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Abstract
We consider a generalization of the classic lin-
ear regression problem to the case when the
loss is an Orlicz norm. An Orlicz norm is
parameterized by a non-negative convex func-
tion G : R+ → R+ with G(0) = 0: the
Orlicz norm of a vector x ∈ Rn is defined
as ‖x‖G = inf {α > 0 |

∑n
i=1G(|xi|/α) ≤ 1} .

We consider the cases where the function G(·)
grows subquadratically. Our main result is based
on a new oblivious embedding which embeds the
column space of a given matrix A ∈ Rn×d with
Orlicz norm into a lower dimensional space with
`2 norm. Specifically, we show how to efficiently
find an embedding matrix S ∈ Rm×n,m < n
such that ∀x ∈ Rd,Ω(1/(d log n)) · ‖Ax‖G ≤
‖SAx‖2 ≤ O(d2 log n) · ‖Ax‖G. By applying
this subspace embedding technique, we show an
approximation algorithm for the regression prob-
lem minx∈Rd ‖Ax−b‖G, up to aO(d log2 n) fac-
tor. As a further application of our techniques, we
show how to also use them to improve on the al-
gorithm for the `p low rank matrix approximation
problem for 1 ≤ p < 2.

1. Introduction
Numerical linear algebra problems play a significant role
in machine learning, data mining, and statistics. One of the
most important such problems is the regression problem,
see some recent advancements in, e.g., (Zhong et al., 2016;
Bhatia et al., 2015; Jain & Tewari, 2015; Liu et al., 2014;
Dhillon et al., 2013). In a linear regression problem, given a
data matrix A ∈ Rn×d with n data points A1, A2, · · · , An
in Rd and the response vector b ∈ Rn, the goal is to find a
set of coefficients x∗ ∈ Rd such that

x∗ = arg minx∈Rd l(Ax− b), (1)
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where l : Rn → R+ is the loss function. When l(y) =
‖y‖22 =

∑n
i=1 y

2
i , then the problem is the classic least

square regression problem (`2 regression). While there has
been extensive research on efficient algorithms for solving
`2 regression, it is not always a suitable loss function to use.

In many settings, alternative choices for a loss function
lead to qualitatively better solutions x∗. For example, a
popular such alternative is the least absolute deviation (`1)
regression — with l(y) = ‖y‖1 =

∑n
i=1 |yi| — which

leads to solutions that are more robust than those of `2
regression (see (Wikipedia; Gorard, 2005). In a nutshell, the
`2 regression is suitable when the data contains Gaussian
noise, whereas `1 — when the noise is Laplacian or sparse.

A further popular class of loss functions l(·) arises from
M-estimators, defined as l(y) =

∑n
i=1M(yi) where M(·)

is an M-estimator function (see (Zhang, 1997) for a list of
M-estimators). The benefit of (some) M-estimators is that
they enjoy advantages of both `1 and `2 regression. For
example, when M(·) is the Huber function (Huber et al.,
1964), then the regression looks like `2 regression when yi
is small, and looks like `1 regression otherwise. However,
these loss functions come with a downside: they depend
on the scale, and rescaling the data may give a completely
different solution!
Our contributions. We introduce a generic algorithmic
technique for solving regression for an entire class of loss
functions that includes the aforementioned examples, and
in particular, a “scale-invariant” version of M-estimators.
Specifically, our class consists of loss functions l(y) that
are Orlicz norms, defined as follows: given a non-negative
convex function G : R+ → R+ with G(0) = 0, for x ∈
Rn,we can define ‖x‖G to be an Orlicz norm with respect to
G(·): ‖x‖G , inf {α > 0 |

∑n
i=1G(|xi|/α) ≤ 1} . Note

that `p norm, for p ∈ [1,∞), is a special case of Orlicz
norm with G(x) = xp. Another important example is the
following “scale-free” version of M-estimator. Taking f(·)
to be a Huber function, i.e.

f(x) =

{
x2/2 |x| ≤ δ
δ(|x| − δ/2) otherwise

for some constant δ, we take G(x) = f(f−1(1)x). Then
the norm ‖x‖G looks like `2 norm when x is flat, and looks
like `1 norm when x is sparse. Figure 1 shows the unit norm
ball of this kind of Orlicz norm.
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Figure 1. Unit norm balls of Orlicz norm induced by normalized
Huber functions with different δ.

Our main result is a generic algorithm for solving any re-
gression problem Eqn. (1) with any loss function that is a
“nice” Orlicz norm; see Section 2 for a formal definition of
“nice”, and think of it as subquadratic for now.

