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Abstract

The Gaussian mechanism is an essential building
block used in multitude of differentially private
data analysis algorithms. In this paper we re-
visit the Gaussian mechanism and show that the
original analysis has several important limitations.
Our analysis reveals that the variance formula for
the original mechanism is far from tight in the
high privacy regime (¢ — 0) and it cannot be
extended to the low privacy regime (¢ — 00).
We address these limitations by developing an
optimal Gaussian mechanism whose variance is
calibrated directly using the Gaussian cumulative
density function instead of a tail bound approxi-
mation. We also propose to equip the Gaussian
mechanism with a post-processing step based on
adaptive estimation techniques by leveraging that
the distribution of the perturbation is known. Our
experiments show that analytical calibration re-
moves at least a third of the variance of the noise
compared to the classical Gaussian mechanism,
and that denoising dramatically improves the ac-
curacy of the Gaussian mechanism in the high-
dimensional regime.

1. Introduction

Output perturbation is a cornerstone of mechanism design
in differential privacy (DP). Well-known mechanisms in this
class are the Laplace and Gaussian mechanisms (Dwork
et al., 2006; Dwork & Roth, 2014). More complex mech-
anisms are often obtained by composing multiple applica-
tions of these basic output perturbation mechanisms. For
example, the Laplace mechanism is the basic building block
of the sparse vector mechanism (Dwork et al., 2009), and
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the Gaussian mechanism is the building block of private
empirical risk minimization algorithms based on stochas-
tic gradient descent (Bassily et al., 2014). Analysing the
privacy of such complex mechanisms turns out to be a del-
icate and error-prone task (Lyu et al., 2017). In particular,
obtaining tight privacy analyses leading to optimal utility
is one of the main challenges in the design of advanced DP
mechanisms. An alternative to tight a-priori analyses is to
equip complex mechanisms with algorithmic noise calibra-
tion and accounting methods. These methods use numerical
computations to, e.g. calibrate perturbations and compute
cumulative privacy losses at run time, without relying on
hand-crafted worst-case bounds. For example, recent works
have proposed methods to account for the privacy loss under
compositions occurring in complex mechanisms (Rogers
et al., 2016; Abadi et al., 2016).

In this work we revisit the Gaussian mechanism and develop
two ideas to improve the utility of output perturbation DP
mechanisms based on Gaussian noise. The first improve-
ment is an algorithmic noise calibration strategy that uses
numerical evaluations of the Gaussian cumulative density
function (CDF) to obtain the optimal variance to achieve DP
using Gaussian perturbation. The analysis and the resulting
algorithm are provided in Section 3. In order to motivate
the need for a numerical approach to calibrate the noise of
a DP Gaussian perturbation mechanism, we start with an
analysis of the main limitations of the classical Gaussian
mechanism in Section 2. A numerical evaluation provided
in Section 5.1 showcases the advantages of our optimal
calibration procedure.

The second improvement equips the Gaussian perturbation
mechanism with a post-processing step which denoises the
output using adaptive estimation techniques from the statis-
tics literature. Since DP is preserved by post-processing
and the distribution of the perturbation added to the desired
outcome is known, this allows a mechanism to achieve the
desired privacy guarantee while increasing the accuracy of
the released value. The relevant denoising estimators and
their utility guarantees are discussed in Section 4. Results
presented in this section are not new: they are the product
of a century’s worth of research in statistical estimation.
Our contribution is to compile relevant results scattered
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throughout the literature in a single place and showcase
their practical impact in synthetic (Section 5.2) and real
(Section 5.3) datasets, thus providing useful pointers and
guidelines for practitioners.

2. Limitations of the Classical Gaussian
Mechanism

Let X be an input space equipped with a symmetric neigh-
bouring relation z ~ /. Lete > 0and 6 € [0,1] be
two privacy parameters. A Y-valued randomized algorithm
M : X — Yis (¢,0)-DP (Dwork et al., 2006) if for ev-
ery pair of neighbouring inputs = ~ 2’ and every possible
(measurable) output set £ C Y the following inequality
holds:

P[M(z) € E] < e*P[M(2') € E]+§ . (1)

The definition of DP captures the intuition that a compu-
tation on private data will not reveal sensitive information
about individuals in a dataset if removing or replacing an
individual in the dataset has a negligible effect in the output
distribution.

