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Abstract

We revisit convex relaxation based methods for
stochastic optimization of principal component
analysis (PCA). While methods that directly solve
the nonconvex problem have been shown to be
optimal in terms of statistical and computational
efficiency, the methods based on convex relax-
ation have been shown to enjoy comparable, or
even superior, empirical performance — this moti-
vates the need for a deeper formal understanding
of the latter. Therefore, in this paper, we study
variants of stochastic gradient descent for a con-
vex relaxation of PCA with (a) /5, (b) /1, and (c)
elastic net (¢1 + ¢5) regularization in the hope that
these variants yield (a) better iteration complexity,
(b) better control on the rank of the intermediate
iterates, and (c) both, respectively. We show, the-
oretically and empirically, that compared to pre-
vious work on convex relaxation based methods,
the proposed variants yield faster convergence and
improve overall runtime to achieve a certain user-
specified e-suboptimality on the PCA objective.
Furthermore, the proposed methods are shown to
converge both in terms of the PCA objective as
well as the distance between subspaces. However,
there still remains a gap in computational require-
ments for the proposed methods when compared
with existing nonconvex approaches.

1. Introduction

Principal component analysis (PCA), a ubiquitous proce-
dure in scientific analysis, can be posed as the following
learning problem: given a zero-mean random vector x € R?
with some (unknown) distribution 9%, find the k-dimensional
subspace that captures the maximal mass of the distribution.
If we represent a subspace by an orthogonal basis matrix
U € R%*F that spans the subspace, then PCA returns the
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subspace that maximizes the variance in data projected onto
the subspace, i.e. E[|[U x||], among all k-dimensional sub-
spaces of R?. Formally, we can write PCA as the following
stochastic optimization problem:

min —E[|[U"x|?]
UeRdxk ) (1)

subjectto UTU =1

Equivalently, we can represent a subspace by an orthogonal
rank-% projection matrix M = UU ", where U is any orthog-
onal basis matrix for the subspace. This gives the following
equivalent formulation for the PCA problem:

min — E[x "Mx]
McRdxd (2)
subjectto rank(M) =k, A;(M) € {0,1},Vi € [d]

It is easy to check that this maximal variance subspace is
given by the span of top-k eigenvectors of the covariance
matrix C := E[xx ]. In other words given eigendecompo-
sition of C = Z?:l )\iuiu;'—, for Ay > Xy > -+ > Ay, the
optimal solution to Problem 1 is given by the basis matrix
U, = [uy,...,u;], and the optimal solution to Problem 2
is given as M, = U*UI. Furthermore, given access to
the distribution 9 only through a sample {x;}7; ~ 2"
drawn independently from 9, the sample average approx-
imation (SAA, or equivalently empirical risk minimiza-
tion) approach to learning the maximal variance subspace
amounts to finding the top-k eigenvectors of the empirical
covariance matrix, C := % S XX,

An alternative computationally attractive approach to solv-
ing Problem 1 is based on stochastic approximation (SA)
algorithms that attempt to directly minimize the objective
given access to a first order oracle. For instance, stochastic
gradient descent (SGD), a staple SA algorithm, on Prob-
lem 1 yields the following updates:

Ut+1 = Gram—Schmidt(Ut + ntXtX;rUt), (3)

where Gram-Schmidt orthogonalization gives an orthogo-
nal basis matrix for the column span of U, + ntxtxtT Uy,
this is also known as Oja’s algorithm (Oja, 1982). Such
first order methods for solving Problem 1 have received a
lot of attention in recent years (Arora et al., 2012; 2013;
Balsubramani et al., 2013; Mitliagkas et al., 2013; Shamir,
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2016; Allen-Zhu & Li, 2017; Jain et al., 2016; Balcan et al.,
2016). It is remarkable that even though Problem 1 is non-
convex', Oja’s algorithm works reasonably well in prac-
tice and has been shown to enjoy strong theoretical guaran-
tees (Allen-Zhu & Li, 2017; Jain et al., 2016; Balcan et al.,
2016; Shamir, 2016).

