Supplementary Material Distributed Nonparametric Regression under Communication Constraints

A. Proof of lemmas

A.1. Proof of Lemma 3.1

. Write

$$\Theta_{\ell}(\alpha,c) = \left\{\theta : \sum_{i=1}^{\ell} i^{2\alpha} \theta_i^2 \le c^2, \theta_i = 0 \text{ for } i \ge \ell + 1\right\} \subset \Theta(\alpha,c).$$

For $\tau \in (0,1)$, write $s_i^2 = (1-\tau)\sigma_i^2$, and denote by $\pi_{\tau}(\theta)$ the prior distribution on θ such that $\theta_i \sim N(0,s_i^2)$ for $i=1,\ldots,\ell$, and $\mathbb{P}(\theta_i=0)=1$ for $i\geq \ell+1$. For an estimator $\widehat{\theta}$ and its corresponding communication protocol, we observe that

$$\sup_{\theta \in \Theta(\alpha, c)} \|\widehat{\theta} - \theta\|^2 \ge \sup_{\theta \in \Theta_{\ell}(\alpha, c)} \|\widehat{\theta} - \theta\|^2$$

$$\ge \int_{\Theta_{\ell}(\alpha, c)} \|\widehat{\theta} - \theta\|^2 d\pi_{\tau}(\theta)$$

$$\ge I_{\tau} - r_{\tau}$$

where I_{τ} is the integrated risk of the estimator

$$I_{\tau} = \int_{\mathbb{R}^{\ell} \otimes \{0\}^{\infty}} \|\widehat{\theta} - \theta\|^{2} d\pi_{\tau}(\theta)$$

and r_{τ} is the residual

$$r_{\tau} = \int_{\overline{\Theta(\alpha,c)}} \|\widehat{\theta} - \theta\|^2 d\pi_{\tau}(\theta)$$

where $\overline{\Theta(\alpha,c)} = (\mathbb{R}^{\ell} \otimes \{0\}^{\infty}) \backslash \Theta_{\ell}(\alpha,c)$. As $\lim_{\tau \to 0} I_{\tau} = \int_{\Theta} \mathbb{E}_{\theta}[\|\widehat{\theta} - \theta\|^{2}] d\pi(\theta)$, it suffices to show that $r_{\tau} = o(I_{\tau})$ as $\ell \to \infty$ for $\tau \in (0,1)$. Let $B_{\ell} = \sup_{\theta \in \Theta_{\ell}(\alpha,c)} \|\theta\|$, which is bounded since for any $\theta \in \Theta_{\ell}(\alpha,c)$

$$\|\theta\| = \sqrt{\sum_{i=1}^{\ell} \theta_i^2} = \sqrt{\sum_{i=1}^{\ell} i^{2\alpha} \theta_i^2} \le \sqrt{c^2} = c.$$

We have

$$r_{\tau} = \int_{\overline{\Theta_{\ell}(\alpha,c)}} \mathbb{E}_{\theta} \left[\|\widehat{\theta} - \theta\|^{2} \right] d\pi_{\tau}(\theta)$$

$$\leq 2 \int_{\overline{\Theta_{\ell}(\alpha,c)}} \left(B_{\ell}^{2} + \|\theta\|^{2} \right) d\pi_{\tau}(\theta)$$

$$\leq 2 \left(B_{\ell}^{2} \mathbb{P} \left(\theta \notin \Theta_{\ell}(\alpha,c) \right) + \left(\mathbb{P} \left(\theta \notin \Theta_{\ell}(\alpha,c) \right) \mathbb{E} \left[\|\theta\|^{4} \right] \right) \right)$$

$$10$$

where we have used the Cauchy-Schwarz inequality. Noticing that

$$\mathbb{E} \left[\|\theta\|^4 \right] = \mathbb{E} \left[\left(\sum_{i=1}^{\ell} \theta_i^2 \right)^2 \right]$$

$$= \sum_{i_1 \neq i_2} \mathbb{E} \left[\theta_{i_1}^2 \right] \mathbb{E} \left[\theta_{i_2}^2 \right] + \sum_{i=1}^{\ell} \mathbb{E} \left[\theta_i^4 \right]$$

$$\leq \sum_{i_1 \neq i_2} s_{i_1}^2 s_{i_2}^2 + 3 \sum_{i=1}^{\ell} s_i^4$$

$$\leq 3 \left(\sum_{i=1}^{\ell} s_i^2 \right)^2 \leq 3 B_{\ell}^4,$$

we obtain

$$r_{\tau} \leq 2B_{\ell}^2 \left(\mathbb{P} \left(\theta \notin \Theta_{\ell}(\alpha, c) \right) + \sqrt{3 \mathbb{P} \left(\theta \notin \Theta_{\ell}(\alpha, c) \right)} \right) \leq 6B_{\ell}^2 \sqrt{3 \mathbb{P} \left(\theta \notin \Theta_{\ell}(\alpha, c) \right)}.$$