In this paper we focus on the family of so-called output
perturbation DP mechanisms. An output perturbation mech-
anism M for a deterministic vector-valued computation
f : X — R is obtained by computing the function f on
the input data x and then adding random noise sampled
from a random variable Z to the output. The amount of
noise required to ensure the mechanism M (x) = f(z) + Z
satisfies a given privacy guarantee typically depends on how
sensitive the function f is to changes in the input and the spe-
cific distribution chosen for Z. The Gaussian mechanism
gives a way to calibrate a zero mean isotropic Gaussian
perturbation Z ~ N(0,0%1) to the global Ly sensitivity
A =sup ., || f(z) — f(a')] of f as follows.

Theorem 1 (Classical Gaussian Mechanism). For any
g,0 € (0,1), the Gaussian output perturbation mechanism

with o = Ay/21og(1.25/8) /e is (e, )-DP.

A natural question one can ask about this result is whether
this value of o provides the minimal amount of noise re-
quired to obtain (g, §)-DP with Gaussian perturbations. An-
other natural question is what happens in the case ¢ > 1.
This section addresses both these questions. First we show
that the value of o given in Theorem 1 is suboptimal in the
high privacy regime ¢ — 0. Then we show that this prob-
lem is in fact inherent to the usual proof strategy used to
analyze the Gaussian mechanism. We conclude the section
by showing that for large values of ¢ the standard devia-
tion of a Gaussian perturbation that provides (g, 0)-DP must
scale like Q(1/+/2). This implies that the scaling ©(1/¢)
provided by the classical Gaussian mechanism in the range
e € (0,1) cannot be extended beyond any bounded interval.

2.1. Limitations in the High Privacy Regime

To illustrate the sub-optimality of the classical Gaussian
mechanism in the regime ¢ — 0 we start by showing it is
possible to achieve (0, )-DP using Gaussian perturbations.
This clearly falls outside the capabilities of the classical
Gaussian mechanism, since the standard deviation o =
©(1/¢) provided by Theorem 1 grows to infinity as € — 0.

Theorem 2. A Gaussian output perturbation mechanism
with o = A /24 is (0,6)-DP".

Previous analyses of the Gaussian mechanism are based on
a simple sufficient condition for DP in terms of the privacy
loss random variable (Dwork & Roth, 2014). The next
section explains why the usual analysis of the Gaussian
mechanism cannot yield tight bounds for the regime ¢ —
0. This shows that our example is not a corner case, but
a fundamental limitation of trying to establish (g, §)-DP
through said sufficient condition.

2.2. Limitations of Privacy Loss Analyses

Given a vector-valued mechanism M let pys(,)(y) denote
the density of the random variable Y = M (z). The privacy
loss function of M on a pair of neighbouring inputs z ~
is defined as

PM(z) (v) )

éAI,m,x’ (y) = IOg <

The privacy loss random variable Ly ¢ » = {pr 2,00 (Y) 18
the transformation of the output random variable Y = M ()
by the function £,/ .. For the particular case of a Gaussian
mechanism M (z) = f(z) + Z with Z ~ N(0,0%]) it is
well-known that the privacy loss random variable is also
Gaussian (Dwork & Rothblum, 2016).

Lemma 3. The privacy loss Ly ;. of a Gaussian output
perturbation mechanism follows a distribution N (n,2n)
withn = D? /202, where D = || f(x) — f(2')]|.

The privacy analysis of the classical Gaussian mechanism
relies on the following sufficient condition: a mechanism
M is (e, 6)-DP if the privacy loss Ly, 4 . satisfies

Vo ~ (E/ : ]P[L]\/[@’z/ > E] < o . (2)

Since Lemma 3 shows the privacy loss Ly . .- of the Gaus-
sian mechanism is a Gaussian random variable with mean
|l f(z) — f(a")||?/202, we have P[Lps .0 > 0] > 1/2 for
any pair of datasets with f(x) # f(«’). This observation
shows that in general it is not possible to use this sufficient
condition for (g, §)-DP to prove that the Gaussian mecha-
nism achieves (0, ¢)-DP for any § < 1/2. In other words,

"Proofs for all results given in the paper are presented in Ap-
pendix A.
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the sufficient condition is not necessary in the regime ¢ — 0.
We conclude that an alternative analysis is required in order
to improve the dependence on ¢ in the Gaussian mechanism.

