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A Sketch of Proofs

A.1 Proof to Proposition 1: Marginal k̂ in PSIS diagnostic

Proposition 1. For any two distributions p and q with support Θ and the margin index i, if there
is a number α > 1 satisfying Eq (p(θ)/q(θ))α <∞, then Eq (p(θi)/q(θi))

α <∞.

Proof. Without loss of generality, we could assume Θ = RK , otherwise a smooth transformation is
conducted.

For any 1 ≤ i ≤ K, p(θ−i|θi) and q(θ−i|θi) define the conditional distribution of (θ1, . . . , θi−1, θi+1, . . . , θK) ∈
RK−1 given θi under the true posterior p and the approximation q separately.

For any given index α > 1, Jensen inequality yields∫
RK−1

(
p(θ−i|θi)
q(θ−i|θi)

)α
q(θ−i|θi) ≥

(∫
RK−1

p(θ−i|θi)
q(θ−i|θi)

q(θ−i|θi)
)α

= 1

Hence ∫
RK

(
p(θ)

q(θ)

)α
q(θ)dθ =

∫
RK−1

∫
R

(
p(θi)p(θ−i|θi)
q(θi)q(θ−i|θi)

)α
q(θi)q(θ−i|θi)dθidθ−i

=

∫
R

(∫
RK−1

(
p(θ−i|θi)
q(θ−i|θi)

)α
q(θ−i|θi)dθ−i

)(
p(θi)

q(θi)

)α
q(θi)dθi

≥
∫
R

(
p(θi)

q(θi)

)α
q(θi)dθi

A.2 Proof to Proposition 2: Symmetry in VSBC-Test

Proposition 2. For a one-dimensional parameter θ that is of interest, Suppose in addition we
have:
(i) the VI approximation q is symmetric;
(ii) the true posterior p(θ|y) is symmetric.
If the VI estimation q is unbiased, i.e.,

Eθ∼q(θ|y) θ = Eθ∼p(θ|y) θ,∀y

Then the distribution of VSBC p-value is symmetric.
If the VI estimation is positively/negatively biased, then the distribution of VSBC p-value is right/left
skewed.

In the proposition we write q(θ|y) to emphasize that the VI approximation also depends on the
observed data.

Proof. First, as the same logic in Cook et al. (2006), when θ(0) is sampled from its prior p(θ) and
simulated data y sampled from likelihood p(y|θ(0)), (y, θ(0)) represents a sample from the joint
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distribution p(y, θ) and therefore θ(0) can be viewed as a draw from p(θ|y), the true posterior
distribution of θ with y being observed.

We denote q(θ(0)) as the VSBC p-value of the sample θ(0). Also denote Qx(f) as the x−quantile
(x ∈ [0, 1]) of any distribution f . To prove the result, we need to show

1− Pr(q(θ(0)) < x) = Pr(q(θ(0)) < 1− x),∀x ∈ [0, 1],

LHS = Pr
(
q(θ(0)) > x

)
= Pr

(
θ(0) > Qx (q(θ|y))

)
.

RHS = Pr
(
θ(0) < Q1−x (q(θ|y))

)
= Pr

(
θ(0) < 2Eq(θ|y)θ −Qx (q(θ|y))

)
= Pr

(
θ(0) < 2Ep(θ|y)θ −Qx (q(θ|y))

)
= Pr

(
θ(0) > Qx (q(θ|y))

)
= LHS

The first equation above uses the symmetry of q(θ|y), the second equation comes from the the
unbiasedness condition. The third is the result of the symmetry of p(θ|y).

If the VI estimation is positively biased, Eθ∼q(θ|y) θ > Eθ∼p(θ|y) θ,∀y, then we change the second
equality sign into a less-than sign.

B Details of Simulation Examples

In this section, we give more detailed description of the simulation examples in the manuscript. We
use Stan (Stan Development Team, 2017) to implement both automatic differentiation variational
inference (ADVI) and Markov chain Monte Carlo (MCMC) sampling. We implement Pareto
smoothing through R package “loo” (Vehtari et al., 2018). We also provide all the source code in
https://github.com/yao-yl/Evaluating-Variational-Inference.

