Supplementary Material
Distributed Nonparametric Regression under Communication Constraints

A. Proof of lemmas
A.1. Proof of Lemma 3.1
. Write

O, c) = {9 : ZiQaef <%0, =0fori >0+ 1} C O(a, ).
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i=1,...,4,and P(6; = 0)
observe that

For 7 € (0,1), write s2 = (1 — 7)o, and denote by 7, (f) the prior distribution on # such that 6; ~ N(0, s?) for
= 1fori > ¢+ 1. For an estimator 6 and its corresponding communication protocol, we
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where I is the integrated risk of the estimator
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and 7 is the residual

= |16~ olan.(6)
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where O(a, ¢) = (R ® {0}*°)\O¢(a, ¢). Aslim, o I = [g Eo[||6 — 6]|2)dx(6), it suffices to show that r, = o(I,) as
¢ — oo for 7 € (0,1). Let By = supgee, (a,c) 10|, which is bounded since for any 6 € ©(a, ¢)
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where we have used the Cauchy-Schwarz inequality. Noticing that
p 2
= (o] -2 | (0t
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we obtain

r. < 282 (IP’ (0 ¢ Ou(a,c)) + /3P (0 & eg(a,c))) < 6B2\/3P (0 ¢ Ou(a, ).

Thus, we only need to show that /P (8 ¢ ©4(a,c)) = o(I,). In fact,
P (6 ¢ O¢(a,¢)) (Zz2a92>c>
¢
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where Z; ~ N(0,1). By Lemma A.1, we get
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By the assumption that M = O(f), and that [ Eg[Ha— 012]dm(0) = O(¢°), we conclude that r, = o(I,) as

maxi<i<g 1°%07
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Lemma A.1 (Lemma 3.5 in (Tsybakov, 2008)). Suppose that Z, ..., Z, ~ N(0, 1) independently. Fort € (0,1) and
w; >0,7=1,...,n, we have

P (iwi(zf —1) > tii:%) < exp (_t221w) .

8maxi<i<n Wi

A.2. Proof of Lemma 3.2

. Recall that we have 6; ~ N(0,0?) and X;;|0; ~ N(0;,?) fori = 1,...,¢, and j = 1,...,m. For convenience,
wr1te 0=(61,...,0,), X; = (X15,...,X¢j) and X = (Xq,..., X;). Suppose that we have a set of encoding functions
I : RY — {1,... 7]\/[j} for j = 1,...,m satisfying that ZTZI log M; < mb. Let W; = II;(X;) be the message
generated from the jth machine, and write W = (W7,..., W,,). Furthermore, we write d; = E(6; — E(6;|W))? and
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d;; = E(X;;|0, W,;)?. We then have

> log M; > H(W)

Jj=1

1(6, X; W)

=1(0: W)+ I(X;:W;]0)
j=1

= h(0) — h(O|W) + > (h(X;]0) — h(X;]0, W))
j=1
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In order to obtain the relationship between d;’s and d;;’s, we consider the random vector Y = E(6|X), i.e., Y; = E(6;|X)

1 m
2

m

= Z:

fori =1,...,n. Infact, Y; takes the form
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We first calculate the optimal mean squared error of estimating Y; based on # and W

E[(Y; - E(Y;]0,W))?] = <1+m> E || (Xi; - ElXi;10, W) = <1m> > di
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where we have used the equality that
E[(Xs; — E[Xq510, W;]) (X

E[X;10, Wji])]
E[X;; |0, W ]] =0

for j # 7.
We then calculate the mean squared error of best linear estimator of Y; using 6; and T; = E(6;|W). In particular, we search

for 51 and 3> such that
E [(V; — 10; — BoT5)?]

is minimized. Towards that end, we calculate
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where we write 03 W to ease our notation. In addition, we have
2
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E 0. Xij| =0l — 0.
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E [07] = o7 and E[Y;0;] =
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Furthermore, we notice that since T; = E [6;|W],
E[Ti(0: — T0)] = E[E[Ti(6; — T)| W] = E[T] E[T; - T;] = 0,
and hence
di = E[(0; = T,)*] =E[0:(0: = T;) = Ti(0; —= T))] = E[0:(0; — T,)] = E [07] — E[0: T3],

from which we obtain

Finally, we have
EYiTy] = E[(6; + (Y; — 0,)T;] = E[0,T;] + E[Y; — ;] E[T}] = E[0,T;] = 07 — d;

where the equality follows from the fact that 6; and 6; — Y; are independent. To sum up, the covariance matrix of (Y, 6;, T;)
is
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Getting back to 51 and (32, they should satisfy
E[0:(Y: — 810; — B2T3)] = 0, E[Ti(Yi — 10; — B2T7:)] = 0.

Solving the equations, we get

B d; — 03 _ 0(2)

51 - Tﬂ BQ - Ea
and .
2 2 0Op
E[(Y; — B16; — B2T3)°] = 05 — 7

Since conditional means minimize mean squared errors, we have

E [(Yi — E(Y:|6,W))*] <E [(Yi — B16; — 52T3)%]
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and therefore,

which gives
- 1 m 1
4
2= (+5-2):

Now we plug this into (A.1), and obtain by applying Jensen’s inequality that

which completes the proof. O