Our main result employs the concept of subspace embed-
dings, which is a powerful tool for solving numerical lin-
ear algebra problems, and as such has many applications
beyond regression. We say that a subspace embedding ma-
trix S ∈ Rm×n embeds the column space of A ∈ Rn×d
(n > m) with u-norm into a subspace with v-norm, if
∀x ∈ Rd, we have ‖Ax‖u/α ≤ ‖SAx‖v ≤ β‖Ax‖u
where αβ is called distortion (approximation). A long line
of work studied `2 regression problem based on `2 subspace
embedding techniques; see, e.g., (Clarkson & Woodruff,
2009; 2013; Nelson & Nguyên, 2013). Furthermore, there
are works on `p regression problem based on `p subspace
embedding techniques (see, e.g. (Sohler & Woodruff, 2011;
Meng & Mahoney, 2013; Clarkson et al., 2013; Woodruff
& Zhang, 2013)), and similarly for M-estimators (Clarkson
& Woodruff, 2015).

Our overall results are composed of four parts:

1. We develop the first subspace embedding method for
all “nice” Orlicz norms. The embedding obtains a
distortion factor polynomial in d, which was recently
shown necessary (Wang & Woodruff, 2018).

2. Using the above subspace embedding, we obtain the
first approximation algorithm for solving the linear
regression problem with any “nice” Orlicz norm loss.

3. As a further illustration of the power of the subspace
embedding method, we employ it towards improving
on the best known result for another problem: `p low
rank approximation for 1 ≤ p < 2 from (Song et al.,
2017), which is the “`p-version of PCA”.

4. Finally, we complement our theoretical results with
experimental evaluation of our algorithms. Our experi-
ments reveal that that the solution of regression under
the Orlicz norm induced by Huber loss is much better
than the solution given by regression under `1 or `2
norms, under natural noise distributions in practice. We
also perform experiments for Orlicz regression with
different Orlicz functions G and show their behavior
under different noise settings, thus exhibiting the flexi-
bility of our framework.

To the best of our knowledge, our algorithms are the first low
distortion embedding and regression algorithms for general
Orlicz norm. For the problem of low rank approximation
under `p norm, p ∈ [1, 2), our algorithms achieve simulta-
neously the best approximation and the best running time.
In contrast, all the previous algorithms achieve either the
best approximation, or the best running time, but not both
at the same time.

Our algorithms for subspace embedding and regression are
simple, and in particular are not iterative. In particular, for
the subspace embedding, the embedding matrix S is gener-
ated independently of the data. In the regression problem,
we multiply the input with the embedding matrix, and thus
reduce to the `2 regression problem, for which we can use
any of the known algorithm.

Technical discussion. Next we highlight some of our
techniques used to obtain the theoretical results.

Subspace embedding. Our starting point is a technique
introduced in (Andoni et al., 2017) for the Orlicz norms,
which can be seen as an embedding that has guarantees
for a fixed vector only. In contrast, our main challenge
here is to obtain an embedding for all vectors x ∈ Rn
in a certain d-dimensional subspace. Consider a random
diagonal matrix D ∈ Rn×n with each diagonal entry is
a “generalized exponential” random variable, i.e., drawn
from a distribution with cumulative distribution function
1− e−G(x). Then, for a fixed x ∈ Rd, (Andoni et al., 2017)
show that ‖D−1Ax‖∞ is not too small with high probability.
We can combine this statement together with a net argument
and the dilation bound on ‖D−1Ax‖G, to argue that ∀x ∈
Rd, ‖D−1Ax‖∞ is not too small.

The other direction is more challenging — to show that
for a given matrix A ∈ Rn×d, and any fixed x ∈ Rd,
‖D−1Ax‖G cannot be too large. Once we show this “dila-
tion bound”, we combine it with the well-conditioned basis
argument (similar to (Dasgupta et al., 2009)), and prove that
∀x ∈ Rd, ‖D−1Ax‖G cannot be too large. Overall, we
have that ∀x ∈ Rd, ‖D−1Ax‖G ≤ O(d2 log n) · ‖Ax‖G,
and ‖D−1Ax‖∞ ≥ Ω(1/(d log n)) · ‖Ax‖G. Since `2
norm is sandwiched by ‖ · ‖G and `∞ norm, we have
that ∀x ∈ Rd,Ω(1/(d log n)) · ‖Ax‖G ≤ ‖D−1Ax‖2 ≤
O(d2 log n) · ‖Ax‖G. Then, the remaining part is to use
standard techniques (Woodruff & Zhang, 2013; Woodruff,
2014) to perform the `2 subspace embedding for the column
space of D−1A. See Theorem 16 for details.

The actual proof of the dilation bound is the most techni-
cally intricate result. Traditionally, since the pth power of
the `p norm is the sum of the pth power of all the entries, it
is easy to bound the expectation by using linearity of the
expectation. However it is impossible to apply this analysis
to Orlicz norm directly since Orlicz norm is not an ”entry-
wise” norm. Instead, we exploit a key observation that the
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Orlicz norm of vectors which are on the unit ball can be seen
as the sum of contribution of each coordinate. Thus, we
propose a novel analysis for any fixed vector by analyzing
the behavior of the normalized vector which is on the unit
Orlicz norm ball. To extend the dilation bound for a fixed
vector to all the vectors in a subspace, we generalize the
definition of `p norm well-conditioned basis to the Orlicz
norm case, and then show that the Auerbach basis provides
a good basis for Orlicz norm. To the best of our knowledge,
this is the first time Auerbach basis are used to analyze the
dilation bound of an embedding method for a norm distinct
from an `p norm. See Section 3 for details.