2.3. Limitations in the Low Privacy Regime

The last question we address in this section is whether the
order of magnitude 0 = O(1/¢) given by Theorem 1 for
€ < 1 can be extended to privacy parameters of the form
€ > 1. We show this is not the case by providing the
following lower bound.

Theorem 4. Let f : X — R? have global Ly sensitivity
A. Suppose e > 0and 0 < § < 1/2 — e3¢ /\/dze. If
the mechanism M (z) = f(z) + Z with Z ~ N(0,021) is
(¢,0)-DP, then o > A//2¢.

Note that as € — oo the upper bound on ¢ in Theorem 4
converges to 1/2. Thus, as ¢ increases the range of 4’s
requiring noise of the order 2(1/+/¢) increases to include
all parameters of practical interest. This shows that the rate
o = O(1/¢) provided by the classical Gaussian mechanism
cannot be extended beyond the interval € € (0, 1). Note this
provides an interesting contrast with the Laplace mechanism,
which can achieve e-DP with standard deviation ©(1/¢) in
the low privacy regime.

3. The Analytic Gaussian Mechanism

The limitations of the classical Gaussian mechanism de-
scribed in the previous section suggest there is room for
improvement in the calibration of the variance of a Gaus-
sian perturbation to the corresponding global Lo sensitivity.
Here we present a method for optimal noise calibration
for Gaussian perturbations that we call analytic Gaussian
mechanism. To do so we must address the two sources of
slack in the classical analysis: the sufficient condition (2)
used to reduce the analysis to finding an upper bound for
PN (n,2n) > ¢], and the use of a Gaussian tail approxi-
mation to obtain such upper bound. We address the first
source of slack by showing that the sufficient condition in
terms of the privacy loss random variable comes from a
relaxation of a necessary and sufficient condition involving
two privacy loss random variables. When specialized to the
Gaussian mechanism, this condition involves probabilities
about Gaussian random variables, which instead of approxi-
mating by a tail bound we represent explicitly in terms of
the CDF of the standard univariate Gaussian distribution:

B =PNO.D) <t = = [ Ly,

Using this point of view, we introduce a calibration strategy
for Gaussian perturbations that requires solving a simple
optimization problem involving ®(¢). We discuss how to
solve this optimization at the end of this section.

The first step in our analysis is to provide a necessary and
sufficient condition for differential privacy in terms of pri-
vacy loss random variables. This is captured by the follow-
ing result.

Theorem 5. A mechanism M : X — Y is (¢,0)-DP if and
only if the following holds for every x ~ x':

P[LM,LE,Z' Z 5] - ee]P)[LM,w’,x S _5] S 0. (3)

Note that Theorem 5 immediately implies the sufficient
condition given in (2) through the inequality

P[LJ\/I,x,x’ Z 5] - EEIP[LJM,Q:/,Q: S _5] S ]P)[LM,Q:,:C’ Z 5] .

Now we can use Lemma 3 to specialize (3) for a Gaussian
output perturbation mechanism. The relevant computations
are packaged in the following result, where we express the
probabilities in (3) in terms of the Gaussian CDF .

Lemma 6. Suppose M(x) = f(x) + Z is a Gaussian
output perturbation mechanism with Z ~ N(0,021). For
any x ~ x' let D = || f(x) — f(z")||. Then the following
hold for any € > 0:

D eo
PlLyrzor > €] =@ <20 - D) ) 4)
D eo

This result specializes the left hand side of (3) in terms of the
distance D = || f(z) — f(«')|| between the output means on
a pair of neighbouring datasets. To complete the derivation
of our analytic Gaussian mechanism we need to ensure that
(3) is satisfied for every pair x ~ z’. The next lemma shows
that this reduces to plugging the global Ly sensitivity A in
the place of D in (4) and (5).

Lemma 7. For any € > 0, the function h : R>g — R
defined as follows is monotonically increasing:

h(n) = PN (n,2n) > ] — e“P[N(n,2n) < —¢] .

Now we are ready to state our main result, whose proof
follows directly from Theorem 5, Lemma 7, and equations
(4) and (5).