Rather than directly solve the nonconvex problem, one can
consider a convex relaxation of the equivalent formulation
in Problem 2. Following Arora et al. (2013), we take the
convex hull of the constraint set in Problem 2 to obtain the
following convex program:
min — E[x"Mx]
MeRdxd . (4)
subjectto Tr(M) =k, 0 <M <1

Stochastic gradient descent on Problem 4 yields the follow-
ing update, also referred to as matrix stochastic gradient
(MSG) in (Arora et al., 2013):

Mg ¢ P (My + nixex) ), o)

where & (-) is the projection operator onto the feasible set
of Problem 4 with respect to the Frobenius norm. Assum-
ing the fourth moment of the distribution is bounded by a
constant, the standard analysis of (Shamir & Zhang, 2013)
yields the following guarantee for MSG:

Ex"M,x] —E[x"'Mx] = O <logT> ,
VT
where M, is the optimal solution to the PCA Problem 2
and M = rounding(Mz 1) is a rank-k projection matrix
obtained using randomized rounding (Warmuth & Kuzmin,
2008) of the final iterate of MSG.

Compared to Oja’s algorithm, MSG has two major draw-
backs: first, Oja’s algorithm achieves a faster O(%) rate of
convergence, and second, Oja’s algorithm is computation-
ally efficient since at each iteration it only keeps a d x k
orthogonal matrix, while rank of the projection matrix M,
in MSG can possibly grow at each iteration.

More generally, methods based on convex relaxation are
usually hard to scale to large problems due to both statistical
inefficiency and higher computational cost. On the other
hand, methods that directly solve the non-convex problems
are usually preferable by practitioners, and have been shown
recently to achieve optimal convergence rates in many prob-
lems. In particular, the classical Oja’s algorithm which
is simply SGD on the original non-convex PCA problem
is provably optimal both statistically and computationally.
However, empirically, it has been shown that convex re-
laxation based methods either match or outperform Oja’s

Isince the objective is concave and the set of orthogonal matri-

ces is non-convex

performance (see for example (Arora et al., 2012; 2013)).
Thus, a natural question to ask is if the suboptimal guaran-
tees on statistical and computational efficiency of methods
based on convex relaxation are artifacts of analysis.

To understand these issues better, in this paper we study
various modifications to the MSG update in equation (4)
that impart the resulting algorithm with desirable compu-
tational properties including faster convergence and better
overall runtime. These modifications are based on princi-
pled design techniques — each of the proposed variants is
given as stochastic gradient descent on the the MSG ob-
jective in Problem 4 with an additional regularization term.
In particular, we consider (a) an ¢y regularization which
yields a faster convergence rate, (b) an ¢; regularization
term which prevents the rank of the intermediate iterates
of MSG from growing unbounded, and (c) an elastic-net
(i.e. joint ¢1 + ¢5) regularization that is empirically shown
to achieve a faster convergence rate with small computa-
tional cost per iteration. Our experimental results show that
the proposed (¢1 + ¢2)-regularized MSG achieves state-of-
the-art results outperforming MSG and Oja’s algorithm for
various parameter settings and choice of datasets.

It is important to note that we are interested in principled
design and analysis of stochastic approximation algorithms
for principal component analysis (i.e. Problems 1 and 2).
The proposed formulations of the regularized PCA objective
are purely for computational reasons unlike usual regular-
ized learning problems where the goal is to avoid overfitting
(equivalently, injecting an inductive bias).

1.1. Notation

We denote matrices with capital Roman letters, e.g. U,
and vectors with small Roman letters, e.g. u. For any
integer k, we denote the set {1,...,k} by [k]. Further-
more, I, denotes the identity matrix of size k x k. We
drop the subscript & whenever the size is clear from the
context. Frobenius norm and spectral norm of matrices
are denoted by ||-||» and |||, resepctively, and for vec-
tors, ||-|| denotes the ¢ norm. For any two matrices
M;, M, € R*4, the standard inner-product is written as
(M1,Ma) = Tr (MlTMQ). For a real symmetric matrix C,
Ak (C) represents the k™ largest eigenvalue of C. For no-
tational convenience, when clear from the context we will
denote A, (C) by A\r. We denote the eigen-decomposition
of the covariance matrix by C = Zle )\iuiuiT, where
A1 > -+ > A\g. Forany ¢ € [d— 1], we denote the eigengap
at i as ¢; := A\; — Ajy1. The projection matrix onto the
subspace spanned by the top-k eigenvectors of C will be
represented as I1; (C) = Zle u;u;". The convex hull of
the set of rank-k orthogonal projection matrices is denoted
by M = {M € R¥: Tr (M) < k,0 < M =< I}. Finally,
our analysis for regularized variants leverages the strong
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Algorithm 1 ¢5-Regularized MSG (¢2-RMSG)

Require: Input data {x;}._,, output dimension k, regular-
ization parameter A

Ensure: M
1: M1 0
2: fort=1,---,Tdo
3: Nt < %
4: Mt—&-% — (1 — A’I]t)Mt + ntXtXtT
5: Mt+1 (—@Ju (MtJr%)
6: end for
7 M« Prank—k (Mr41) {Return top-k subspace of Mz1}

convexity / smoothness of the corresponding objectives.