Regression with Orlicz norm. Here, given a matrix A ∈
Rn×d, a vector b ∈ Rn, the goal is to solve Equation 1
with Orlicz norm loss function. We can now solve this
problem directly using the subspace embedding from above,
in particular by applyingit to the column space of [A b].
We obtain an O(d3 log2 n) approximation ratio, which we
can further improve by observing that it actually suffices
to have the dilation bound on ‖D−1Ax∗‖G only for the
optimal solution x∗ (as opposed to for an arbitrary x). Using
this observation, we improve the approximation ratio to
O(d log2 n). See Theorem 18 for details. We evaluate the
algorithm’s performance and show that it performs well
(even when n is not much larger than d). See Section 5.

`p low rank matrix approximation. The `p norm is a special
case of the Orlicz norm ‖ · ‖G, where G(x) = xp. This
connection allows us to consider the following problem:
given A ∈ Rn×d, n ≥ d ≥ k ≥ 1, find a rank-k matrix
B ∈ Rn×d such that ‖A − B‖p is minimized. Here we
consider the case of 1 ≤ p < 2 and k = ω(log n). The best
known algorithm for this problem is from (Song et al., 2017),
which uses the dense p-stable transform to achieves k2 ·
poly(log n) approximation ratio. It has the downside that its
runtime does not compare favorably to the golden standard
of runtime linear in the sparsity of the input. To improve the
runtime, one can apply the sparse p-stable transform and
achieve input sparsity runtime, but that comes at the cost of
an Ω(k6) factor loss in the approximation ratio.

Using the above techniques, we develop an algorithm with
best of both worlds: k2 · poly(log n) approximation ratio
and the input sparsity running time at the same time. In par-
ticular, the main inefficiency of the algorithm (Song et al.,
2017) is the relaxation from `p norm to `2 norm, which in-
curs a further poly(k) approximation factor. In contrast, the
embedding based on exponential random variables embeds
`p norm to `2 norm directly, without further approximation
loss. Our embedding also comes with its own pitfalls — as
we now need to deal with mixed norms — thus requiring a
new analysis of the overall algorithm. See Theorem 23 for
details.

2. Notations and preliminaries
In this paper, we denote R+ to be the set of nonnegative re-
als. Define [n] = {1, 2, · · · , n}. Given a matrixA ∈ Rn×d,
∀i ∈ [n], j ∈ [d], Ai and Aj denotes the ith row and the
jth column of A respectively. nnz(A) denotes the number
of nonzero entries of A. The column space of A ∈ Rd is
{y | ∃x ∈ Rd, y = Ax}. ∀p 6= 2, ‖A‖p , (

∑
|Ai,j |p)1/p,

i.e. entrywise p-norm. ‖A‖F defines the Frobenius norm
of A, i.e. (

∑
A2
i,j)

1/2. A† denotes the Moore-Penrose
pseudoinverse of A. Given an invertible function f(·), let
f−1(·) be the inverse function of f(·). If f(·) is not invert-
ible in (−∞,+∞) but it is invertible in [0,+∞), then we
denote f−1(·) to be the inverse function of f(·) in domain
[0,+∞). inf and sup denote the infimum and supremum re-
spectively. f ′(x), f ′+(x), f ′−(x) denote the derivative, right
derivative and left derivative of f(x), respectively. Simi-
larly, define f ′′(x) for the second derivatives, and we define
f ′′+(x) = limh→0+(f ′(x+h)−f ′+(x))/h. In the following,
we give the definition of Orlicz norm.
Definition 1 (Orlicz norm) For any nonzero monotone
nondecreasing convex function G : R+ → R+ with
G(0) = 0. Define Orlicz norm ‖ · ‖G as: ∀n ∈ Z, n ≥
1, x ∈ Rn, ‖x‖G = inf {α > 0 |

∑n
i=1G(|xi|/α) ≤ 1} .

For any function G1(·) which is valid to define an Orlicz
norm, we can always “simplify/normalize” the function
to get another function G2 such that computing ‖ · ‖G1

is
equivalent to computing ‖ · ‖G2

.

Fact 2 Given a function G1 : R+ → R+ which
can induce an Orlicz norm ‖ · ‖G1 (Definition 1), de-
fine function G2 : R+ → R+ as the following:

G2(x) =

{
G1(G−11 (1)x) 0 ≤ x ≤ 1
sx− (s− 1) x > 1

where s =

sup {(G2(y)−G2(x)) /(y − x) | 0 ≤ x ≤ y ≤ 1} . Then
‖ · ‖G2

is a valid Orlicz norm. Furthermore, ∀n ∈ Z, n ≥
1, x ∈ Rn, we have ‖x‖G1

= ‖x‖G2
/G−11 (1).

