Supplementary Material

Bo Zhao^{† 1} Xinwei Sun^{† 2} Yanwei Fu^{‡ 3 4} Yuan Yao^{‡ 5} Yizhou Wang ¹

Here we discuss more accurate estimation given by MSplit LBI compared with L_1 and L_2 regularization fail in the linear model with general design matrix X, i.e.

$$y = X\beta^* + \varepsilon, \ \mathbf{S} = \{i : \beta_i^* \gtrsim \sqrt{\frac{s\log p}{n}}\}$$
 (1)

We first discuss the bias estimation of L_1 and L_2 model in Lemma 1 and 2.

Lemma 1. Suppose the lasso estimator

$$\beta^{lasso} = \arg\min_{\beta} \frac{1}{2N} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$
 (2)

Suppose the model selection consistency holds at λ_n , i.e. $S_{\lambda_n} = S$, then we have

$$\mathbb{E}(\beta_{\mathbf{S}}^{lasso}) = \beta_{\mathbf{S}}^{\star} + \lambda_n (X_{\mathbf{S}}^{\star} X_{\mathbf{S}})^{-1} \rho_{\mathbf{S}}(\lambda_n)$$
 (3)

where $\rho(\lambda_n) \in \partial \|\beta^{lasso}(\lambda_n)\|_1$.

Proof. Take derivative of (3) w.r.t β and set it to 0, and combined with the fact that $\beta_{S^c} = 0$, we have

$$\lambda_n \rho_{\mathbf{S}}(\lambda_n) = -X_{\mathbf{S}}^{\star}(y - X\beta^{lasso}(\lambda_n))$$
$$= -X_{\mathbf{S}}^{\star} \left(X_{\mathbf{S}}\beta_{\mathbf{S}}^{\star} + \varepsilon - X_{\mathbf{S}}\beta_{\mathbf{S}}^{lasso}(\lambda_n)\right)$$

Hence,

$$X_{\mathbf{S}}^{\star}X_{\mathbf{S}}\beta_{\mathbf{S}}(\lambda_n) - \beta_{\mathbf{S}}^{\star}) = X_{\mathbf{S}}^{\star}\varepsilon + \lambda_n \rho_{\mathbf{S}}(\lambda_n)$$

Then

$$\beta_{\mathbf{S}}(\lambda_n) = \beta_{\mathbf{S}}^{\star} + (X_{\mathbf{S}}^{\star} X_{\mathbf{S}})^{-1} (X_{\mathbf{S}}^{\star} \varepsilon + \rho_{\mathbf{S}}(\lambda_n))$$

(3) holds after we take expectation on
$$\beta_{\mathbf{S}}(\lambda_n)$$
.

‡Correspondence to: Yanwei Fu <yanweifu@fudan.edu.cn>, Yuan Yao <yuany@ust.hk>.

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

Lemma 2. Denote

$$A = X_{\mathbf{S}}^{\star} X_{\mathbf{S}} + \lambda I_{\mathbf{S},\mathbf{S}}$$
$$B = X_{\mathbf{S}}^{\star} X_{\mathbf{S}^{c}}$$
$$C = X_{\mathbf{S}^{c}}^{\star} X_{\mathbf{S}^{c}} + \lambda I_{\mathbf{S}^{c},\mathbf{S}^{c}}$$

then the Ridge Regression estimator

$$\beta^{ridge} = \arg\min_{\beta} \frac{1}{2N} \|y - X\beta\|_2^2 + \lambda \|\beta\|_2^2 \qquad (4)$$

have that

$$\mathbb{E}(\beta_{\mathbf{S}}^{ridge}) = \beta_{\mathbf{S}}^{\star} + \lambda \left[A^{-1}B(C - B^{T}A^{-1}B)^{-1} \right] \beta_{\mathbf{S}^{c}}^{\star} - \lambda \left[A^{-1} + A^{-1}B(C - BA^{-1}B^{T})^{-1}B^{T}A^{-1} \right] \beta_{\mathbf{S}}^{\star}$$
(5)

$$\mathbb{E}(\beta_{\mathbf{S}^{c}}^{ridge}) = \beta_{\mathbf{S}^{c}}^{\star} + \lambda (C - B^{T} A^{-1} B)^{-1} B^{T} A^{-1} \beta_{\mathbf{S}}^{\star}$$

$$- \lambda (C - B^{T} A^{-1} B)^{-1} \beta_{\mathbf{S}^{c}}^{\star}$$
(6)

Proof. It's easy to verify after taking the derivative of $\frac{1}{2N} ||y - X\beta||_2^2 + \lambda ||\beta||_2^2$ and set it to 0.

Remark 1. For the uniqueness of β^* , we assume the restricted convex condition, i.e. that $X_{\mathbf{S}}^*X_{\mathbf{S}} \succcurlyeq \lambda_{\mathbf{S}}$, hence the $\lambda \left[A^{-1} + A^{-1}B(C - BA^{-1}B^T)^{-1}B^TA^{-1}\right]\beta_{\mathbf{S}}^*$ in 5 introduced in the estimation of $\beta_{\mathbf{S}}^*$ can not be ignored.

Next, we discuss the estimation property of dense estimator of MSplit LBI. We will show that as $\nu \to \infty$, not only it can give no-bias estimation for strong signals, but also for weak signals.

