, that there are cases in
which performing dimensionality reduction with a lin-
ear transformation can incur large bias. Consider the
case where X has two variables, and the generating

process is X
2

= X3

1

+ ✏
1

, Y = X1/3

2

+ ✏
2

. If under co-
variate shift, we use a linear model to predict Y, then
both X

1

and X
2

are relevant. However, our method
would select only feature X

2

, which has a nonlinear
relationship in Y , resulting in a large bias.

Even though in certain cases our method can have
some bias, it can enjoy smaller variance in the risk
estimate and smaller estimation error of the weights
as a result of low dimensionality. First, the e↵ective
sample size M := n2

tr

/||�||2 � n2

tr

/Qd in the second
term, as defined by Gretton et al. [5], can get expo-
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nentially smaller as d increases, which explains one of
the main reasons why performance may su↵er in the
target domain when the dimensionality of the data is
high. d is also present in the exponent of constants T
and U in the second and third term. This means that
the variance increases exponentially with respect to d.

Furthermore, the estimation error of the weights �
W

also gets exponentially larger as d increases, as can be
seen in the third term of the RHS. In the denominator,
we have the value �̃d/2, which is the minimum of the
smallest eigenvalues corresponding to the kernel Gram
matrices for each feature. This number can often be
smaller than 1. For example, for the Gaussian RBF
kernel this is guaranteed unless the kernel width used
is so small that the kernel Gram matrix becomes the
identity matrix. This follows from the fact that for the
RBF kernel, Tr(K) = n =

P
n

i=1

�
i

(K) where �
i

(K)
is the i-th largest eigenvalue, thus guaranteeing that
�
min

< 1 if there is more than one unique eigenvalue.

The analysis above assumes that the features are mu-
tually independent. We note that interestingly, the re-
sult will still hold in rather general situation in which
features are dependent. This is because with suitable
linear/nonlinear transformations, the transformed fea-
tures will become mutually independent, according to
the independent component analysis theory [26].

5 Empirical Evaluation

For the purposes of evaluating our method we per-
formed experiments on both pseudo-real and real-
world data: (1) for pseudo-real regression datasets, we
created a source domain and a target domain from
real datasets with an artificial sample selection bias,
and (2) two real datasets consists of a classification
problem and a regression problem. We compare our
method, i.e., finding the low-dimensional representa-
tion W

T

X and using it to compute the importance
weights, with four prediction schemes, including: (i)
no reweighting, which treats both the source and the
target domains as if they came from the same distribu-
tion, (ii) using all the features to compute the impor-
tance weights (corresponding to original covariate shift
correction), (iii) LHSS [10], as a marginal distribution-
based dimensionality reduction method, and (iv) using
a low-dimensional representation obtained by perform-
ing PCA and its density ratio for covariate shift cor-
rection. For computing importance weights in schemes
(ii) and (iii), we used the three above-mentioned algo-
rithms: KMM ([18]), KLIEP ([4]) and RuLSIF [7],
which were briefly described in the Related Work sec-
tion above. We obtained the code for each of these
baselines, and ran it on our datasets after tuning the
methods to the best of our ability.

5.1 Pseudo-Real Data Experiments

We used benchmark regression datasets1 to generate
pseudo-real data, which were also used in [18] and [19].
We biased the data in the following way, as in [19]. We
made use of a sample selection variable s, and we calcu-
late a conditional probability of selecting a data point
to be observed in the source domain given its features
as p(s = 1|x) = e

v

1+e

v

, where v = 4w·(x�x̄)

�

w·(x�x̄)
and where

w is a random projection vector chosen uniformly from
[�1, 1]d. As done in [19], we chose random directions w
such that the selection probabilities yield su�ciently
di↵erent performance between using no weights and
using an ideal weight given by �(x) = 1

P (s=1|x) , thus
ensuring that the biased dataset is a good candidate
dataset for covariate shift correction. We performed
this biased sampling scheme on 10 random subsam-
ples of size 2000 from each of the original datasets.

We performed covariate shift correction on these bi-
ased datasets using the above-mentioned approaches
and used KRR for regression; we present these results
on Table 1 in terms of normalized mean-squared error

(NMSE): 1

n

te

P
n

t

e

i=1

(y

i

�ŷ

i

)

2

�

2
y

, as performed in [19]. Re-

garding hyperparameters selection, here for KRR we

used a kernel width �
r

=
q

D

2

where D is the num-

ber of features of the dataset, as done in [19] (please
see Appendix for more details on hyper-parameter set-
tings). When using PCA for the baselines, we either
reduced the dimensionality to 95 percent of the cumu-
lative energy content or to the same number of dimen-
sions used by our method, and report the best results.
A table with standard deviations is included in the
Appendix due to space constraints.

There are several take-aways from these experimen-
tal results. One can appreciate that the proposed
method outperforms the baselines in the majority of
the datasets, and it does so by a large margin. In the
cases in which it does not outperform the baselines
(such as ”Abalone” and ”Elevators”), it selects almost
all the features and reduces to regular covariate shift
correction. This may be because on these datasets,
h(X) s.t. X ?? Y |h(X) cannot be summarized in a
lower-dimensional linear projection of X.

