
Petar Stojanov, Mingming Gong, Jaime G. Carbonell, Kun Zhang

7 Appendix

In this appendix we provide proofs for some theoretical results:

7.1 Proofs of Theorem 1 and Proposition 1

1. Proof for Theorem 1

Proof: If the conditions in the theorem hold true, we can rewrite the expected loss as follows:
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⇤
2. We also present a proof for Proposition 1

Proof: For the case when Y is binary, we have: p(Y = 1 |X) = p(Y = 1 |X,h(X)) = h(X) = p(Y = 1 |h(X)),
and similarly p(Y = 0 |X) = p(Y = 0 |X,h(X)) = 1 � h(X) = p(Y = 0 |h(X)). For the case when Y is

continuous, it follows trivially because f(X) = E[Y |X], and Y ?? f(X)|f(X), which implies that Y ?? X|f(X)
due to the fact that X and ✏ are independent. ⇤

7.2 Proof of Theorem 2

We shall first introduce some relevant quantities:
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Before we proceed to the proof of Theorem 2, we present some lemmata that are required to analyze the
generalization in the target domain. We we also need a general variant of A3:

A3’: The features of X, given by X
1

, ..., X
D

are independent.

Both of them are proven assuming we have features X, in with D dimensions.

We first introduce a lemma which is a modification of the result by Gretton et al., in which we analyze the impact
of dimensionality on the variance of the empirical weighted risk in the source domain, under the assumptions
made in this study. Please note that we prove the lemmata assuming an input feature space of D, regardless if
it is an original feature space of observations or a result of a transformation.

Lemma 1 (Adapted from Corollary 1.9 in Gretton et al): Assume A1, A2 and A3’ hold. Then the following

bound on the reweighted risk in the source domain holds with probability at least 1� �:
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Proof: The proof will examine the constants R, B and provide an upper bound on ||�||2, which can then be used
to modify the bound in the corollary by Gretton et al. Assume for now that all the dimensions of X are inde-
pendent: p(x) =

Q
D

i=1

p(x(i)). This means that the weights on all the features �(x) = �(x(1))�(x(2))...�(x(D)).

Therefore, the squared norm of the weights is: ||�(x)||2
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Furthermore, from the assumptions on the feature transform � and its corresponding reproducing kernel k, we
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we can substitute R with Ud in the bound. By the same derivation, || (x,y)||  UD as well.

Finally, it can be easily seen that from the assumption of independence of the features, �(x
i
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Plugging the bound on ||�(x)||2
2

 QD, UD for R, and TD for B in the bound by Gretton et al. yields the result.
⇤
In addition to the variance of the empirical weighted risk in the source domain, another component that is
important for analysis of the generalization in the target domain is the estimation error of the weights obtained
by KMM, given by �̂. For this purpose, we analyze the role of the dimensionality on the estimation error as
studied by Theorem 4 in Cortes et al. [19]. We first restate the formal definition of admissibility given by Cortes
et al. [19]

Definition 1:[19]Let H be a hypothesis set. The loss l is �-admissible if there exists � 2 R
+
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We now present Theorem 4 proved by Cortes et al [19], before we analyze it in terms of the dimensionality of
the dataset:

Theorem 4[19] Let k be a strictly positive definite symmetric universal kernel suck that k(x, x)   < 1. Let
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loss on a hypothesis function h
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Now we can make use of this estimation error result and analyze it in terms of dimensinality in the following
lemma :

Lemma 2: Let the �-admissibility assumption hold on the loss function l(·, ·, ✓), and let assumptions A1, A2
and A3 hold. Let k be a kernel function that satisfies A2, and such that ||�(X
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Proof: Since k satisfies A1, from the positive-semidefinite property of the kernel gram matrix, the following
holds:
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Thus, we can insert �̃d for �
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(K) in the bound by Cortes et al [19] to obtain the result. Similarly, we can
insert T d for B with the same argument used in the proof of Lemma 1. ⇤
Now that we have the bounds on the variance of the empirical risk in the source domain and the estimation error
of �, we can combine them to prove Theorem 2 which we presented in the main text, and we restate here:
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Proof: By expanding the risk in the target domain and using triangle inequality, we have:

|Rte(l
ˆ

�

W

)�Rte(l⇤)|
=|Rte(l

ˆ

�

W

)�Rte(l
�

W

) +Rte(l
�

W

)�Rtr

�

W

(l
�

W

) +Rtr

�

W

(l
�

W

)�Rtr

�

W

(l⇤
�

W

) +Rtr

�

W

(l⇤
�

W

)�Rte(l⇤
W

) +Rte(l⇤
W

)�Rte(l⇤)|
|Rte(l

ˆ

�

W

)�Rte(l
�

W

)|+ |Rte(l
�

W

)�Rtr

�

W

(l
�

W

)|+ |Rtr

�

W

(l
�

W

)�Rtr

�

W

(l⇤
�

W

)|+ |Rtr

�

W

(l⇤
�

W

)�Rte(l⇤
W

)|+ |Rte(l⇤
W

)�Rte(l⇤)|
|Rte(l

ˆ

�

W

)�Rte(l
�

W

)|+ 2 sup
l2G

|R̂tr

�

W

(l)�Rtr

�

W

(l)|+ 2 sup
l2G

|Rtr

�

W

(l)�Rte(l)|+ |Rte(l⇤
W

)�Rte(l⇤)|

|Rte(l⇤
W

)�Rte(l⇤)|+ |Rte(l
ˆ

�

W

)�Rte(l
�

W

)|+ 2 sup
l2G

|R̂tr

�

W

(l)�Rte(l)| (9)

Substituting the bound of Lemma 1 for the second term in the RHS, and the bound of Lemma 2 in the first
term of the RHS yields the final result. ⇤
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8 Covariance Operators

In the main text we discussed estimating the trace of the conditional covariance operator. It can be empirically
estimated as (using notation as defined in the main text):

Tr[Û
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]

= Tr[Û
Y Y
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where ✏ is a small number to prevent ill conditioning of the matrix, and fixed to 0.01.
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9 Additional Tables

Table for pseudo-real dataset which includes the standard errors:



Low-Dimensional Density Ratio Estimation for Covariate Shift Correction
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Table 4: NMSE results on the baselines and the proposed method, on the pseudo-synthetic datasets. The
methods with the su�x ”-all” use all the features to calculate importance weights. The ”-PCA” su�x means
that PCA was used to represent the data in lower dimensions before estimating the weights �̂; the su�x ”-W”
means that the proposed low-dimensional representation given by W

T

X.
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