B.1 Linear and Logistic Regressions

In Section 4.1, We start with a Bayesian linear regression y ∼ N(Xβ, σ2) without intercept. The
prior is set as {βi}di=1 ∼ N(0, 1), σ ∼ gamma(0.5, 0.5). We fix sample size n = 10000 and number of
regressors d = 100. Figure I displays the Stan code.

We find ADVI can be sensitive to the stopping time. Part of the reason is the objective function
itself is evaluated through Monte Carlo samples, producing large uncertainty. In the current version
of Stan, ADVI computes the running average and running median of the relative ELBO norm
changes. Should either number fall below a threshold tol rel obj, with the default value to be
0.01, the algorithm is considered converged.

In Figure 1 of the main paper, we run VSBC test on ADVI approximation. ADVI is deliberately
tuned in a conservative way. The convergence tolerance is set as tol rel obj=10−4 and the learning
rate is η = 0.05. The predictor X105×102 is fixed in all replications and is generated independently
from N(0, 1). To avoid multiple-comparison problem, we pre-register the first and second coefficients
β1 β2 and log σ before the test. The VSBC diagnostic is based on M = 1000 replications.

In Figure 2 we independently generate each coordinate of β from N(0, 1) and set a relatively
large variance σ = 2. The predictor X is generated independently from N(0, 1) and y is sampled
from the normal likelihood. We vary the threshold tol rel obj from 0.01 to 10−5 and show the
trajectory of k̂ diagnostics. The k̂ estimation, IS and PSIS adjustment are all calculated from
S = 5× 104 posterior samples. We ignore the ADVI posterior sampling time. The actual running
time is based on a laptop experiment result (2.5 GHz processor, 8 cores).The exact sampling time
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,
1 data {

2 int <lower=0> n; // number of observations , we fix n=10000 in the simulation;

3 int <lower=0> d; // number of predictor variables , fix d=100;

4 matrix [n,d] x ; // predictors;

5 vector [n] y; // outcome;

6 }

7 parameters {

8 vector [d] b; // linear regression coefficient;

9 real <lower=0> sigma; // linear regression std;

10 }

11 model {

12 y ∼ normal(x * b, sigma);

13 b ∼ normal (0,1); // prior for regression coefficient;

14 sigma ∼ gamma (0.5 ,0.5); // prior for regression std.

15 }

16

Figure I: Stan code for linear regressions

is based on the No-U-Turn Sampler (NUTS, Hoffman and Gelman 2014) in Stan with 4 chains
and 3000 iterations in each chain. We also calculate the root mean square errors (RMSE) of all
parameters ||Ep[(β, σ)] − Eq[(β, σ)]||L2 , where (β, σ) represents the combined vector of all β and

σ. To account for the uncertainty, k̂, running time, and RMSE takes the average of 50 repeated
simulations.

,
1 data {

2 int <lower=0> n; // number of observations;

3 int <lower=0> d; // number of predictor variables;

4 matrix [n,d] x ; // predictors; we vary its correlation during simulations

.

5 int <lower=0,upper=1> y[n]; // binary outcome;

6 }

7 parameters {

8 vector[d] beta;

9 }

10 model {

11 y ∼ bernoulli_logit(x*beta);

12 }

13

Figure II: Stan code for logistic regressions

Figure 3 and 4 in the main paper is a simulation result of a logistic regression

Y ∼ Bernoulli
(
logit−1(βX)

)
with a flat prior on β. We vary the correlation in design matrix by generating X from N(0, (1−
ρ)Id×d+ρ1d×d), where 1d×d represents the d by d matrix with all elements to be 1. In this experiment
we fix a small number n = 100 and d = 2 since the main focus is parameter correlations. We
compare k̂ with the log predictive density, which is calculated from 100 independent test data. The
true posterior is from NUTS in Stan with 4 chains and 3000 iterations each chain. The k̂ estimation,
IS and PSIS adjustment are calculated from 105 posterior samples. To account for the uncertainty,
k̂, log predictive density, and RMSE are the average of 50 repeated experiments.