Furthermore, we see that on these datasets PCA as
a dimensionality reduction technique is not e↵ective
for the purposes of covariate shift correction. This
unreliability as a method for covariate shift correction
likely comes from the fact that PCA does not take into
account the relationship of the dimensions of X with
the target Y , and thus is likely to disregard relevant
features that explain less of the variance in the data.

1
https://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html
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Ailerons 2.26 2.01 2.09 2.18 2.06 2.72 2.74 2.81 0.92 9 40 0.0010

Bank32NH 0.79 0.79 0.82 0.78 0.73 0.91 0.92 0.91 0.62 11 32 0.0527

Bank8FM 0.81 0.78 0.84 0.79 0.74 0.92 0.99 0.99 0.32 1 8 0.0010

Abalone 0.99 0.87 0.90 0.95 0.85 1.27 1.05 0.96 0.87 7 7 0.7842
Elevators 1.14 1.02 1.07 1.12 1.02 1.50 1.10 1.12 1.02 16 18 0.4229
CPU-Act 1.56 1.29 1.46 1.44 1.36 2.12 2.10 2.22 0.53 13 21 0.0010

California 0.99 0.93 1.00 0.99 0.94 1.21 1.55 1.23 0.78 5 8 0.0049

Puma8NH 0.45 0.38 0.43 0.44 0.38 0.74 0.74 0.74 0.33 3 8 0.0049

Table 1: NMSE results on the baselines and the proposed method, on the pseudo-synthetic datasets. The
methods with the su�x ”-all” use all the features to calculate importance weights. The ”-PCA” su�x means
that PCA was used to represent the data in lower dimensions before estimating the weights �̂; the su�x ”-W”
means that the proposed low-dimensional representation given by W

T

X.
Unweighted KMM KLIEP RuLSIF LHSS KMM-W p-value

T
1

! T
2

95.4(0.9) 95.2(0.6) 95.7(0.6) 95.8(0.6) 95.9(0.6) 97.3(0.4) 0.014

T
2

! T
1

90(1.2) 92.4(1.2) 91.4(1.3) 91.2(1.2) 91.7(1.3) 94.8(0.7) 0.006

M ! F 94.4(1.0) 95.4(0.8) 93.5(1.1) 92.8(1.5) 95.1(0.7) 95.4(0.9) 0.548
F ! M 91(1.5) 92.1(1.1) 90.4(2.1) 90.9(2) 92.7(0.8) 93.7(1.0) 0.082

Table 2: SVM accuracy results on the baselines and the proposed method on the cancer gene expression dataset.
We performed PCA on the data before testing all of the baselines and the proposed method, due to the high
dimensionality of the original dataset. Standard error is in parentheses.

Direction Unweighted KMM KLIEP RuLSIF LHSS KMM-W p-value
A ! C 75.93(1.1) 75.67(1.2) 76.27(1.1) 75.8(1.1) 75(1.4) 74.27(1.9) 0.746
A ! D 76.6(1.5) 75.53(1.5) 77.33(1.8) 75.33(1.1) 70.93(1.8) 70.27(3.8) 0.96
A ! W 67(1.9) 66.67(1.8) 66.47(1.9) 66.4(2) 62.67(2.2) 71.67(1.9) 0.037

C ! A 86.93(1) 86.13(1.2) 86.87(1) 88.53(0.9) 86.27(1) 88.4(0.5) 0.535
C ! D 78.2(1.1) 77.53(1) 77.53(1.2) 78.2(1.3) 73.8(3.2) 77.13(2.1) 0.582
C ! W 67.07(1.8) 68(1.7) 67.73(1.8) 67.8(2.1) 66.27(1.8) 73.27(1.8) 0.009

D ! A 75.8(1) 78.93(1.4) 77.47(1.2) 78.87(1.3) 71.8(1.1) 83.87(0.9) 0.005

D ! C 63(1.2) 67.67(1.2) 67.53(1.6) 67.6(1.1) 60.53(1.5) 71.33(0.9) 0.001

D ! W 93.67(0.6) 96.33(0.8) 96.4(0.9) 96.47(0.9) 93.27(0.8) 95.8(0.8) 0.891
W ! A 71.33(0.8) 70.33(1) 71.13(1) 71.13(0.9) 71.4(0.6) 72.27(2.3) 0.191

W ! C 63.87(1.5) 65.53(1.5) 65.6(2.1) 64.8(2) 63.13(1.5) 70.93(1.3) 0.041

W ! D 97.53(0.4) 97.6(0.4) 97.4(0.3) 97.27(0.4) 96.93(0.5) 97.8(0.3) 0.445

Table 3: SVM accuracy results on the baselines and the proposed method on the O�ce-Caltech dataset. Here
we did PCA on all baselines before performing covariate shift, due to the high dimensionality of the dataset.