Theorem 8 (Analytic Gaussian Mechanism). Let f : X —
R? be a function with global Ly sensitivity A. Foranye > 0
and € [0, 1], the Gaussian output perturbation mechanism
M(z) = f(z)+ Z with Z ~ N(0,0%I) is (¢, 6)-DP if and
only if

A eo A eo
Bl Y ) I N
@<20 A) 6@( 20 A)_6 ©)

This result shows that in order to obtain an (e, §)-DP Gaus-
sian output perturbation mechanism for a function f with
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Algorithm 1: Analytic Gaussian Mechanism
Public Inputs: f, A, ¢,

Private Inputs: =

Let §p = ®(0) — ef®(—+/2¢)

if 6 > &g then

Define B (v) = ®(\/ev) — e ®(—+/e(v + 2))
Compute v* = sup{v € R>¢ : BI (v) < §}

Let oo = /1 +v*/2 — \/v*/2
Define B (u) = ®(—+/eu) — ef®(—/e(u + 2))

Compute v* = inf{u € R>o : B_ (u) < 4}
| Leta=\/1+u"/2+\/u*/2
Leto = aA/V2¢e
Return f(z) + N(0,021)

else

global L, sensitivity A it is enough to find a noise vari-
ance o2 satisfying (6). One could now use upper and lower
bounds for the tail of the Gaussian CDF to derive an ana-
lytic expression for a parameter o satisfying this constraint.
However, this again leads to a suboptimal result due to the
slack in these tail bounds in the non-asymptotic regime. In-
stead, we propose to find ¢ using a numerical algorithm by
leveraging the fact that the Gaussian CDF can be written
as ®(t) = (1 + erf(t/v/2))/2, where erf is the standard
error function. Efficient implementations of this function
to very high accuracies are provided by most statistical and
numerical software packages. However, this strategy re-
quires some care in order to avoid numerical stability issues
around the point where the expression A /20 — o /A in (6)
changes sign. Thus, we further massage the left hand side
(6) we obtain the implementation of the analytic Gaussian
mechanism given in Algorithm 1. The correctness of this
implementation is provided by the following result.

Theorem 9. Let f be a function with global Lo sensitivity
A. Foranye > 0and 6 € (0,1), the mechanism described
in Algorithm 1 is (e, 6)-DP.

Given a numerical oracle for computing ®(¢) based on the
error function it is relatively straightforward to implement
a solver for finding the values v* and uv* needed in Algo-
rithm 1. For example, using the fact that B (v) is monoton-
ically increasing we see that computing v* is a root finding
problem for which one can use Newton’s method since
the derivative of ®(¢) can be computed in closed form us-
ing Leibniz’s rule. In practice we find that a simple scheme
based on binary search initiated from an interval obtained by
finding the smallest k& € N such that B (2%) > § provides
a very efficient and robust way to find v* up to arbitrary
accuracies (the same applies to ©*).

4. Optimal Denoising

Can we improve the performance of analytical Gaussian
mechanism even further? The answer is “yes” and “no”. We
can’t because Algorithm 1 is already the exact calibration of
the Gaussian noise level to the given privacy budget. But if
we consider the problem of designing the best differentially
private procedure M (x) that approximates f(z), then there
could still be room for improvement.

In this section, we consider a specific class of mechanisms
that denoise the output of a Gaussian mechanism. Let
9 ~ N(f(x),0%I), we are interested in designing a post-
processing function g such that § = g(g) is closer to f(x)
than . This class of mechanisms are of particular interest
for differential privacy because (1) since differential pri-
vacy is preserved by post-processing, releasing a function
7 = g(7) of a differentially private output is again differen-
tially private; (2) since information about f and the distribu-
tion of the noise are publicly known, this information can
be leveraged to design denoising functions.

This is a statistical estimation problem, where f(z) is the
underlying parameter and ¢ is the data. Since in this case
we are adding the noise ourselves, it is possible to use the
classical statistical theory on Gaussian models as is because
the Gaussian assumption is now true by construction. This
is however an unusual estimation problem where all we
observe is a single data point. Since ¢ is the maximum
likelihood estimator, if there is no additional information
about f(x), we cannot hope to improve the estimation error
uniformly over all f(x) € R? But there is still some-
thing we can do when we consider either of the following
assumptions: (A.1) x is drawn from some underlying distri-
bution, thus inducing some distribution on f(x); or, (A.2)
I f(z)|l, < B for some p, B > 0, where || - ||, is the L,-
norm (or pseudo-norm when p < 1).