B.2 Eight-School Model

The eight-school model is named after Gelman et al. (2013, section 5.5). The study was performed
for the Educational Testing Service to analyze the effects of a special coaching program on students’
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School Index j Estimated Treatment Effect yi Standard Deviation of Effect Estimate σj
1 28 15
2 8 10
3 -3 16
4 7 11
5 -1 9
6 1 11
7 8 10
8 12 18

Table I: School-level observed effects of special preparation on SAT-V scores in eight randomized
experiments. Estimates are based on separate analyses for the eight experiments.

SAT-V (Scholastic Aptitude Test Verbal) scores in each of eight high schools. The outcome variable
in each study was the score of a standardized multiple choice test. Each school i separately analyzed
the treatment effect and reported the mean yi and standard deviation of the treatment effect
estimation σi, as summarized in Table I.

There was no prior reason to believe that any of the eight programs was more effective than
any other or that some were more similar in effect to each other than to any other. Hence, we view
them as independent experiments and apply a Bayesian hierarchical normal model:

yj |θj ∼ N(θj , σj), θj ∼ N(µ, τ), 1 ≤ j ≤ 8,

µ ∼ N(0, 5), τ ∼ half−Cauchy(0, 5).

where θj represents the underlying treatment effect in school j, while µ and τ are the hyper-
parameters that are shared across all schools.

,
1 data {

2 int <lower=0> J; // number of schools

3 real y[J]; // estimated treatment

4 real<lower=0> sigma[J]; // std of estimated effect

5 }

6

7 parameters {

8 real theta[J]; // treatment effect in school j

9 real mu; // hyper -parameter of mean

10 real<lower=0> tau; // hyper -parameter of sdv

11 }

12 model {

13 theta ∼ normal(mu, tau);

14 y ∼ normal(theta , sigma);

15 mu ∼ normal(0, 5); // a non -informative prior

16 tau ∼ cauchy(0, 5);

17 }

18

Figure III: Stan code for centered parametrization in the eight-school model. It leads to strong
dependency between tau and theta.

There are two parametrization forms being discussed: centered parameterization and non-
centered parameterization. Listing III and IV give two Stan codes separately. The true posterior
is from NUTS in Stan with 4 chains and 3000 iterations each chain. The k̂ estimation and PSIS
adjustment are calculated from S = 105 posterior samples. The marginal k̂ is calculated by using
the NUTS density, which is typically unavailable for more complicated problems in practice.

The VSBC test in Figure 6 is based on M = 1000 replications and we pre-register the first
treatment effect θ1 and group-level standard error log τ before the test.

As discussed in Section 3.2, VSBC assesses the average calibration of the point estimation.
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,
1 data {

2 int <lower=0> J; // number of schools

3 real y[J]; // estimated treatment

4 real<lower=0> sigma[J]; // std of estimated effect

5 }

6 parameters {

7 vector[J] theta_trans; // transformation of theta

8 real mu; // hyper -parameter of mean

9 real<lower=0> tau; // hyper -parameter of sd

10 }

11 transformed parameters{

12 vector[J] theta; // original theta

13 theta=theta_trans*tau+mu;

14 }

15 model {

16 theta_trans ∼normal (0,1);

17 y ∼ normal(theta , sigma);

18 mu ∼ normal(0, 5); // a non -informative prior

19 tau ∼ cauchy(0, 5);

20 }

21

Figure IV: Stan code for non-centered parametrization in the eight-school model. It extracts the
dependency between tau and theta.