Definition 1.1 (Strongly convex / smooth). A function
f M — Ris A-strongly convex and p-smooth for some
A, > 0if forall M,M’ € M and gy, := V f(M) , we have

A 7
5\\M’—MH%éf(Mﬁ—f(M)—<gM,M’—M> < §IIM’—MII%-

2. PCA with /;-regularization

In this section, we study how adding a strongly convex reg-
ularizer to the linear PCA objective in Problem 4 changes
the optimization problem and if we can leverage strong con-
vexity of the resulting objective to guarantee a faster conver-
gence rate without changing the optimum. We consider the
following ¢5-regularized PCA optimization problem:

A2
i —E[x"Mx] + = |M
i x Mx] + 5 [IM][

subjectto Tr(M) <k, 0 <M <1

(6)

SGD on Problem 6 yields the following ¢5-RMSG updates,
M1 < @ (1= M )My + mexex ) (7)

Note that as is the case with MSG, the final iterate, M7 1, of
£5-RMSG is not guaranteed to be a rank-k projection matrix.
As we show below, we can guarantee convergence in terms
of the distance between the subspaces, which allows us to
perform a simple deterministic rounding by simply returning
the top-k eigenspace of My (see proof of Theorem 2.4).
This yields the procedure detailed in Algorithm 1.

Next, we study the iteration complexity of {5-RMSG and
conditions on the size of the regularization constant that
keep the optimum unchanged. Before giving formal results,
we make a few remarks summarizing the key observations.

Fast rate: The objective in Problem 6 is A-strongly con-
vex. We leverage this to show that /5-RMSG enjoys a fast
rate of O (527 ); see Theorem 2.4 for a formal statement.

Admissible A\: While the bound above suggests that larger
values of \ are preferred, it is important to note that for large
A the optima of the Problems 2 and 6 may fail to coincide.
Our analysis shows that if there exists an eigengap at £ in
the spectrum of the covariance matrix, i.e. if g = \x(C) —
Ai+1(C) > 0, then for A < gy, the global optimum of
the regularized PCA problem is a global optimum for the
original problem, even when there is no eigengap at k —
we refer to such values of the regularization parameter as
admissible; see Section 2.1 for more details. For illustration,
we plot the landscape of the ¢s-regularized objective for
different values of X in Figure 1(a) and (b) for covariance
matrices with and without an eigengap at k, respectively.

Overall runtime: The ¢2-RMSG algorithm has the same
computational cost per iterate as MSG. To see this, note that
the Step 4 of Algorithm 1 can be written equivalently in

terms of eigen-decomposition of M; = UtAtUtT as follows,
(1 — A??t)UtAtU;r + ntxtxj

(1 — A’Iﬁ)At +3€{)ZtT
e 27

.
=[U 2] Ut
- llrel Ty

lIrel

Hrtl\i}}

||rt|\2

Q, €RUAD) X (1+1)

where X; = \/?]tUtT x¢ and 1y = \/1,X¢ — U.X;. There-
fore, the update in Step 4 amounts to computing the eigen-
decompostion of matrix Q; = UAU and matrix multi-
plication, Uy, = [U; ”;—fu]fj This rank-one eigenup-
date requires O(k} + dk?) time and O(dk;) space where
k; = rank(M,); this computational trick is well-known in
literature (Arora et al., 2013). The projection in Step 5 of
Algorithm 1 can be implemented efficiently as well via a
simple shift-and-cap procedure, Algorithm 2 of (Arora et al.,
2013), on the vector consisting of diagonal entries of A; this
requires O(k; log k) time.

2.1. Admissible values of regularization parameter

We begin with a formal definition of admissibility.

Definition 2.1. We say that the regularization parameter
A takes an admissible value, if any optimum of the regu-
larized PCA Problem 6 is also an optimum of the original
Problem 4.