Thus, without loss of generality, in this paper we consider
the Orlicz norm induced by function G which satisfies
G(1) = 1, and G(x) is a linear function for x > 1. In
addition, we also require that G(x) grows no faster than
quadratically in x. Thus, we define the property P of
a function G : R → R+ as the following: 1) G is a
nonzero monotone nondecreasing convex function in [0,∞);
2) G(0) = 0, G(1) = 1,∀x ∈ R, G(x) = G(−x); 3)
G(x) is a linear function for x > 1, i.e. ∃s > 0,∀x >
1, G(x) = sx + (1 − s); 4) ∃δG > 0 such that G is twice
differentiable on interval (0, δG). Furthermore, G′+(0) and
G′′+(0) exist, and either G′+(0) > 0 or G′′+(0) > 0; 5)
∃CG > 0,∀0 < x < y,G(y)/G(x) ≤ CG(y/x)2.

The condition 1 is required to define an Orlicz norm. The
conditions 2,3 are required because we can always do the
simplification/normalization (see Fact 2). The condition 4
is required for the smoothness of G. The condition 5 is
due to the subquadratic growth condition. Subquadratic
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Table 1. Some of M-estimators.

HUBER

{
x2/2 |x| ≤ c
c(|x| − c/2) |x| > c

`1 − `2 2(
√

1 + x2/2− 1)
“FAIR” c2 (|x|/c− log(1 + |x|/c))

growth condition is necessary for sketching
∑n
i=1G(xi)

with sketch size sub-polynomial in the dimension n, as
shown by (Braverman & Ostrovsky, 2010). For example,
if G(x) = xp for some p > 2, then ‖ · ‖G is the same as
‖ · ‖p. It is necessary to take Ω(n1−2/p) space to sketch `p
norm in n-dimensional space. Condition 5 is also necessary
for 2-concave property, (Kwapien & Schuett, 1985; Kwapie
& Schtt, 1989) shows that ‖ · ‖G can be embedded into `1
space if and only if G is 2-concave. Although (Schtt, 1995)
gives an explicit embedding to `1, it cannot be computed
efficiently.

There are many potential choices of G(·) which satis-
fies property P , the following are some examples: 1)
G(x) = |x|p for some 1 ≤ p ≤ 2. In this case ‖ · ‖G
is exactly the `p norm ‖ · ‖p; 2) G(x) can be a normal-
ized M-estimator function (see (Zhang, 1997)), i.e. de-
fine f(x) to be one of the functions in Table 1. and let

G(x) =

{
f(f−1(1)x) |x| ≤ 1
G′−(1)|x| − (G′−(1)− 1) |x| > 1

.

The following presents some useful properties of function
G with property P. See Appendix for details of proofs of
the following Lemmas.
Lemma 3 Given a function G(·) with property P , then
∀0 ≤ x ≤ 1, x2/CG ≤ G(x) ≤ x.
Lemma 4 Given a function G(·) with property P , then
∀x ∈ Rn, ‖x‖2/

√
CG ≤ ‖x‖G ≤ ‖x‖1.

Lemma 5 Given a function G(·) with property P , then
∀0 < x < y, we have y/x ≤ G(y)/G(x).
Lemma 6 Given a function G(·) with property P , there
exist a constant αG > 0 which may depend on G, such that
∀0 ≤ a, b, if ab ≤ 1, then G(a)G(b) ≤ αGG(ab).

3. Subspace embedding for Orlicz norm using
exponential random variables

In this section, we develop the subspace embedding under
the Orlicz norms which are induced by functions G with
the property P . We first show how to embed the subspace
with ‖ · ‖G norm into a subspace with `2 norm, and then
we use dimensionality reduction techniques for the `2 norm.
Overall, we will prove Theorem 16 stated at the end of
this section. Before discussing the details, we give formal
definitions of subspace embedding.
Definition 7 (Subspace embedding for Orlicz norm)
Given a matrix A ∈ Rn×d, if S ∈ Rm×n satisfies
∀x ∈ Rd, ‖Ax‖G/α ≤ ‖SAx‖v ≤ β‖Ax‖G where
α, β ≥ 1, ‖ · ‖v is a norm (can still be ‖ · ‖G), then we say
S embeds the column space of A with Orlicz norm into the
column space of SA with v-norm. The distortion is αβ.

If the distortion and the v-norm are clear from the context,
we just say S is a subspace embedding matrix for A.

Definition 8 (Subspace embedding for `2 norm)
Given a matrix A ∈ Rn×d, if S ∈ Rm×n satisfies
∀x ∈ Rd, (1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22, then
we say S is a subspace embedding of column space of A.

