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Here we discuss more accurate estimation given by MSplit
LBI compared with L1 and L2 regularization fail in the
linear model with general design matrix X , i.e.

y = Xβ? + ε, S = {i : β?i &

√
s log p

n
} (1)

We first discuss the bias estimation of L1 and L2 model in
Lemma 1 and 2.

Lemma 1. Suppose the lasso estimator

βlasso = arg min
β

1

2N
‖y −Xβ‖22 + λ‖β‖1 (2)

Suppose the model selection consistency holds at λn, i.e.
Sλn = S, then we have

E(βlassoS ) = β?S + λn(X?
SXS)−1ρS(λn) (3)

where ρ(λn) ∈ ∂‖βlasso(λn)‖1.

Proof. Take derivative of (3) w.r.t β and set it to 0, and
combined with the fact that βSc = 0, we have

λnρS(λn) = −X?
S(y −Xβlasso(λn))

= −X?
S

(
XSβ

?
S + ε−XSβ

lasso
S (λn)

)
Hence,

X?
SXSβS(λn)− β?S) = X?

Sε+ λnρS(λn)

Then

βS(λn) = β?S + (X?
SXS)−1 (X?

Sε+ ρS(λn))

(3) holds after we take expectation on βS(λn).
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Lemma 2. Denote

A = X?
SXS + λIS,S

B = X?
SXSc

C = X?
ScXSc + λISc,Sc

then the Ridge Regression estimator

βridge = arg min
β

1

2N
‖y −Xβ‖22 + λ‖β‖22 (4)

have that

E(βridgeS ) = β?S + λ
[
A−1B(C −BTA−1B)−1

]
β?Sc

− λ
[
A−1 +A−1B(C −BA−1BT )−1BTA−1

]
β?S

(5)

E(βridgeSc ) = β?Sc + λ(C −BTA−1B)−1BTA−1β?S

− λ(C −BTA−1B)−1β?Sc

(6)

Proof. It’s easy to verify after taking the derivative of
1

2N ‖y −Xβ‖
2
2 + λ‖β‖22 and set it to 0.

Remark 1. For the uniqueness of β?, we assume the re-
stricted convex condition, i.e. that X?

SXS < λS , hence
the λ

[
A−1 +A−1B(C −BA−1BT )−1BTA−1

]
β?S in 5

introduced in the estimation of β?S can not be ignored.

Next, we discuss the estimation property of dense estimator
of MSplit LBI. We will show that as ν → ∞, not only it
can give no-bias estimation for strong signals, but also for
weak signals.

It’s shown in (Huang et al., 2016) that when κ→∞, α→ 0,
the Split LBI algorithm converges to

0 = −∇βX?(Xβt − y)− DT (Dβt − γt)
ν

(7a)

ρt = −D
T (γt −D)

ν
(7b)

ρt ∈ ∂‖γt‖1, (7c)

Then it can be shown in the following lemma that the MSplit
LBI can give more accurate estimation:
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Lemma 3. Denote

G =
(
I −XS(X?

SXS)−1X?
S

)
XSc

Then under linear model, If there exists t̄ in 7 satisfies that
S̃t = S, we have

E(βS,t̄) = β?S + (X?
SXS)−1X?

SXSc [I + νX?
ScG]

−1
β?Sc

(8)

E(βSc,t̄) = β?Sc − [I + νX?
ScG]

−1
β?Sc (9)

Furthermore, we have that

lim
ν→∞

‖E(βS,t̄)− β?S‖22 = 0 (10)

lim
ν→∞

‖E(βSc,t̄)− β?Sc‖22 = 0 (11)

Proof. It’s easy to obtain (8) and (9). To prove 10 and 11,
note that

Gβ?Sc = XScβ?Sc − PXS
XScβ?Sc

Then we have

Gβ?Sc = 0 ⇐⇒ min
z
‖XScβ?Sc −XSz‖22 = 0

⇐⇒ ∃ z, s.t. XSz = XScβ?Sc

Therefore, for the identifiable of β?Sc , we have that Gβ?Sc 6=
0, i.e. ‖Gβ?Sc‖22 6= 0, hence β?Sc ∈ Im(GTG). Denote
the eigenvalue-decomposition of G as G = UΛUT and
λG := Λmin(GTG), then we have

[I + νX?
ScG]

−1
β?Sc =

(
I + νGTG

)−1
β?Sc

= U(I + νΛ)−1UTβ?Sc (12)

Hence we have

‖U(I + νΛ)−1UTβ?Sc‖2 ≤
1

1 + νλG
‖β?Sc‖2

If we denote

A =X?
SXS , B = X?

SXSc

ΛX :=
√

Λmax(X?X),

then we have ∥∥∥A−1B
(
I + νGTG

)−1
β?Sc

∥∥∥
2

≤‖A−1‖2‖B‖2
1

1 + νλG
‖β?Sc‖2

≤ Λ2
X

λS(1 + νλG)
‖β?Sc‖2

Then 10 and 11 hold.
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