In what follows, we give sufficient conditions on admissible
values of A under two distinct settings — with and without
an eigengap at k. We define the eigengap at k as g, =
Ak (C) — Ag+1(C). We say that there exists an eigengap at k,
if g > 0, otherwise (i.e. if g = 0), we say that there is no
eigengap at k. When we have an eigengap at k, we can give
the following simple characterization of admissible values
for the regularization parameter A. All proofs are deferred
to the Appendix in the supplementary file.

Lemma 2.2 (Admissible A with an eigengap at k). Let
gr > 0. Then, for any regularization parameter 0 < \ < g,
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Figure 1: Geometry of the optimization problem (6) with (top) and without (bottom) an eigengap at k. The feasible region of Problem 4,
is the simplex shown above (for d = 3 and k = 2). Each vertex represents a rank-2 projection matrix. The optima is marked with
magenta circles. Left: the linear objective of the original PCA problem. The optimum is attained at the lower vertex (top) and the left
edge (bottom) of the feasible triangle. Middle: objective of the regularized PCA problem, with a sufficiently small amount of curvature
(admissible A). The optimum is still an optimum of the original problem. Right: objective of the regularized PCA problem with too big
of a curvature. The regularizer has deformed the objective and altered the optimum of the original problem.

the optimum of the original PCA Problem (6) and the ¢5-
regularized PCA Problem (4) are unique and identical.

Next, we consider the case when there is no eigengap at
k,i.e. gr = 0. We do assume that an eigengap exists
somewhere in the spectrum, since otherwise the covariance
matrix is simply a multiple of the identity matrix which
is not an interesting case — any k-dimensional subspace is
an optimum of the corresponding PCA problem. Without
loss of generality, assume that rank(C) > k. Moreover,
lets denote Ao(C) := +o00 and A\j41(C) := 0 for notational
convenience. Then, we have the following result.

Lemma 2.3 (Admissible A without an eigengap at k). Let
p and q be respectively the largest index smaller than & and
the smallest index larger than &, at which C has an eigengap:

p=max{i:i€{0,....k =1}, A\ > Nij1}
q = min{i:ie {k+17...,d}, i >)\i+1}7

Then, for 0 < XA < min {g,, g4}, the optimum of Problem 6
is uniquely given by

p q
3 k—p 3
T T
M* = uz'ui + H UjUj .
i=1 j=p+1

Furthermore, M., is an optimum solution to Problem 4.

In order to better understand the expression for the global
optimum, M,, in Lemma 2.3, consider the following. If

there is no eigengap at k, then there is a maximal subset of
indices ¥ := {p+1,...,q} C [d] such that k € & and
Ap+1 = - -+ = Aq. In terms of the variance captured, there
is no advantage in choosing any particular (convex combi-
nation) of the rank-1 subspaces associated with the eigen-
vectors indexed by &. However, to minimize the Frobenius
norm penalty, /5-RMSG picks the average of these sub-
spaces. This is vivid in the expression for M, — the top-p
rank-1 subspaces are included in M., and the remaining
k — p mass is distributed equally among the ¢ — p rank-1
subspaces indexed by &. Figure 1 provides a geometric
illustration. As can be seen in the bottom row, all points on
the left edge are equally good in terms of the objective. But,
the /5-regularizer chooses the average of the subspaces with
equal eigenvalues, which minimizes the /s-penalty.

2.2. Convergence Analysis of /;-RMSG

Our main result of this section bounds the sub-optimality
of the output of Algorithm 1, for admissible values of the
regularization parameter ), in terms of the distance from the
optimal subspace, M.,.. We show the convergence in terms
of the parameter as well as a faster rate as compared with
MSG (Arora et al., 2013).

Theorem 2.4. Assume E[||x||*] < 1. Then, for any admis-
sible value of ), after 7 iterations of Algorithm 1 starting at
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M; = 0, with step-size sequence 7, = % we have that
- 2. 16(1+ Ak)?
B[ - m, 3] < S ®)

where M, is an optimum of Problem 4, M is the output
after rounding the final iterate to a rank-k matrix, and the
expectation is with respect to the distribution %.