There are many choices of `2 subspace embedding matrix
A satisfying the above definition. Examples are: random
sign JL matrix (Achlioptas, 2003; Clarkson & Woodruff,
2009), fast JL matrix (Ailon & Chazelle, 2009), and sparse
embedding matrices (Clarkson & Woodruff, 2013; Meng &
Mahoney, 2013; Nelson & Nguyên, 2013).

The main technical thrust is to embed ‖·‖G into `2 norm. As
the embedding matrix, we use S = ΠD−1 where Π is one of
the above `2 embedding matrices andD is a diagonal matrix
of which diagonal entries are i.i.d. random variables draw
from the distribution with CDF 1 − e−G(t). Equivalently,
each entry on the diagonal of D is G−1(u), where u is an
i.i.d. sample from the standard exponential distribution,
i.e. CDF is 1 − e−t. In Section 3.1, we will prove that
∀x ∈ Rd, ‖D−1Ax‖Gwill not be too large. In Section 3.2,
we will show that ∀x ∈ Rd, ‖D−1Ax‖∞ cannot be too
small. Then due to Lemma 4, we know that ‖D−1Ax‖2 is
a good estimator to ‖Ax‖G. In Section 3.3, we show how
to put all the ingredients together.

3.1. Dilation bound
We construct a randomized linear map f : Rn → Rn:

(x1, x2, ..., xn)
f7−→ (x1/u1, x2/u2, ..., xn/un) where each

ui is drawn from a distribution with CDF 1− e−G(t). No-
tice that for proving the dilation bound, we do not need to
assume ui are independent.
Theorem 9 Given x ∈ Rn, let ‖ · ‖G be an Orlicz norm
induced by function G(·) which has property P , and
let f(x) = (x1/u1, x2/u2, ..., xn/un), where each ui is
drawn from a distribution with CDF 1 − e−G(t). Then
with probability at least 1 − δ − O(1/n19), ‖f(x)‖G ≤
O(αGδ

−1 log(n))‖x‖G, where αG is a constant may de-
pend on function G(·).
Proof sketch: By taking union bound, we have ∀i ∈
[n], ui ≥ G−1(1/n20) with high probability. Let α =
‖x‖G. For γ ≥ 1, we want to upper bound the prob-
ability that ‖f(x)‖G ≥ γα. This is equivalent to upper
bound the probability that ‖f(x)/(γα)‖G ≥ 1. Notice that
Pr(‖f(x)/(γα)‖G ≥ 1) = Pr(

∑
G(xi/α·1/(γui)) ≥ 1).

By Markov inequality, it suffices to bound the expectation
of
∑
G(xi/α ·1/(γui)) conditioned on ui are not too small.

By lemma 6,
∑
G(xi/α · 1/(γui)) ≤ αG/γ ·

∑
G(xi/α) ·

1/G(ui). Because ui is not too small, the conditional ex-
pectation of 1/G(ui) is roughly O(log n). So the proba-
bility that ‖f(x)‖G ≥ γα is bounded by O(αG log n/γ),
set γ = O(log n)αG/δ, we can complete the proof. See
appendix for the details of the whole proof.
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The final step is to use a well-conditioned basis; see details
in appendix.We then obtain the following theorem.

Theorem 10 Let G(·) be a function which has property P.
Given a matrix A ∈ Rn×m with rank d ≤ n, let D ∈ Rn×n
be a diagonal matrix of which each entry on the diagonal
is drawn from a distribution with CDF 1 − e−G(t). Then,
with probability at least 0.99, ∀x ∈ Rm, ‖D−1Ax‖G ≤
O(αGd

2 log n)‖Ax‖G, where αG ≥ 1 is a constant which
only depends on G(·).

3.2. Contraction bound
As in Section 3.1, we construct a randomized linear map f :

Rn → Rn: (x1, x2, ..., xn)
f7−→ (x1/u1, x2/u2, ..., xn/un)

where each ui is an i.i.d. random variable drawn from a
distribution with CDF 1−e−G(t). Notice that the difference
from proving the dilation bound is that we need ui to be
independent here. We use the following theorem:

Theorem 11 (Lemma 3.1 of (Andoni et al., 2017))
Given x ∈ Rn, let ‖ · ‖G be an Orlicz norm in-
duced by function G(·) which has property P , and let
f(x) = (x1/u1, x2/u2, ..., xn/un) , where each ui is an
i.i.d random variable drawn from a distribution with CDF
1 − e−G(t). Then for α ≥ 1, with probability at least
1− e−α, ‖f(x)‖∞ ≥ ‖x‖G/α.
By combining the result with the net argument (see ap-
pendix), and Theorems 11, 10, we get the following:

Theorem 12 G(·) is a function with property P. Given a
matrix A ∈ Rn×m with rank d ≤ n, let D ∈ Rn×n be
a diagonal matrix of which each entry on the diagonal
is an i.i.d. random variable drawn from the distribution
with CDF 1− e−G(t). Then, with probability at least 0.98,
∀x ∈ Rm,Ω(1/(α′Gd log n))‖Ax‖G ≤ ‖D−1Ax‖∞,
where α′G ≥ 1 is a constant which only depends on G(·).