Thus, we only need to show that $\sqrt{\mathbb{P}\left(\theta\notin\Theta_{\ell}(\alpha,c)\right)}=o(I_{\tau})$. In fact,

$$\begin{split} \mathbb{P}\left(\theta \notin \Theta_{\ell}(\alpha,c)\right) &= \mathbb{P}\left(\sum_{i=1}^{\ell} i^{2\alpha}\theta_{i}^{2} > c^{2}\right) \\ &= \mathbb{P}\left(\sum_{i=1}^{\ell} i^{2\alpha}(\theta_{i}^{2} - \mathbb{E}[\theta_{i}^{2}]) > c^{2} - (1-\tau)\sum_{i=1}^{\ell} i^{2\alpha}\sigma_{i}^{2}\right) \\ &= \mathbb{P}\left(\sum_{i=1}^{\ell} i^{2\alpha}(\theta_{i}^{2} - \mathbb{E}[\theta_{i}^{2}]) > \tau c^{2}\right) \\ &= \mathbb{P}\left(\sum_{i=1}^{\ell} i^{2\alpha}s_{i}^{2}(Z_{i}^{2} - 1) > \frac{\tau}{1-\tau}\sum_{i=1}^{\ell} i^{2\alpha}s_{i}^{2}\right) \end{split}$$

where $Z_i \sim N(0,1)$. By Lemma A.1, we get

$$\mathbb{P}(\theta\notin\Theta_{\ell}(m,c))\leq \exp\left(-\frac{\tau^2}{8(1-\tau)^2}\frac{\sum_{i=1}^{\ell}i^{2\alpha}s_i^2}{\max_{1\leq i\leq\ell}i^{2\alpha}s_i^2}\right)=\exp\left(-\frac{\tau^2}{8(1-\tau)^2}\frac{\sum_{i=1}^{\ell}i^{2\alpha}\sigma_i^2}{\max_{1\leq i\leq\ell}i^{2\alpha}\sigma_i^2}\right).$$

By the assumption that $\frac{\sum_{i=1}^{\ell}i^{2\alpha}\sigma_i^2}{\max_{1\leq i\leq \ell}i^{2\alpha}\sigma_i^2}=O(\ell)$, and that $\int_{\Theta}\mathbb{E}_{\theta}[\|\widehat{\theta}-\theta\|^2]\mathrm{d}\pi(\theta)=O(\ell^{\delta})$, we conclude that $r_{\tau}=o(I_{\tau})$ as $\ell\to\infty$.

Lemma A.1 (Lemma 3.5 in (Tsybakov, 2008)). Suppose that $Z_1, \ldots, Z_n \sim N(0,1)$ independently. For $t \in (0,1)$ and $\omega_i > 0$, $i = 1, \ldots, n$, we have

$$\mathbb{P}\left(\sum_{i=1}^{n} \omega_i(Z_i^2 - 1) > t \sum_{i=1}^{n} \omega_i\right) \le \exp\left(-\frac{t^2 \sum_{i=1}^{n} \omega_i}{8 \max_{1 \le i \le n} \omega_i}\right).$$

A.2. Proof of Lemma 3.2

. Recall that we have $\theta_i \sim N(0,\sigma_i^2)$ and $X_{ij}|\theta_i \sim N(\theta_i,\varepsilon^2)$ for $i=1,\ldots,\ell$, and $j=1,\ldots,m$. For convenience, write $\theta=(\theta_1,\ldots,\theta_n)$, $X_j=(X_{1j},\ldots,X_{\ell j})$ and $X=(X_1,\ldots,X_j)$. Suppose that we have a set of encoding functions $\Pi_j:\mathbb{R}^\ell \to \{1,\ldots,M_j\}$ for $j=1,\ldots,m$ satisfying that $\sum_{j=1}^m \log M_j \leq mb$. Let $W_j=\Pi_j(X_j)$ be the message generated from the jth machine, and write $W=(W_1,\ldots,W_m)$. Furthermore, we write $d_i=\mathbb{E}(\theta_i-\mathbb{E}(\theta_i|W))^2$ and