Minimax Optimality: Theorem 2.4 guarantees that the
iterates of Algorithm 1 converge to the optimal projection
matrix in Frobenius norm. It is easy to see that this metric
is directly related to the angle between subspaces, i.e. to

~ T
10 U2,
M. —M[|% =2 (k-0 0.2
* b *||F )

where M = fJfJT and M, = U*UI. This provides a basis
for comparison against previous works of Shamir (2016)
and Allen-Zhu & Li (2017) which measure convergence in
terms of the angle between the subspaces. Furthermore, as
a corollary of Theorem 2.4, we have the following bound in
terms of the angle between subspaces for /o-RMSG,

T 9 8(1 + /\\/E)2
which is minimax optimal in an information-theoretic sense
(see Theorem 6 of Allen-Zhu & Li (2017)).

Finally, convergence in parameter implies the following
guarantee in terms of PCA objective for /5-RMSG.

Theorem 2.5. Under same assumptions as Theorem 2.4,
we have that after 7" iterations of Algorithm 1,

- 8A1(1+ A\Wk)?

E[x ' M,x —x Mx] < —— " 9
[x X —x Mx| < ST 9)
A proof of Theorem 2.5 is provided in the supplementary.

3. PCA with /;-Regularization

As discussed above, the overall runtime needed for MSG
to find an e-suboptimal solution depends critically on the
rank, k., of the intermediate iterates, M;. If k; is as large
as d, then MSG achieves a runtime that is cubic in the
dimensionality. In order to overcome this computational
barrier, which appears to be a natural artifact of convex
relaxations, we consider regularizing the PCA objective
with an ¢; penalty. In particular, we consider the following
problem in this section:

min — Ey x " Mx| + uTr (M
min WM )

subjectto Tr(M) <k, 0 <M =<1

Algorithm 2 ¢, -Regularized MSG (¢;-RMSG)

Require: Input data {x;}._,, output dimension k, regular-
ization parameter f

Ensure: M

: M1 +~— 0

:fort=1,...,Tdo

2 k
Mt = 1+u\/3\/j

Mt+% < Mt + ntXtX;r — /~”7t1

Mt+1 — @m (MtJr%)
end for
: M+ rounding(Mr41) {Algorithm 2 of (Warmuth
& Kuzmin, 2008)}

N AR e

The objective in Problem 10 is a linear function in M. Pro-
jected gradient descent on this problem yields the following
updates:

Miy1 = P My + nixex] — nepl), (11)

where 2 4 (-) projects onto the feasible set . with respect
to the Frobenius norm. This gives the ¢;-RMSG procedure
described in Algorithm 2. The design rationale motivating
the ¢; penalty is that it promotes low-rank iterates, thereby
controlling computational cost per iteration. To see this,
note that each update in equation (11) involves a shift by
—un¢l, which shrinks the spectrum of M; + ntxtx: by un;.
In other words, the value un; will serves as a cut-off param-
eter that will zero out any eigenvalue smaller than pn;.

Admissible ;.. As in the previous section, we are inter-
ested in p such that the regularized problem has the same
optimum as the original problem. Formally, we say that
the regularization parameter . takes an admissible value, if
any solution to the regularized PCA Problem 10 is also a
solution to the original Problem 4. The following lemma
gives a sufficient condition on the admissibility of .

Lemma 3.1. Let g, > 0. Then, for any regularization
parameter 0 < p < A;(C), the optimum of Problem 10 is
unique, and is an optimum for Problem 4.

Key insights. KKT first-order optimality condition on
Problem 10 gives A\y(C) = p — v + wi + B, where
Vg, wg, B > 0 are Lagrange multipliers associated with
the constraints Ay (M) > 0, Ax(M) < 1 and TrM < k.
If p > Ag(C), and since 8, wy, > 0, it should hold that
v > 0. By complementary slackness (i.e. yx A\ (M*) = 0),
we conclude that A\ (M*) = 0. In this case, M™ cannot
be a solution to Problem 4. This further implies that the
condition in Lemma 3.1 is also necessary.

3.1. Convergence Analysis of /;-RMSG

Our first main result of this section gives a bound on the sub-
optimality of Algorithm 2 in terms of the PCA objective.
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Theorem 3.2. Assume E[||x||*] < 1. Then, for any admis-

sible regularization parameter p < min{%, ﬁ} after T’
iterations of Algorithm 2 with step size 1, = 1+Z 73 %,
and starting at M; = 0, we have that:

64vklog T

E xTM*x —E[x"Mx] < ,
M) — BT < SO
where M, is an optimum of Problem 4, M is the output
after rounding, and the expectation is with respect to the
distribution 9 and the randomization in the algorithm.

