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Here we discuss more accurate estimation given by MSplit
LBI compared with L; and Lo regularization fail in the
linear model with general design matrix X, i.e.

s slo
y=XG e S={i: g2 /=20 )

We first discuss the bias estimation of | and Lo model in
Lemma 1 and 2.

Lemma 1. Suppose the lasso estimator
1
lasso : 2
glesse —argmin 5 lly ~ XGI3 + NSl @)

Suppose the model selection consistency holds at A, i.e.
Sy, = S, then we have

E(85°°) = B5 + M(X5Xs)~
where p(\,,) € 0|51%55°(\)]|1-

Yos(n) (3

Proof. Take derivative of (3) w.r.t 5 and set it to 0, and
combined with the fact that g = 0, we have

Anps(An) = —X5(y — XB1**°(\n))
= —X5 (XsBs +e— XsBE°(\n))

Hence,
X5XsBs(Mn) — Bs) = Xge + Anps(An)
Then
Bs(An) = B + (X5Xs) ™! (Xge + ps(An)

(3) holds after we take expectation on Sg(Ap,). O
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Lemma 2. Denote

A= Xng + Ms s
B=X5Xge
C = ngcXSc + )\ISC’SC

then the Ridge Regression estimator
, 1
ridge _ in—|ly— X824+ |82 4
gritse —axgmin o _lly - XA+ MBIE @)

have that

E(85%) = 85 + A [A™'B(C — BTA™'B)™"] B5.
—A[A'+AT'B(C-BA'B")"'BTAT] BY
&)

E(Bg9) = Bg. + MC — BTA™'B) ' BT A7 8}

6
—~MC - BTA™'B)™ 5. ©

Proof. 1t’s easy to verify after taking the derivative of
S lly — X812 + AllB|3 and set it to 0. O

Remark 1. For the uniqueness of 5*, we assume the re-
stricted convex condition, i.e. that XgXg = \g, hence
the \ [A’l +A71B(C - BA’lBT)’lBTA’l] Bs in 5
introduced in the estimation of % can not be ignored.

Next, we discuss the estimation property of dense estimator
of MSplit LBI. We will show that as v — oo, not only it
can give no-bias estimation for strong signals, but also for
weak signals.

It’s shown in (Huang et al., 2016) that when k — oo, a — 0,
the Split LBI algorithm converges to

DT (DB, —
0 _ _vﬁX*(Xﬁt o y) o ( lﬁ/t ’Vt) (73)
DT - D
o= - 202D (7b)
p € Olvell, (7¢)

Then it can be shown in the following lemma that the MSplit
LBI can give more accurate estimation:
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Lemma 3. Denote
G=(I-Xs(X5Xs) 'X5) Xse

Then under linear model, If there exists tin 7 satisfies that
S; = S, we have

E(8s;) = B + (X§Xs) ' X5 Xse [[ + vX5.G) ™' BE.

(®)

E(Bs1) = B — [ +vX5.G) " B ®)
Furthermore, we have that

lim |[E(Bs,0) — 8513 =0 (10)

lim [|E(Bse:) = B5ell3 = 0 (1)

Proof. 1t’s easy to obtain (8) and (9). To prove 10 and 11,
note that

GB% = XgeBs — PxgXgeB5e
Then we have
Gfse =0 — mzin||Xs~5§c — X523 =0
< 3Fz, s.t. Xgz = Xge 5

Therefore, for the identifiable of 5%., we have that GSg. #
0, ie. ||GBE:||3 # 0, hence B5. € Im(GTG). Denote
the eigenvalue-decomposition of G as G = UAU” and
A¢ = Amin(GTG), then we have

I+ vX5G) ' By = (I +vGTG) ™' B
=U(I+vN)'UTBS. (12

Hence we have

_ N 1 .
|U(I +vA) ' UT B2 < m”ﬁsﬂb

If we denote
A=X%:Xg, B=X5Xg-
AX = \/Amax(X*X),

then we have

|A7B(1+v6"6) " B

2

1
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A2 .
X85l

<X
_)\5(1 + l/)\(;)
Then 10 and 11 hold. O
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