Proof sketch: Set ε = 1/poly(nd), we can build an ε-net
(see Appendix) N for the column space of A. By taking
the union bound over all the net points, we have ∀x ∈ N,
‖D−1x‖∞ is not too small. Due to Theorem 10, we have
∀x in the column space of A, ‖D−1x‖G is not too large.
Now, for any unit vector y in the column space of A, we
can find the closest point x ∈ N, and ‖x− y‖2 ≤ ε. Since
‖D−1y‖∞ ≥ ‖D−1x‖∞−‖D−1(y−x)‖∞, ‖D−1x‖∞ is
not too small, and ‖D−1(y − x)‖∞ is not too large, we can
get a lower bound for ‖D−1y‖∞. See appendix for details.

3.3. Putting it all together
We now combine Theorem 12, Theorem 10, and Lemma 4,
to get the following theorem.

Theorem 13 Let G(·) be a function which has property
P. Given a matrix A ∈ Rn×m with rank d ≤ n, let
D ∈ Rn×n be a diagonal matrix of which each entry on
the diagonal is an i.i.d. random variable drawn from the
distribution with CDF 1 − e−G(t). Then, with probabil-
ity at least 0.98, ∀x ∈ Rm,Ω(1/(α′Gd log n))‖Ax‖G ≤

‖D−1Ax‖2 ≤ O(α′′Gd
2 log n)‖Ax‖G, where α′′G, α

′
G ≥ 1

are two constants which only depend on G(·).

The above theorem successfully embeds ‖ · ‖G into `2 space.
We now use `2 subspace embedding to reduce the dimension.
The following two theorems provide efficient `2 subspace
embeddings.
Theorem 14 ( (Clarkson & Woodruff, 2013)) Given ma-
trix A ∈ Rn×m with rank d. Let t = Θ(d2/ε2), S = ΦY ∈
Rt×n, where Y ∈ Rn×n is a diagonal matrix with each
diagonal entry independently uniformly chosen to be ±1,
Φ ∈ Rt×n is a binary matrix with Φh(i),i = 1,∀i ∈ [n],
and remaining entries 0. Here h : [n] → [t] is a random
hashing function such that for each i ∈ [n], h(i) is uni-
formly distributed in [t]. Then with probability at least 0.99,
∀x ∈ Rm, (1 − ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22.
Furthermore, SA can be computed in nnz(A) time.

Theorem 15 (See e.g. (Woodruff, 2014)) Given matrix
A ∈ Rn×m with rank d. Let t = Θ(d/ε2), S ∈ Rt×n be
a random matrix of i.i.d. standard Gaussian variables
scaled by 1/

√
t. Then with probability at least 0.99,

∀x ∈ Rm, (1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22.
We conclude the full theorem for our subspace embedding:
Theorem 16 Let G(·) be a function which has property
P. Given a matrix A ∈ Rn×d, d ≤ n, let D ∈ Rn×n
be a diagonal matrix of which each entry on the diagonal
is an i.i.d. random variable drawn from the distribution
with CDF 1 − e−G(t). Let Π1 ∈ Rt1×n be a sparse em-
bedding matrix (see Theorem 14) and let Π2 ∈ Rt2×t1 be
a random Gaussian matrix (see Theorem 15) where t1 =
Ω(d2), t2 = Ω(d). Then, with probability at least 0.9, ∀x ∈
Rd,Ω(1/(α′Gd log n))‖Ax‖G ≤ ‖Π2Π1D

−1Ax‖2 ≤
O(α′′Gd

2 log n)‖Ax‖G, where α′′G, α
′
G ≥ 1 are two

constants which only depend on G(·). Furthermore,
Π2Π1D

−1A can be computed in nnz(A) + poly(d) time.

4. Applications
In this section, we discuss regression problem with Orlicz
norm error measure, and low rank approximation problem
with `p norm, which is a special case of the Orlicz norms.

4.1. Linear regression under Orlicz norm
We first give the definition of regression problem with Orlicz
norm.
Definition 17 Function G(·) has property P . Given A ∈
Rn×d, b ∈ Rn, the goal is to solve the following minimiza-
tion problem minx∈Rd ‖Ax− b‖G.

Theorem 18 Let G(·) have property P . Given A ∈
Rn×d, b ∈ Rn, Algorithm 1 can output a solution x̂ ∈ Rd
such that with probability at least 0.8, ‖Ax̂ − b‖G ≤
O(βGd log2 n) minx∈Rd ‖Ax − b‖G, where βG is a con-
stant which may depend on G(·). In addition, the running
time of Algorithm 1 is nnz(A) + poly(d).
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Algorithm 1 Linear regression with Orlicz norm ‖ · ‖G
1: Input: A ∈ Rn×d, b ∈ Rn.
2: Output: x̂.
3: Let t1 = Θ(d2), t2 = Θ(d).
4: Let Π1 ∈ Rt1×n be a random sparse embedding matrix,

Π2 ∈ Rt2×t1 be a random gaussian matrix, and D ∈ Rn×n

be a random diagonal matrix with each diagonal entry inde-
pendently drawn from distribution whose CDF is 1− e−G(t).
(See Theorem 16.)