The result above shows that for sufficiently small admissi-
ble i, ¢1-RMSG converges at the same rate as MSG, i.e.
O( 1‘%). However, we argue in the next section that in
terms of the overall runtime, ¢;-RMSG has an advantage.
We show formally that the ¢; regularization prevents the

rank of /1-RMSG iterates from growing too large.

3.2. Rank Control for ¢/;-RMSG

To get a handle on the rank of the iterates, we first need to
show that iterates have a small tail, i.e. the bottom eigen-
values of M; are small enough to get eliminated by the
shrinkage step. The following lemma formalizes this intu-
ition.

Lemma 3.3. Forallt =1,...,T, it holds that

d
1
D Ai(My) £ —(C — pl, M, — My),
i=kt1 9k

where g, = A\, — Ap41 is the eigengap at k.

Next, we need to show that if the tail of M; is small, then
the update M, + ntxtx: will also have a small tail.

Lemma 3.4. For any iterate ¢ € {1,...,T}, it holds that

d d
E[ Z (M + mixix )] < Z Ai(My) + e
i=k+1 i=k+1

Finally, we argue that shrinking the spectrum by —pun.I
will likely eliminate bottom eigenvalues of the update M; +
neX¢X/ , resulting in a low rank iterate. Formally, our second
main result of this section states the following.

Theorem 3.5. Under the same assumptions as Theorem 3.2,
for any admissible i, we have that for all iterates

33logt
HIk

]E[rank(MtJrl)] < k+

Note that since p < 1/ Vd, it is easy to check that
Efrank(My41)] < k 4+ O(v/d/gx). Theorem 3.5 together
with Theorem 3.2 demonstrates an interesting regime, where
MSG and ¢;-RMSG show exact same statistical conver-
gence behavior, but ¢;-RMSG iterates are guaranteed to
have a significantly smaller rank than the input dimension.

Algorithm 3 /5 + ¢;-Regularized MSG ({2 1-RMSG)

Require: {x;}/_,, k,\, 1

Ensure: M
1: M1 +~— 0
2. fort=1,...,7T do
3: Mt — %
4: Mt+§ (1= A )My + mexex, — umel
5: Mt+1<_g)ﬁt (MtJr%)
6: end for
7 M« Prank—k (Mr11) {Return top-k subspace of Mz1}

4. PCA with Elastic-net Regularization

We saw in the previous sections that £5-RMSG for solving
PCA with Frobenius norm regularization enjoys a faster
convergence rate whereas £1-RMSG for solving PCA with
trace norm regularization is better in terms of computational
cost per iteration. In this section, we propose a variant
that combines both the ¢; and ¢5 regularization in the hope
that it yields the best of both worlds, i.e. simultaneously
provide fast rate with rank-control. We consider PCA with
the following elastic-net regularization:

A
i —EJx™™M Tr (M) + =||/M||?
yun [x Mx] + uTr ( )+2H %

subjectto Tr(M) <k, 0 <M <1

12)

SGD on Problem 12 yields the following updates:
Miy1 =Py (1= Mpe)Me + mexexy — pned),  (13)

where % 4 (-) projects onto the feasible set 4 w.r.t the
Frobenius norm; detailed procedure is given in Algorithm 3.

Again, we should be judicious in our choice of the regular-
ization parameters 4 and A so as to ensure that the regular-
ized problem has the same optimum as the original problem;
the following result provides a sufficient condition.

Lemma 4.1 (Admissibility of (A, u1)). Assume that gz > 0.
Then, for any pair of regularization parameters A and p such
that 0 < A < g and 0 < A + p < g, the optimum of
Problem 12 is unique, and is an optimum for Problem 4. We
call any such (A, uu)-pair an admissible regularization pair.

We conclude this section by noting that it is straightforward
to adapt Theorem 2.4 to get a faster O(1) iteration com-
plexity for 5 1-RMSG, as long as we choose learning rate
Ny = O(%) Also, one can show rank-control as in Theo-
rem 3.5, under the learning rate 7, = O(ﬁ) It would be
desirable to guarantee both faster statistical rates and com-
putational cost per iteration simultaneously. Our current
analysis falls short in establishing such a result. However,
in Section 5, we provide empirical evidence to support sta-
tistical and computational benefits of /5 ;-RMSG.