5.2 Experiments on Real Data

In order to further examine the e�cacy of our
approach, we performed experiments on two real
datasets. In addition to the object recognition task,
we also performed experiments on a publicly avail-
able cancer gene expression dataset, provided by The
Cancer Genome Atlas (TCGA) Network 2. The data

2
http://cancergenome.nih.gov/ and http://firebrowse.org

were collected from large set of patients with five dif-
ferent tumor types (colon cancer, breast cancer, stom-
ach cancer, glioblastoma, and kidney cancer), and var-
ious clinical parameters were collected for each pa-
tient. In this dataset, each patient is a data point,
and the features are 20531 annotated genes. This
dataset is very high-dimensional, yet the task is sim-
ple and boils down to identifying the di↵erent organs
where the tumor took place, which can be identified
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by a limited set of genes (features). We performed
prediction of the tumor type based on the gene ex-
pression profile across domains, which are obtained as
follows. The di↵erent domain subdivisions we con-
sider are time (patients diagnosed before and after the
year of 2008), and gender (excluding breast cancer).
For both domain subdivisions, there may be an over-
all change in the distribution of gene expression, i.e.,
P source(X) 6= P target(X). For example, methodolo-
gies of collecting biopsies and measuring gene expres-
sion evolve over time. Similarly, the overall gene ex-
pression profile across genders may be di↵erent due to
di↵erent epigenetic factors. Furthermore, it is safe to
assume that P source(Y |X) = P target(Y |X), because
various time points at which the patients were diag-
nosed or their gender, are not supposed to a↵ect the
biology of the tumor tissue. Therefore, this dataset
and task correspond to the covariate shift setting.

Before running each method, we performed PCA as
a pre-processing step. We tested our method against
LHSS and SVM without re-weighting, on the PCA-
derived features. We also ran the baselines KMM,
KLIEP, and RuLSIF by using: (1) all n � 1 PCA-
derived features for estimating the weights (that is the
highest possible number of features since D > n in the
original dataset), (2) the dimensions corresponding to
the 95 percent of the cumulative energy content, (3)
the same number of dimensions that our method se-
lected. For the baselines, we report best accuracy of
the three dimensionality reduction schemes. For each
transfer direction we performed 20 replicates, in each
of which we subsample 50 points in each domain, and
the average accuracies for each direction are reported
in Table 2. The dimensionality of our method selected
was d = 3 in all transfer directions. The results show
that our method outperforms the baselines in three of
the four transfer directions with statistical significance,
and in one of them it ties with the KMM baseline.

In addition to the cancer dataset, we also evaluated
our method on the O�ce-Caltech datase [27], and it
is concerned with the task of object recognition. This
dataset was constructed from two prior datasets: Of-
fice [28] and Caltech [29], and has four domains with
images: Amazon images, webcam (low-resolution),
DSLR (high-resolution), and Caltech-256. We used
the DeCAF

6

features extracted by a convolutional neu-
ral network described in [30]. We conducted experi-
ments with each source-target ordered pair of the do-
mains in this dataset, using SVM to classify the data
after covariate shift correction. Since each data point
(image) in this dataset has 4096 CNN features, PCA
was used for preprocessing. For each transfer direc-
tion, we performed 10 replicate experiments by sub-
sampling 150 points in the corresponding source and

target domains. We used the same experimental set-
ting as in the cancer dataset. However, we note that
di↵erent from the cancer data, in this dataset the as-
sumption of covariate shift may not hold true: p(Y |X)
may change across the domains, in which the images
were collected under di↵erent conditions.

In order to fully assess the reliability of our method,
for each baseline we used SVM classification in which
we either set the kernel width and the slackness pa-
rameter C to fixed values and assuming a misspecified
model, or selected them via 5-fold CV. We reported
the best accuracy of the two options. For our method
we used a simple model, where we set a kernel width
proportional to the median pairwise distance of all the
unlabeled data points (with constants of proportion-
ality 4 and 1 for the cancer and the O�ce-Caltech
datasets respectively), and fixing C = 10.

The average accuracies for each experiment are given
in Table 3. It shows that our method outperforms the
baselines in 6 of the settings. In the settings where our
method does not outperform the baselines, it is either
tied with at least one more of the baselines, or there
is no single baseline that significantly outperforms the
others. These results suggest that even when the co-
variate shift assumption is likely to be violated, our
method still reliably improves the accuracy. For all
source-target domain pairs, the most often selected di-
mensionality by our method was 10.

6 Conclusion and Discussions

This study aimed to tackle dimensionality reduction
for covariate shift correction, by taking into account
the target variable Y and the features that are rele-
vant for predicting it. We provided some theoretical
insights in terms of the role that high dimensionality
plays in poor generalization in the target domain. We
focused on a linear projection as the low-dimensional
representation of X. However, this might not sat-
isfy the conditional independence properties for some
datasets, and the importance weights derived from this
representation may not be as useful. This may have
contributed to the cases in our experiments when us-
ing all features performed better than using the W

projection to reduce the dimensionality. A potentially
fruitful future direction of research would be to develop
methodology which can identify nonlinear functions of
X that satisfy the necessary conditional independence
property and reduce the dimensionality e�ciently, as
this would broaden the applicability of this type of ap-
proach to more domains and datasets. Another line of
our future work is to extend the idea to hand other set-
tings for domain adaptation, such as target shift [31].
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