It's shown in (Huang et al., 2016) that when $\kappa \to \infty$, $\alpha \to 0$, the Split LBI algorithm converges to

$$0 = -\nabla_{\beta} X^{\star} (X\beta_t - y) - \frac{D^T (D\beta_t - \gamma_t)}{\nu}$$
 (7a)

$$\rho_t = -\frac{D^T(\gamma_t - D)}{V} \tag{7b}$$

$$\rho_t \in \partial \|\gamma_t\|_1,\tag{7c}$$

Then it can be shown in the following lemma that the MSplit LBI can give more accurate estimation:

[†]Equal contribution

¹Nat'l Eng. Lab. for Video Technology; Key Lab. of Machine Perception (MoE); Cooperative Medianet Innovation Center, Shanghai; Sch'l of EECS, Peking University. Deepwise Inc.

²Sch'l of Mathematical Science, Peking University. Deepwise Inc. ³Sch'l of Data Science, Fudan University. ⁴AlTrics Inc.

⁵Hong Kong University of Science and Technology; Peking University.

Lemma 3. Denote

$$G = \left(I - X_{\mathbf{S}}(X_{\mathbf{S}}^{\star}X_{\mathbf{S}})^{-1}X_{\mathbf{S}}^{\star}\right)X_{\mathbf{S}^{c}}$$

Then under linear model, If there exists \bar{t} in 7 satisfies that $\widetilde{S}_t = S$, we have

$$\mathbb{E}(\beta_{\mathbf{S},\bar{t}}) = \beta_{\mathbf{S}}^{\star} + (X_{\mathbf{S}}^{\star} X_{\mathbf{S}})^{-1} X_{\mathbf{S}}^{\star} X_{\mathbf{S}^c} \left[I + \nu X_{\mathbf{S}^c}^{\star} G \right]^{-1} \beta_{\mathbf{S}^c}^{\star}$$
(8)

$$\mathbb{E}(\beta_{\mathbf{S}^c,\bar{t}}) = \beta_{\mathbf{S}^c}^{\star} - [I + \nu X_{\mathbf{S}^c}^{\star} G]^{-1} \beta_{\mathbf{S}^c}^{\star}$$
(9)

Furthermore, we have that

$$\lim_{\nu \to \infty} \|\mathbb{E}(\beta_{\mathbf{S},\bar{t}}) - \beta_{\mathbf{S}}^{\star}\|_{2}^{2} = 0$$
 (10)

$$\lim_{\nu \to \infty} \| \mathbb{E}(\beta_{\mathbf{S}^c, \bar{t}}) - \beta_{\mathbf{S}^c}^{\star} \|_2^2 = 0 \tag{11}$$

Proof. It's easy to obtain (8) and (9). To prove 10 and 11, note that

$$G\beta_{\mathbf{S}^c}^{\star} = X_{\mathbf{S}^c}\beta_{\mathbf{S}^c}^{\star} - P_{X_{\mathbf{S}}}X_{\mathbf{S}^c}\beta_{\mathbf{S}^c}^{\star}$$

Then we have

$$G\beta_{\mathbf{S}^c}^{\star} = 0 \iff \min_{z} \|X_{\mathbf{S}^c}\beta_{\mathbf{S}^c}^{\star} - X_{\mathbf{S}}z\|_2^2 = 0$$
$$\iff \exists z, \text{ s.t. } X_{\mathbf{S}}z = X_{\mathbf{S}^c}\beta_{\mathbf{S}^c}^{\star}$$

Therefore, for the identifiable of $\beta_{S^c}^{\star}$, we have that $G\beta_{S^c}^{\star} \neq 0$, i.e. $\|G\beta_{S^c}^{\star}\|_2^2 \neq 0$, hence $\beta_{S^c}^{\star} \in \operatorname{Im}(G^TG)$. Denote the eigenvalue-decomposition of G as $G = U\Lambda U^T$ and $\lambda_G := \Lambda_{\min}(G^TG)$, then we have

$$[I + \nu X_{\mathbf{S}^c}^{\star} G]^{-1} \beta_{\mathbf{S}^c}^{\star} = (I + \nu G^T G)^{-1} \beta_{\mathbf{S}^c}^{\star}$$
$$= U(I + \nu \Lambda)^{-1} U^T \beta_{\mathbf{S}^c}^{\star} \qquad (12)$$

Hence we have

$$||U(I + \nu\Lambda)^{-1}U^T \beta_{S^c}^{\star}||_2 \le \frac{1}{1 + \nu\lambda_G} ||\beta_{S^c}^{\star}||_2$$

If we denote

$$A = X_{\mathbf{S}}^{\star} X_{\mathbf{S}}, \ B = X_{\mathbf{S}}^{\star} X_{\mathbf{S}^c}$$
$$\Lambda_X := \sqrt{\Lambda_{\max}(X^{\star} X)},$$

then we have

$$\begin{aligned} & \left\| A^{-1} B \left(I + \nu G^T G \right)^{-1} \beta_{\mathbf{S}^c}^{\star} \right\|_{2} \\ \leq & \| A^{-1} \|_{2} \| B \|_{2} \frac{1}{1 + \nu \lambda_{G}} \| \beta_{\mathbf{S}^c}^{\star} \|_{2} \\ \leq & \frac{\Lambda_{X}^{2}}{\lambda_{\mathbf{S}} (1 + \nu \lambda_{G})} \| \beta_{\mathbf{S}^c}^{\star} \|_{2} \end{aligned}$$

Then 10 and 11 hold.

References

Chendi Huang, Xinwei Sun, Jiechao Xiong, and Yuan Yao. Split lbi: An iterative regularization path with structural sparsity. advances in neural information processing systems. *Advances In Neural Information Processing Systems*, pages 3369–3377, 2016. (document)