Optimal Bayesian denoising. Assumption A.1 translates
the problem of optimal denoising into a Bayesian estimation
problem, where the underlying parameter f(x) has a prior
distribution, and the task is to find an estimator that attains
the Bayes risk — the minimum of the average estimation
error integrated over a prior 7, defined as

R(r)= min E[E[lg(7) - f(=)*|f ()] -

g:Rd—Rd

For square loss, the Bayes estimator is simply the posterior
mean estimator, as the following theorem shows:

Theorem 10. Let x ~ w and assume the induced distribu-
tion of f(x) is square integrable. Then the Bayes estimator
UBayes IS given by

YBayes = argmin [ [Hg@) - f(x)HQ] =E[f(2)[9] .
g:RI—Rd
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The proof can be found in any standard statistics text-
book (see, e.g., Lehmann & Casella, 2006). One may
ask what the corresponding MSE is and how much it im-
proves over the version without post-processing. The an-
swer depends on the prior and the amount of noise added
for differential privacy. When f(z) ~ N(0,w?I), the
posterior mean estimator can be written analytically into
JBayes = (w?/(w? + 02))§, and the corresponding Bayes
risk is E[||gBayes — f(2)]|?] = dw?0?/(0? + w?). In other
word, we get a factor of w? /(w? + %) improvement over
simply using g.

In general, there is no analytical form for the posterior mean,
but if we can evaluate the density of f(z) or sample from
the distribution of x, then we can obtain an arbitrarily good
approximation of §p,yes using Markov Chain Monte Carlo
techniques.

Optimal frequentist denoising. Assumption A.2 spells
out a minimax estimation problem, where the underlying
parameter f(z) is assumed to be within a set S C R%. In
particular, we are interested in finding ¢minimax that attains
the minimax risk

R(S) = min max E[|lg(7) - f()II’],

g:RISRY f(z)€S
on L, balls S = B(p,B) = {y € R* | |ly|l, < B} of
radius B.

A complete characterization of this minimax risk (up to a
constant) is given by Birgé & Massart (2001, Proposition 5),
who show that in the non-trivial region’ of the signal to
noise ratio B/, the ball S = B(p, B) satisfies

doP 1-p/2
R(S)=© | BPg*P (1 + log <Bp>) (7

for 0 < p < 2 and when p > 2, Donoho et al. (1990) show

that 5
Beo
R(5)=6 (a2+B2/d> |

Deriving exact minimax estimators is challenging and most
analyses assume certain asymptotic regimes (see the case
for p = 2 by Bickel et al. (1981)). Nonetheless, some
techniques have been shown to match R(5B(p, B)) up to a
small constant factor in the finite sample regime (see, e.g.,
Donoho et al., 1990; Donoho & Johnstone, 1994). This
means that we can often improve the square error from do?
to R(B(p, B)) when we have the additional information that
f(x) is in some L,, ball. This could be especially helpful in
the high-dimensional case for p < 2. For instance if p = 1

and B = o, then we obtain a risk 0 By/1 + log(do/B),

*When v/logd < B/o < cpdl/p for a constant ¢, that de-
pends only on p.

which improves exponentially in d over the do? risk of 4.
More practically, if f(x) is a sparse histogram with s non-
zero elements, then taking p — 0 will result in an error
bound on the order of so%(1 + log(d)), which is linear in
the sparsity s rather than the dimension d.

Adaptive estimation. What if we do not know the prior
parameter w?, or a right choice of B and p? Can we still
come up with estimators that take advantage of these struc-
tures? It turns out that this is the problem of designing
adaptive estimators which sits at the heart of statistical re-
search. An adaptive estimator in our case, is one that does
not need to know w? or a pair of B and p, yet behave nearly
as well as Bayes estimator that knows w? or the minimax
estimator that knows B and p for each parameter regime.

We first give an example of an adaptive Bayes estimator that
does not require us to specify a prior, yet can perform almost
as well as the optimal Bayes estimator for all isotropic
Gaussian prior simultaneously.