 $d_{ij} = \mathbb{E}(X_{ij}|\theta, W_j)^2$. We then have

$$\sum_{j=1}^{m} \log M_{j} \ge H(W)
\ge I(\theta, X; W)
= I(\theta; W) + \sum_{j=1}^{m} I(X_{j}; W_{j} | \theta)
= h(\theta) - h(\theta | W) + \sum_{j=1}^{m} (h(X_{j} | \theta) - h(X_{j} | \theta, W))
= \sum_{i=1}^{\ell} h(\theta_{i}) - \sum_{i=1}^{\ell} h(\theta_{i} | \theta_{1:(i-1)}, W) + \sum_{j=1}^{m} \left(\sum_{i=1}^{\ell} h(X_{ij} | \theta) - \sum_{i=1}^{\ell} h(X_{ij} | X_{1:(i-1),j}, \theta, W_{j}) \right)
\ge \sum_{i=1}^{\ell} h(\theta_{i}) - \sum_{i=1}^{\ell} h(\theta_{i} | W) + \sum_{j=1}^{m} \left(\sum_{i=1}^{\ell} h(X_{ij} | \theta) - \sum_{i=1}^{\ell} h(X_{ij} | \theta, W_{j}) \right)
\ge \sum_{i=1}^{\ell} \left(\frac{1}{2} \log \frac{\sigma_{i}^{2}}{d_{i}} + \sum_{j=1}^{m} \frac{1}{2} \log \frac{\varepsilon^{2}}{d_{ij}} \right).$$
(A.1)

In order to obtain the relationship between d_i 's and d_{ij} 's, we consider the random vector $Y = \mathbb{E}(\theta|X)$, i.e., $Y_i = \mathbb{E}(\theta_i|X)$ for i = 1, ..., n. In fact, Y_i takes the form

$$Y_i = \frac{\frac{1}{\varepsilon^2}}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}} \sum_{j=1}^m X_{ij}.$$

We first calculate the optimal mean squared error of estimating Y_i based on θ and W

$$\mathbb{E}\left[(Y_i - \mathbb{E}(Y_i|\theta,W))^2\right] = \left(\frac{\frac{1}{\varepsilon^2}}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}}\right)^2 \mathbb{E}\left[\left(\sum_{j=1}^m \left(X_{ij} - \mathbb{E}[X_{ij}|\theta,W_j]\right)\right)^2\right] = \left(\frac{\frac{1}{\varepsilon^2}}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}}\right)^2 \sum_{j=1}^m d_{ij}$$

where we have used the equality that

$$\mathbb{E}\left[(X_{ij} - \mathbb{E}[X_{ij}|\theta, W_j])(X_{ij'} - \mathbb{E}[X_{ij'}|\theta, W_{j'}])\right]$$

$$= \mathbb{E}\left[X_{ij} - \mathbb{E}[X_{ij}|\theta, X_{ij'}, W_j, W_{j'}]\right] \mathbb{E}\left[X_{ij'} - \mathbb{E}[X_{ij'}|\theta, W_{j'}]\right] = 0$$

for $j \neq j'$.

We then calculate the mean squared error of best linear estimator of Y_i using θ_i and $T_i = \mathbb{E}(\theta_i|W)$. In particular, we search for β_1 and β_2 such that

$$\mathbb{E}\left[\left(Y_i - \beta_1 \theta_i - \beta_2 T_i\right)^2\right]$$

is minimized. Towards that end, we calculate

$$\mathbb{E}\left[Y_i^2\right] = \left(\frac{\frac{1}{\varepsilon^2}}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}}\right)^2 \mathbb{E}\left[\left(\sum_{j=1}^m X_{ij}\right)^2\right] = \left(\frac{\frac{1}{\varepsilon^2}}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}}\right)^2 \left(m^2 \varepsilon^2 + m\sigma_i^2\right) = \frac{\frac{m}{\varepsilon^2}}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}}\sigma_i^2 = \sigma_i^2 - \sigma_0^2$$

where we write $\sigma_0^2=\frac{1}{\frac{1}{\sigma^2}+\frac{m}{\varepsilon^2}}$ to ease our notation. In addition, we have

$$\mathbb{E}\left[\theta_i^2\right] = \sigma_i^2 \text{ and } \mathbb{E}\left[Y_i\theta_i\right] = \frac{\frac{1}{\varepsilon^2}}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}} \mathbb{E}\left[\sum_{j=1}^m \theta_i X_{ij}\right] = \sigma_i^2 - \sigma_0^2.$$