Stochastic PCA with /5 and /; Regularization

k=25

10°

mETL
107 jAOja A
mMSG A

4
Suboptimality
[
)
¥
4

Suboptimality

#11-RMSG .
2||@121-RMSG| 10

* 10° 10t 10? 10
Iteration

10% 10
Iteration

10

012-RMSG A

Suboptimality
»
Suboptimality
[
S
14

10? 10
Iteration

10? 10
Iteration

"
A

n
A
A
A
A
A
A

2

A

Suboptimality
Suboptimality

A

Suboptimality
=
5
Suboptimality
i
5

10° 10°

Time Time

Time

Time

Figure 2: Comparisons of FTL, MSG, ¢2-RMSG, ¢1-RMSG, ¢2,1-RMSG and Oja’s algorithm on a synthetic dataset, in terms of the
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k = 30 (middle-right) and k = 35 (right).

h—a A A A
A @ A, A A, A A A
A A A A
A A A A
B A B A 2 A 2 A
B 10 “ = A = , E "
E 10 “ E 10 A £ 10 N E 10° A
§ . | £ | § | Z .
S A0ja A S S A S A
[} mMSG o @ A 1D W | @ A
012-RMSG e | 2
|[*11-RMSG
10 [le121-RMSG| 10" 10" 10t
10° 10" 10? 10° 10° 10" 10° 10° 10° 10" 10° 10° 10° 10" 10? 10°
Iteration Iteration Iteration Iteration
AA, DA, A, A-p,
Y N “a e\
A A A A
= A = L =y A =y A
T .0 s A s Y s a
£ 10 1 £ 10° A £ 10° A E 10° A
= B A =1 B
53 53 g 1 g A
8 T 8 2 2
S S X S S
a N 2] ey 2] N - 7] s
@ O o o
. ) o o o
10 10 10t 10t
10° 10t 10° 10t 10° 10t 10° 10t

Time Time

Time Time

Figure 3: Comparisons of FTL, MSG, ¢2-RMSG, ¢1-RMSG, {2 :-RMSG and Oja’s algorithm on MNIST dataset, in terms of the
suboptimality as a function of number of samples (top) as well as the CPU clock time (bottom) for k£ = 25 (left), kK = 30 (middle-left),

k = 35 (middle-right) and k& = 40 (right).

5. Experimental Results

We provide empirical results for our proposed algorithms
£3-RMSG, ¢1-RMSG, and ¢5 ;-RMSG, compared to vanilla
MSG, Oja’s algorithm, and Follow The Leader (FTL) al-
gorithm, on both synthetic and real datasets. The synthetic
data is drawn from a d = 100 dimensional zero-mean mul-
tivariate Gaussian distribution with an exponential decay
in the spectrum of the covariance matrix. The synthetic
consists of n = 30K samples, out of which 20K samples
are used for training and 5K each for tuning and testing. For
comparisons on a real dataset, we choose MNIST which
consists of n = 60K samples each of size d = 784.

The plots in Figures 2 and 3 correspond to the progress

in terms of suboptimality in objective as a function of
number of samples (top) and the CPU clock time (bot-
tom) for the synthetic dataset and MNIST, respectively.
Figure 4 tracks the rank of the iterates for various algo-
rithms. All plots are averaged over 100 runs of the algo-
rithms. The runtime is captured in a controlled setting —
each run for every algorithm was on a dedicated identical
compute node. The target dimensionality in our experiments
is k € {20,25,30, 35,40}, however we observed similar
behavior for other values of k as well.

For MSG and ¢;-RMSG, the learning rate is set to %,
and for ¢5-RMSG, ¢ 1-RMSG and Oja the learning rate
was set to ‘2 as suggested by theory. We choose 7 (ini-
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tial learning rate), A and . by tuning® each over the set
{1072,1072,107%,1,10,102,10%} on held-out data, for
k = 40. These parameters are then used for all experiments
(different values of k). Few remarks are in order.

Iteration complexity. On both the synthetic and the
MNIST datasets, we observe that £5-RMSG and ¢ 1-RMSG
enjoy faster convergence (better iteration complexity) com-
pared to other MSG variants, as suggested by theory. Sur-
prisingly, Oja’s algorithm, despite having a fast O(1) itera-
tion complexity, is always among the slowest to converge;
we remark that similar behavior was noted in previous stud-
ies as well (Arora et al., 2012).