Theorem 11 (James-Stein estimator and its adaptivity).
When d > 3, substituting w? in YBayes With its maximum
likelihood estimate under

f@) ~N(O,w?I) , glf(x) ~ N(f(z),0°])

produces the James-Stein estimator

gis = <1 _(d=2)07 2)02) g

9112
Moreover, it has an MSE

_9)2 2
B [lis - @) =do® (1= 52T

The James-Stein estimator has the property that it always
improves the MLE g when d > 3 (Stein, 1956) and it always
achieves a risk that is within a d?/(d — 2)? multiplicative

factor of the Bayes risk of Jpayes for any w?.

We now move on to describe a method that is adaptive to
B and p in minimax estimation. Quite remarkably, Donoho
(1995) shows that choosing A = o+/2logd in the soft-
thresholding estimator

gru = sign(y) max{0, [j] — A} (®)

yields a nearly optimal estimator for every L,, ball.

Theorem 12 (The adaptivity of soft-thresholding, Theorem
4.2 of (Donoho, 1995)). Let S = B(p, B) for some p, B >
0. The soft-thresholding estimator with A = o+/2logd
obeys that

sup E[[grn — f(2)[?] < (2logd+1)(o*+2.22R(S)) .
f(x)es



Improving the Gaussian Mechanism for Differential Privacy

The result implies that the soft-thresholding estimator is
nearly optimal for all balls up to a multiplicative factor of
4.441og(d).

Thanks to the fact that we know the parameter o exactly,
both g5 and gy are now completely free of tuning parame-
ters. Yet, they can achieve remarkable adaptivity that covers
a large class of model assumptions and function classes. A
relatively small price to pay for such adaptivity is that we
might lose a constant (or a log(d)) factor. Whether such
adaptivity is worth will vary on a case-by-case basis.

Take the problem of private releasing a histogram of n items
in d bins. Theorem 12 and Equation (7) with p < 1 imply
that the soft-thresholding estimator obeys

E [||gra — f(2)]?] = O (mm{wgnukasz}) .

where s denotes the number of nonzero elements in f(z)
and k is the largest power-law exponent greater than 1 such
that order statistics f ()@Y < ni~* foralli = 1,...,d
and O hides logarithmic factors in d, do'/n. The fact that
s < d implies that the soft-thresholding estimator improves
over the naive private release for all d, n, s and the nt/k
factor suggests that we can take advantage of an unknown
power law distribution even if the histogram is not really
sparse. This makes our technique effective in the many
data mining problems where power law distributions occur
naturally (Faloutsos et al., 1999).

Related work. Denoising as a post-processing step in the
context of differentially privacy is not a new idea. Notably,
Barak et al. (2007); Hay et al. (2009) show that a post-
processing step enforcing consistency of contingency table
releases and graph degree sequences leads to more accurate
estimations. Williams & McSherry (2010) sets up the gen-
eral statistical (Bayesian) inference problem of DP releases
by integrating auxiliary information (a prior). Karwa et al.
(2016) exploits knowledge of the noise distribution use to
achieve DP in the inference procedure of a network model
and shows that it helps to preserve asymptotic efficiency.
Nikolov et al. (2013) demonstrates that projecting linear
regression solutions to a known ¢;-ball improves the esti-
mation error from O(poly(d)) to O(polylog(d)) when the
underlying ground truth is sparse. Bernstein et al. (2017)
uses Expectation—Maximization to denoise the parameters
of a class of graphical models starting from noisy empirical
moments obtained using the Laplace mechanism.

In all the above references there is some prior knowledge
(constraint sets, sparsity or Bayesian prior) that is exploited
to improve the utility of DP releases. To the best of our
knowledge, we are the first to consider “adaptive estimation”
and demonstrate how classical techniques can be helpful
even without such prior knowledge. These estimators are
not new; they have been known in the statistics literature for

decades. Our purpose is to compile facts that are relevant
to the practice of DP and initiate a systematic study of how
these ideas affect the utility of DP mechanisms, which we
complement with the experimental evaluation presented in
the next section.

5. Numerical Experiments

This section provides an experimental evaluation of the im-
provements in utility provided by optimal calibration and
adaptive denoising. First we numerically compare the vari-
ance of the analytic Gaussian mechanism and the classical
mechanism for a variety of privacy parameters. Then we
evaluate the contributions of denoising and analytic calibra-
tion against a series of baselines for the task of private mean
estimation using synthetic data. We also evaluate several
denoising strategies on the task of releasing heat maps based
on the New York City taxi dataset under differential privacy.
Further experiments are presented in Appendix B, including
an evaluation of denoising strategies for the task of private
histogram release.