5: Compute x̂ = (Π2Π1D
−1A)†Π2Π1D

−1b.

Proof sketch: Let S = Π2Π1D
−1 be the sub-

space embedding for column space of [A b]. Let
x∗ = arg minx∈Rd ‖Ax − b‖G. Due to Theorem 16,
‖Ax̂ − b‖G is bounded by O(d log n)‖S(Ax̂ − b)‖2 ≤
O(d log n)‖S(Ax∗−b)‖2 ≤ O(d log n)‖D−1(Ax∗−b)‖2.
Due to Theorem 9, ‖D−1(Ax∗−b)‖2 ≤ O(1)‖D−1(Ax∗−
b)‖G ≤ O(log n)‖Ax∗ − b‖G.

4.2. Regression with combined loss function
In this section, we want to point out that our technique can
be used on solving regression problem with more general
cost function. Recall that the goal is to solve the minimiza-
tion problem minx∈Rd ‖Ax− b‖G. Now, we consider there
are multiple goals, and we want to minimize a linear combi-
nation of the costs. Now we give the definition of regression
problem with combined cost function.

Definition 19 Suppose functionG1(·), G2(·), ..., Gk(·) sat-
isfies property P . Given A1 ∈ Rn1×d, A2 ∈
Rn2×d, ..., Ak ∈ Rnk×d, b1 ∈ Rn1 , b2 ∈ Rn2 , ..., bk ∈
Rnk , the goal is to solve the following minimization prob-
lem minx∈Rd

∑k
i=1 ‖Aix− bi‖Gi .

The idea of solving this problem is that we can embed
every term into l1 space, and then merge them into one
term. By the standard technique, there is a way to embed l2
space to l1 space. We show the embedding as below. For
the completeness, we put the proof of this lemma to the
appendix.

Lemma 20 Let Q ∈ Rt×n be a random matrix with each
entry drawn uniformly from i.i.d. N (0, 1) Gaussian distri-
bution. Let B = (

√
π/2/t) ·Q. If t = Ω(ε−2n log(nε−1)),

then with probability at least 0.98, ∀x ∈ Rn, ‖Bx‖1 ∈
((1− ε)‖x‖2, (1 + ε)‖x‖2).

Theorem 21 Let k > 0 be a constant, and
G1(·), G2(·), ..., Gk(·) satisfy property P . Given
A1 ∈ Rn1×d, A2 ∈ Rn2×d, ..., Ak ∈ Rnk×d, b1 ∈
Rn1 , b2 ∈ Rn2 , ..., bk ∈ Rnk , Algorithm 2
can output a solution x̂ ∈ Rd such that with
probability at least 0.7,

∑k
i=1 ‖Aix̂ − bi‖Gi ≤

O(β′Gd log2 n) minx∈Rd
∑k
i=1 ‖Aix− bi‖Gi , where β′G is

a constant which may depend on G1(·), G2(·), ..., Gk(·).
In addition, the running time of Algorithm 2 is∑k

i=1 nnz(Ai) + poly(d).

Algorithm 2 Linear regression with combined loss functions

1: Input: A1 ∈ Rn1×d, A2 ∈ Rn2×d, ..., Ak ∈ Rnk×d, b1 ∈
Rn1 , b2 ∈ Rn2 , ..., bk ∈ Rnk

2: Output: x̂.
3: Let t1 = Θ(d2), t2 = Θ(d), t3 = Θ(t2 log(t2)).
4: Let Π

(1)
1 ∈ Rt1×n1 , · · ·Π(k)

1 ∈ Rt1×nk be k random sparse
embedding matrices, Π

(1)
2 , · · · ,Π(k)

2 ∈ Rt2×t1 be k ran-
dom Gaussian matrices, and D(1) ∈ Rn1×n1 , · · · , D(k) ∈
Rnk×nk be k random diagonal matrices where each diag-
onal entry of D(i) is independently drawn from distribu-
tion whose CDF is 1 − e−Gi(t). (See Theorem 16.) Let
Q(1), · · · , Q(k) ∈ Rt3×t2 be random matrices with each
entry drawn uniformly from i.i.d. N (0, 1) Gaussian dis-
tribution. ∀i ∈ [k], let B(i) = (

√
π/2/t3) · Q(i) (see

Lemma 20.) Let B ∈ Rkt3×kt2 ,Π2 ∈ Rkt2×kt1 ,Π1 ∈
Rkt1×

∑k
j=1 nj , D ∈ R

∑k
j=1 nj×

∑k
j=1 nj be four block diago-

nal matrices such that ∀i ∈ [k], the ith block of B,Π2,Π1, D

is B(i),Π
(i)
2 ,Π

(i)
1 , D(i) respectively.