Furthermore, we notice that since $T_i = \mathbb{E} [\theta_i | W]$,

$$\mathbb{E}\left[T_i(\theta_i - T_i)\right] = \mathbb{E}\left[\mathbb{E}\left[T_i(\theta_i - T_i)\right]|W|\right] = \mathbb{E}\left[T_i\right]\mathbb{E}\left[T_i - T_i\right] = 0$$

and hence

$$d_i = \mathbb{E}\left[(\theta_i - T_i)^2\right] = \mathbb{E}\left[\theta_i(\theta_i - T_i) - T_i(\theta_i - T_i)\right] = \mathbb{E}\left[\theta_i(\theta_i - T_i)\right] = \mathbb{E}\left[\theta_i^2\right] - \mathbb{E}\left[\theta_i T_i\right],$$

from which we obtain

$$\mathbb{E}\left[T_i^2\right] = \mathbb{E}\left[\theta_i T_i\right] = \sigma_i^2 - d_i.$$

Finally, we have

$$\mathbb{E}\left[Y_i T_i\right] = \mathbb{E}\left[\left(\theta_i + (Y_i - \theta_i)\right) T_i\right] = \mathbb{E}\left[\theta_i T_i\right] + \mathbb{E}\left[Y_i - \theta_i\right] \mathbb{E}\left[T_i\right] = \mathbb{E}\left[\theta_i T_i\right] = \sigma_i^2 - d_i$$

where the equality follows from the fact that θ_i and $\theta_i - Y_i$ are independent. To sum up, the covariance matrix of (Y_i, θ_i, T_i) is

$$\begin{pmatrix} \sigma_i^2 - \sigma_0^2 & \sigma_i^2 - \sigma_0^2 & \sigma_i^2 - d_i \\ \sigma_i^2 - \sigma_0^2 & \sigma_i^2 & \sigma_i^2 - d_i \\ \sigma_i^2 - d_i & \sigma_i^2 - d_i & \sigma_i^2 - d_i \end{pmatrix}.$$

Getting back to β_1 and β_2 , they should satisfy

$$\mathbb{E}\left[\theta_i(Y_i - \beta_1\theta_i - \beta_2T_i)\right] = 0, \quad \mathbb{E}\left[T_i(Y_i - \beta_1\theta_i - \beta_2T_i)\right] = 0.$$

Solving the equations, we get

$$\beta_1 = \frac{d_i - \sigma_0^2}{d_i}, \quad \beta_2 = \frac{\sigma_0^2}{d_i},$$

and

$$\mathbb{E}\left[(Y_i - \beta_1 \theta_i - \beta_2 T_i)^2\right] = \sigma_0^2 - \frac{\sigma_0^4}{d_i}.$$

Since conditional means minimize mean squared errors, we have

$$\mathbb{E}\left[\left(Y_i - \mathbb{E}(Y_i | \theta, W)\right)^2\right] \le \mathbb{E}\left[\left(Y_i - \beta_1 \theta_i - \beta_2 T_i\right)^2\right]$$

and therefore,

$$\left(\frac{\frac{1}{\varepsilon^2}}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}}\right)^2 \sum_{j=1}^m d_{ij} \le \frac{1}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}} - \left(\frac{1}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2}}\right)^2 \frac{1}{d_i},$$

which gives

$$\sum_{i=1}^{m} d_{ij} \le \varepsilon^4 \left(\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2} - \frac{1}{d_i} \right).$$

Now we plug this into (A.1), and obtain by applying Jensen's inequality that

$$\begin{split} mb &\geq \sum_{i=1}^{\ell} \left(\frac{1}{2} \log \frac{\sigma_i^2}{d_i} + \sum_{j=1}^{m} \frac{1}{2} \log \frac{\varepsilon^2}{d_{ij}} \right) \\ &\geq \sum_{i=1}^{\ell} \left(\frac{1}{2} \log \frac{\sigma_i^2}{d_i} + \frac{m}{2} \log \frac{\varepsilon^2}{\frac{1}{m} \sum_{j=1}^{m} d_{ij}} \right) \\ &\geq \sum_{i=1}^{\ell} \left(\frac{1}{2} \log \frac{\sigma_i^2}{d_i} + \frac{m}{2} \log \frac{\frac{m}{\varepsilon^2}}{\frac{1}{\sigma_i^2} + \frac{m}{\varepsilon^2} - \frac{1}{d_i}} \right), \end{split}$$

which completes the proof.