Hence the result depends on the choice of prior. For example, if we instead set the prior to be

µ ∼ N(0, 50), τ ∼ N+(0, 25),

which is essentially flat in the region of interesting part of the likelihood and more in agreement
with the prior knowledge, then the result of VSBC test change to Figure V. Again, the skewness of
p-values verifies VI estimation of θ1 is in average unbiased while τ is biased in both centered and
non-centered parametrization.
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Figure V: The VSBC diagnostic of the eight-school example under a non-informative prior µ ∼
N(0, 50), τ ∼ N+(0, 25). The skewness of p-values verifies VI estimation of θ1 is in average unbiased
while τ is biased in both centered and non-centered parametrization.

B.3 Cancer Classification Using Horseshoe Priors

In Section 4.3 of the main paper we replicate the cancer classification under regularized horseshoe
prior as first introduced by Piironen and Vehtari (2017).

The Leukemia microarray cancer classification dataset 1. It contains n = 72 observations and
d = 7129 features Xn×d. X is standardized before any further process. The outcome y1:n is binary,

1The Leukemia classification dataset can be downloaded from http://featureselectiocn.asu.edu/datasets.php
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so we can fit a logistic regression

yi|β ∼ Bernoulli

logit−1

 d∑
j=1

βjxij + β0

 .

There are far more predictors than observations, so we expect only a few of predictors to be related
and therefore have a regression coefficient distinguishable from zero. Further, many predictors are
correlated, making it necessary to have a regularization.

To this end, we apply the regularized horseshoe prior, which is a generalization of horseshoe
prior.

βj |τ, λ, c ∼ N(0, τ2λ̃2j ), c2 ∼ Inv−Gamma(2, 8),

λj ∼ Half−Cauchy(0, 1), τ |τ0 ∼ Half−Cauchy(0, τ0).

The scale of the global shrinkage is set according to the recommendation τ0 = 2
(
n1/2(d− 1)

)−1
There is no reason to shrink intercept so we put β0 ∼ N(0, 10). The Stan code is summarized in
Figure VI.

,
1 data {

2 int <lower=0> n; // number of observations

3 int <lower=0> d; // number of predictors

4 int <lower=0,upper=1> y[n]; // outputs

5 matrix[n,d] x; // inputs

6 real<lower=0> scale_icept; // prior std for the intercept

7 real<lower=0> scale_global; // scale for the half -t prior for tau

8 real<lower=0> slab_scale;

9 real<lower=0> slab_df;

10 }

11 parameters {

12 real beta0; // intercept

13 vector[d] z; // auxiliary parameter

14 real<lower=0> tau; // global shrinkage parameter

15 vector <lower=0>[d] lambda; // local shrinkage parameter

16 real<lower=0> caux; // auxiliary

17 }

18 transformed parameters {

19 real<lower=0> c;

20 vector[d] beta; // regression coefficients

21 vector[n] f; // latent values

22 vector <lower=0>[d] lambda_tilde;

23 c = slab_scale * sqrt(caux);

24 lambda_tilde = sqrt( c^2 * square(lambda) ./ (c^2 + tau ^2* square(lambda)) );

25 beta = z .* lambda_tilde*tau;

26 f = beta0 + x*beta;

27 }

28 model {

29 z ∼ normal (0,1);

30 lambda ∼ cauchy (0,1);

31 tau ∼ cauchy(0, scale_global);

32 caux ∼ inv_gamma (0.5* slab_df , 0.5* slab_df);

33 beta0 ∼ normal(0, scale_icept);

34 y ∼ bernoulli_logit(f);

35 }

36

Figure VI: Stan code for regularized horseshoe logistic regression.

We first run NUTS in Stan with 4 chains and 3000 iterations each chain. We manually pick
β1834, the coefficient that has the largest posterior mean. The posterior distribution of it is bi-modal
with one spike at 0.
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ADVI is implemented using the same parametrization and we decrease the learning rate η to 0.1
and the threshold tol rel obj to 0.001

The k̂ estimation is based on S = 104 posterior samples. Since k̂ is extremely large, indicating
VI is far away from the true posterior and no adjustment will work, we do not further conduct PSIS.

In the VSBC test, we pre-register that pre-chosen coefficient β1834, log λ1834 and global shrinkage
log τ before the test. The VSBC diagnostic is based on M=1000 replications.
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