
Supplemental Material (Noise2Noise)

Jaakko Lehtinen1 2 Jacob Munkberg1 Jon Hasselgren1 Samuli Laine1 Tero Karras1 Miika Aittala3 Timo Aila1

1. Network architecture
Table 1 shows the structure of the U-network (Ronneberger
et al., 2015) used in all of our tests, with the exception
of the first test in Section 3.1 that used the “RED30” net-
work (Mao et al., 2016). For all basic noise and text removal
experiments with RGB images, the number of input and
output channels were n = m = 3. For Monte Carlo de-
noising we had n = 9,m = 3, i.e., input contained RGB
pixel color, RGB albedo, and a 3D normal vector per pixel.
The MRI reconstruction was done with monochrome im-
ages (n = m = 1). Input images were represented in range
[−0.5, 0.5].

2. Training parameters
The network weights were initialized following He et
al. (2015). No batch normalization, dropout or other reg-
ularization techniques were used. Training was done us-
ing ADAM (Kingma & Ba, 2015) with parameter values
β1 = 0.9, β2 = 0.99, ε = 10−8.

Learning rate was kept at a constant value during training
except for a brief rampdown period at where it was smoothly
brought to zero. Learning rate of 0.001 was used for all
experiments except Monte Carlo denoising, where 0.0003
was found to provide better stability. Minibatch size of 4
was used in all experiments.

3. Finite corrupted data in L2 minimization
Let us compute the expected error in L2 norm minimization
task when corrupted targets {ŷi}Ni=1 are used in place of
the clean targets {yi}Ni=1, with N a finite number. Let yi
be arbitrary random variables, such that E{ŷi} = yi. As
usual, the point of least deviation is found at the respec-
tive mean. The expected squared difference between these
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means across realizations of the noise is then:
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In the intermediate steps, we have used Eŷ(
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i ŷi) =
∑
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and basic properties of (co)variance. If the corruptions are
mutually uncorrelated, the last row simplifies to
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In either case, the variance of the estimate is the average
(co)variance of the corruptions, divided by the number of
samples N . Therefore, the error approaches zero as the
number of samples grows. The estimate is unbiased in the
sense that it is correct on expectation, even with a finite
amount of data.

The above derivation assumes scalar target variables. When
ŷi are images, N is to be taken as the total number of scalars
in the images, i.e., #images × #pixels/image × #color chan-
nels.

4. Mode seeking and the “L0” norm
Interestingly, while the “L0 norm” could intuitively be ex-
pected to converge to an exact mode, i.e. a local maximum
of the probability density function of the data, theoretical
analysis reveals that it recovers a slightly different point.
While an actual mode is a zero-crossing of the derivative of
the PDF, the L0 norm minimization recovers a zero-crossing
of its Hilbert transform instead. We have verified this behav-
ior in a variety of numerical experiments, and, in practice,
we find that the estimate is typically close to the true mode.
This can be explained by the fact that the Hilbert transform



Supplemental Material (Noise2Noise)

NAME Nout FUNCTION

INPUT n
ENC CONV0 48 Convolution 3× 3
ENC CONV1 48 Convolution 3× 3
POOL1 48 Maxpool 2× 2
ENC CONV2 48 Convolution 3× 3
POOL2 48 Maxpool 2× 2
ENC CONV3 48 Convolution 3× 3
POOL3 48 Maxpool 2× 2
ENC CONV4 48 Convolution 3× 3
POOL4 48 Maxpool 2× 2
ENC CONV5 48 Convolution 3× 3
POOL5 48 Maxpool 2× 2
ENC CONV6 48 Convolution 3× 3
UPSAMPLE5 48 Upsample 2× 2
CONCAT5 96 Concatenate output of POOL4
DEC CONV5A 96 Convolution 3× 3
DEC CONV5B 96 Convolution 3× 3
UPSAMPLE4 96 Upsample 2× 2
CONCAT4 144 Concatenate output of POOL3
DEC CONV4A 96 Convolution 3× 3
DEC CONV4B 96 Convolution 3× 3
UPSAMPLE3 96 Upsample 2× 2
CONCAT3 144 Concatenate output of POOL2
DEC CONV3A 96 Convolution 3× 3
DEC CONV3B 96 Convolution 3× 3
UPSAMPLE2 96 Upsample 2× 2
CONCAT2 144 Concatenate output of POOL1
DEC CONV2A 96 Convolution 3× 3
DEC CONV2B 96 Convolution 3× 3
UPSAMPLE1 96 Upsample 2× 2
CONCAT1 96+n Concatenate INPUT

DEC CONV1A 64 Convolution 3× 3
DEC CONV1B 32 Convolution 3× 3
DEV CONV1C m Convolution 3× 3, linear act.

Table 1. Network architecture used in our experiments. Nout de-
notes the number of output feature maps for each layer. Number
of network input channels n and output channels m depend on
the experiment. All convolutions use padding mode “same”, and
except for the last layer are followed by leaky ReLU activation
function (Maas et al., 2013) with α = 0.1. Other layers have linear
activation. Upsampling is nearest-neighbor.

approximates differentiation (with a sign flip): the latter is
a multiplication by iω in the Fourier domain, whereas the
Hilbert transform is a multiplication by −i sgn(ω).

For a continuous data density q(x), the norm minimization
task for Lp amounts to finding a point x∗ that has a min-
imal expected p-norm distance (suitably normalized, and

omitting the pth root) from points y ∼ q(y):
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Following the typical procedure, the minimizer is found at a
root of the derivative of the expression under argmin:
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This equality holds also when we take limp→0. The usual
results for L2 and L1 norms can readily be derived from
this form. For the L0 case, we take p = 0 and obtain

0 =

∫
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=
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1
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(5)

The right hand side is the formula for the Hilbert transform
of q(x), up to a constant multiplier.
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