Rank of iterates. As can be seen in Figure 4, the rank of
the iterates of {o-RMSG and vanilla MSG quickly increases
and hits the maximum while ¢;-RMSG and /5 ;-RMSG
exhibit good control on the rank of the intermediate iterates.
For Oja’s algorithm and FTL, by construction, the rank of
the iterates is always equal to the desired rank k.

Overall runtime. It can be seen that /5 ;-RMSG and ¢;-
RMSG consistently outperform other stochastic algorithms.
This is interesting because ¢5-RMSG has better iteration
complexity than ¢/;-RMSG, but since ¢1-RMSG controls the
rank of the intermediate iterates, it enjoys a better overall
runtime. Recall that each iteration of MSG variants requires
O(dk'?) runtime, where k' is the rank of the current iterate.

Overall analysis: In our experiments, ¢;-RMSG and /5 ;-
RMSG consistently outperform other stochastic algorithms
including vanilla MSG, ¢5-RMSG and Oja’s algorithm.
While /5-RMSG, ¢51-RMSG and Oja’s algorithm enjoy
optimal O(%) iteration complexity, in our experiments,
Oja’s algorithm is always dominated by ¢>-RMSG and /5 ; -
RMSG both in iteration complexity as well as the overall
runtime. This makes a strong case for MSG variants since
Oja’s algorithm has optimal computational cost per iteration
(linear in input dimension).

6. Discussion

In this paper, we study variants of stochastic gradient de-
scent for a convex relaxation of principal component analy-
sis (PCA), with ¢, ¢1, and {5 ; regularization. We charac-
terize sufficient conditions on the regularization parameters
under which an optimum of the regularized problem is also
an optimum of the original problem. We show that SGD
on the ¢s-regularized problem, which we term ¢2-RMSG,
achieves optimal O(1) iteration complexity, whereas SGD
on the ¢;-regularized problem, which we term ¢;-RMSG,
provides better control on the rank of the intermediate iter-

The performance measure is the PCA objective on the held-
out set, after consecutive iterates of the algorithm doesn’t improve
the objective by a certain amount.

Rank of iterates
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Figure 4: Ranks of iterates of different algorithms discussed in
this paper for a synthetic dataset with k = 40 (left) and MNIST
dataset with k = 50 (right). For FTL and Oja, the rank of the
iterates is fixed and identical to the desired rank. Rank of iterates of
vanilla MSG and ¢2-RMSG quickly grows and hits the maximum.
Among all variants of MSG, ¢;-RMSG has the best control over
the rank, while /2 1-RMSG exhibits a tradeoff between the rank of
iterates with sample complexity, as can be seen in Figures 2 and 3.

ates, which results in smaller computation cost per iteration.
We also study ¢ 1-RMSG, which leverages both ¢;- and /-
regularization, with the goal of simultaneously improving
iteration complexity and computational cost per iteration.

Our analysis shows that if the learning rate and regulariza-
tion parameters are chosen appropriately, the expected rank
of the iterates of £,-RMSG is upper bounded by O(v/d/gy).
While this results in significant improvement over the per it-
eration computational cost of MSG (from worst case bound
of O(d?) to O(d?)), it is not yet optimal. In particular, Oja’s
algorithm enjoys per iteration cost of O(dk?). Bridging this
gap will be the subject for future work.

We provide empirical evidence of our theoretical findings,
by comparing several stochastic algorithms on both syn-
thetic and real datasets. Our experiments suggest that £o-
and /> 1-RMSG are fastest in terms of iteration complexity,
while ¢;- and ¢5 1-RMSG usually enjoy the fastest overall
runtime. While our iteration complexity results in Section 2
provide minimax optimal rates for £/3-RMSG and close the
gap between iteration complexity of SGD on convex and
non-convex programs in Problems 1 and 4, respectively,
our analysis fails to provide a certificate for best overall
runtime. However, our experiments show that /> ;-RMSG
does benefit from the ¢5- and ¢; -regularizations, both in the
iteration complexity as well as the computational cost per
iterate. Providing theoretical guarantees for this empirical
finding is another open question we leave to future work.

Another interesting research direction is to revisit issues
of statistical and computational efficiency for convex relax-
ations for related component analysis techniques such as
partial least squares (Arora et al., 2016) and canonical cor-
relation analysis (Arora et al., 2017) compared with coun-
terparts based on Oja’s algorithm (Ge et al., 2016). Finally,
it is natural to consider extensions of the methods proposed
here to noisy streaming settings of Marinov et al. (2018).
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