5.1. Analytic Gaussian Mechanism

We implemented Algorithm 1 in Python® and ran experi-
ments to compare the variance of the perturbation obtained
with the analytic Gaussian mechanism versus the variance
required by the classical Gaussian mechanism. In all our
experiments the values of v* and u* were solved up to an
accuracy of 10712 using binary search and the implemen-
tation of the erf function provided by SciPy (Jones et al.,
2001).

The results are presented in the two leftmost panels in Fig-
ure 1. The plots show that as ¢ — 0 the optimally calibrated
perturbation outperforms the classical mechanism by sev-
eral orders of magnitude. Furthermore, we see that even for
values of € close to 1 our mechanism reduces the variance
by a factor of 1.4 or more, with higher improvements for
larger values of 4.

5.2. Denoising for Mean Estimation

Our next experiment evaluates the utility of denoising
combined with the analytical Gaussian mechanism for the
task of private mean estimation. The input to the mecha-
nism is a dataset + = (z1,...,x,) containing n vectors
x; € R? and the underlying deterministic functionality is
f(z) = (1/n)>°" , z;. This relatively simple task is a
classic example from the family of linear queries which are
frequently considered in the differential privacy literature.
We compare the accuracy of several mechanisms M for
releasing a private version of f(z) in terms of the Euclidean

3See https://github.com/BorjaBalle/
analytic—gaussian-mechanism.
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Figure 1. Two leftmost plots: Experiments comparing the classical Gaussian mechanism (cGM) and the analytic Gaussian mechanism
(aGM), in terms of their absolute standard deviations as € — 0, and in terms of the gain in variance as a function of €. Two rightmost
plots: Mean estimation experiments showing L error between the private mean estimate and the non-private empirical mean as a function

of the dimension d.

distance || M (x) — f(z)]|2. In particular, we test the analyti-
cal Gaussian mechanism with either James-Stein denoising
cf. Theorem 11 (aGM-JS) or optimal thresholding denois-
ing cf. Theorem 12 (aGM-TH), as well as several baselines
including: the classical Gaussian mechanism (cGM), the an-
alytical Gaussian mechanism without denoising (aGM), and
the Laplace mechanism (Lap) using the same ¢ parameter
as the Gaussian mechanisms.

To provide a thorough comparison we explore of the dif-
ferent parameters of the problem on the final utility. The
key parameters of the problem are the dimension d and
the DP parameters € and 6. The dimension affects the util-
ity through the bounds provided in Theorem 11 and Theo-
rem 12. The DP parameters affect the utility through the
variance o2 of the mechanism, which is also affected by
the sample size n via the global sensitivity. Thus, we can
characterize the effect of o2 by keeping n fixed and chang-
ing the DP parameters. In our experiments we consider a
fixed sample size n = 500 and privacy parameter § = 10~
while trying several values for €.

The other parameter that affects the utility is the “size” of
f(x), controlled either through the variance w? or the norm
ball S. Since the denoising estimators we use are adap-
tive to these parameters and do not need to know them in
advance, we sample the dataset = repeatedly to obtain a
diversity of values for f(z). Each dataset z is sampled as
follows: first sample a center xo ~ N(0, I) and then build
x=(x1,...,2T,) wWith x; = x¢ + &;, where each &; is i.i.d.
with independent coordinates sampled uniformly from the
interval [—1/2,1/2]. Thus, in each dataset the points x; all
lie in an L, -ball of radius 1, leading to a global L, sensi-
tivity Ay = v/d/n and a global L; sensitivity A; = d/n.
These are used to calibrate the Gaussian and Laplace pertur-
bations, respectively.

The results are presented in two rightmost panels of Figure 1.
Each point in every plot is the result of averaging the error

over 100 repetitions with different datasets. The first plot
uses € = 0.01 and shows how denoised methods improve
the accuracy over all the other methods, sometimes by orders
of magnitude. The second plot shows that for this problem
the James-Stein estimator provides better accuracy in the
high-dimensional setting.

5.3. New York City Taxi Heat Maps

In this section, we apply our method to New York City taxi
data. The dataset is a collection of time-stamped pick-ups
and drop-offs of taxi drivers and we are interested in sharing
a density map of such pick-ups and drop-offs in Manhattan
at a specific time of a specific day under differential privacy.

This is a problem of significant practical interest. Ever
since the NYC Taxi & Limousine Commission released
this dataset, there has been multiple independent reports
concerning the security and privacy risks this dataset poses
for taxi drivers and their passengers (see, e.g., Pandurangan;
Douriez et al., 2016). The techniques presented in this
paper allow us to provably prevent individuals (on both the
per-trip level and per-cab level) in the dataset from being
identified, while remarkably, permitting the release of rich
information about the data with fine-grained spatial and
temporal resolution.

Specifically, we apply the analytical Gaussian mechanism
to release the number of picks-ups and drop-offs at every
traffic junction in Manhattan. There are a total of 3,784 such
traffic junctions and they are connected by 7,070 sections
of roads. We will treat them as nodes and edges on a graph.
In the post-processing phase, we apply graph smoothing
techniques to reveal the underlying signal despite the noise
due to aGM. Specifically, we compare the JS-estimator and
the soft-thresholding estimator we described in Section 4, as
well as the same soft-thresholding estimator applied to the
coefficients of a graph wavelet transform due to Sharpnack
et al. (2013). The basis transformation is important be-
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Figure 2. Illustration of the denoising in differentially private release of NYC taxi density during 00:00 - 01:00 am Sept 24, 2014. From left
to right, the figures represent the true data, the output of the analytical Gaussian mechanism, the reconstructed signal from soft-thresholded
wavelet coefficients with spanning-tree wavelet transform (Sharpnack et al., 2013), and the results of trend filtering on graphs (Wang
et al., 2016). We observe that adding appropriate post-processing significantly reduces the estimation error and also makes the underlying

structures visible.

cause the data might be sparser in the transformed domain.
For reference, we also include the state-of-the-art graph
smoothing techniques called graph trend filtering (Wang
et al., 2016), which has one additional tuning parameter but
has been shown to perform significantly better than wavelet
smoothing in practice.

Our experiments provide cab-level differential privacy by
assuming that every driver does a maximum of 5 trips within
an hour so that we have a global Lo-sensitivity of A = 5.
This is a conservative but reasonable estimate and can be
enforced by preprocessing the data. Data within each hour
is gathered and distributed to each traffic junction using a
kernel density estimator; further details are documented in
Doraiswamy et al. (2014).

We present some qualitative comparisons in Figure 2, where
we visualize the privately released heat map with and with-
out post-processing. Relatively speaking, trend filtering per-
forms better than wavelet smoothing, but both approaches
significantly improves the RMSE over the DP release with-
out post-processing. The results in Appendix B provide
quantitative results by comparing the mean square error of
cGM, aGM as well as the aforementioned denoising tech-
niques for data corresponding to different time intervals.

6. Conclusion and Discussion

In this paper, we embark on a journey of pushing the utility
limit of Gaussian mechanism for (e, §)-differential privacy.
We propose a novel method to obtain the optimal calibration

of Gaussian perturbations required to attain a given DP
guarantee. We also review decades of research in statistical
estimation theory and show that combining these techniques
with differential privacy one obtains powerful adaptivity
that denoises differentially private outputs nearly optimally
without additional hyperparameters. On synthetic data and
on the New York City Taxi dataset we illustrate a significant
gain in estimation error and fine-grained spatial-temporal
resolution.

There are a number of theoretical problems of interest for
future work. First, on the problem of differentially pri-
vate estimation. Our post-processing approach effectively
restricts our choice of algorithms to the composition of pri-
vacy release and post-processing. While we now know that
we are optimal in both components, it is unclear whether
we lose anything relative to the best differentially private
algorithms. Secondly, the analytical calibration proposed in
this paper is optimal for achieving (e, §)-DP with Gaussian
noise. But when building complex mechanisms we are stuck
in the dilemma of choosing between (a) using the aGM with
the advanced composition (Kairouz et al., 2015); or, (b)
using Rényi DP (Mironov, 2017) or zCDP (Bun & Steinke,
2016) for tighter composition and calculate the (e, §) from
moment bounds. While (a) is tighter in the calculation the
privacy parameters of each intermediate value, (b) is tighter
in the composition but cannot take advantage of aGM. It
would be interesting if we could get the best of both worlds.
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