5: Let A = [A>1 , A
>
2 , ..., A

>
k ]>, b = [b>1 , b

>
2 , ..., b

>
k ]> and S =

BΠ2Π1D
−1.

6: Use classical method of solving l1 regression to get x̂ =
arg minx∈Rd ‖S(Ax− b)‖1.

Proof Sketch: Let A = [A>1 , A
>
2 , ..., A

>
k ]>, b =

[b>1 , b
>
2 , ..., b

>
k ]>, and S = BΠ2Π1D

−1 be the sub-
space embedding for column space of [A b]. Let
Si = B(i)Π

(i)
2 Π

(i)
1 (D(i))−1. Notice that ∀x, ‖S(Ax −

b)‖1 =
∑k
i=1 ‖Si(Aix − bi)‖1. Let x∗ =

arg minx∈Rd
∑k
i=1 ‖Aix − bi‖Gi . Due to Theorem 16

and Lemma 20,
∑k
i=1 ‖Aix̂ − bi‖Gi is bounded by

O(d log n)
∑k
i=1 ‖Si(Aix̂ − bi)‖1 = O(d log n)‖S(Ax̂ −

b)‖1 ≤ O(d log n)‖S(Ax∗ − b)‖1 =
∑k
i=1 ‖Si(Aix∗ −

bi)‖1. Due to Theorem 16,
∑k
i=1 ‖Si(Aix∗ − bi)‖1 ≤

O(log n)
∑k
i=1 ‖Aix∗ − bi‖Gi .

One application of the above Theorem is to solve the
LASSO (Least Absolute Shrinkage Sector Operator) regres-
sion. In LASSO regression problem, the goal is to minimize
‖Ax − b‖22 + λ‖x‖1, where λ is a parameter of regular-
izer. It is easy to show that it is equivalent to minimize
‖Ax − b‖2 + λ′‖x‖1 for some other parameter λ′. When
we look at ‖Ax− b‖2 + λ′‖x‖1, we can set A1 = A, b1 =
b, A2 = λ′I, b2 = 0, G1(·) ≡ x2, G2(·) ≡ x, then we are
able to apply Theorem 21 to give a good approximation.
The merit of our algorithm is that it is very simple, and can
be computed very fast.

4.3. `p norm low rank approximation using exponential
random variables

We discuss a special case of Orlicz norm ‖ · ‖G, `p norm,
i.e. G(x) ≡ xp for p ∈ [1, 2]. When rank parameter k is
ω(log n+log d), by using exponential random variables, we
can significantly improve the approximation ratio of input
sparsity time algorithms shown by (Song et al., 2017). The
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high level ideas combine the results of (Woodruff & Zhang,
2013; Song et al., 2017) and the dilation bound in Section 3.
We define the problem in the following. See Appendix for
the proof of Theorem 23.
Definition 22 Let p ∈ [1, 2]. Given A ∈ Rn×d, n ≥ d, k ∈
Z, 1 ≤ k ≤ min(n, d), the goal is to solve the following
minimization problem: minU∈Rn×k,V ∈Rk×d ‖UV −A‖pp.

Algorithm 3 `p norm low rank approximation using exponential
random variables.
1: Input: A ∈ Rn×d, k ∈ Z,min(n, d) ≥ k ≥ 1.

2: Output: Û ∈ Rn×k, V̂ ∈ Rk×d.
3: Let t1 = Θ(k2), t2 = Θ(k), t3 = Θ(k log k).
4: Let Π1, S1 ∈ Rt1×n be two random sparse embedding matri-

ces, Π2, S2 ∈ Rt2×t1 be two random gaussian matrices, and
D1, D2 ∈ Rn×n be two random diagonal matrices with each
diagonal entry independently drawn from distribution whose
CDF is 1− e−tp . (See Theorem 16.)

5: Let T2, R ∈ Rd×t3 be two random matrix, with i.i.d. entries
drawn from standard p-stable distribution.

6: Let S = S2S1D
−1
1 , T1 = Π2Π1D

−1
2 .

7: Solve X̂, Ŷ = arg minX∈Rt2×k,Y ∈Rk×t3 ‖T1ARXY SAT2−
T1AT2‖2F .

8: Û = ARX̂, V̂ = Ŷ SA.

Theorem 23 Let 1 ≤ p ≤ 2. Given A ∈ Rn×d, n ≥ d, k ∈
Z, 1 ≤ k ≤ min(n, d), with probability at least 2/3, Û , V̂
outputted by Algorithm 3 satisfies: ‖Û V̂ − A‖pp ≤
αminU∈Rn×k,V ∈Rk×d ‖UV − A‖pp, where α =

O(min((k log k)4−p log2p+2 n, (k log k)4−2p log4+p n)).
In addition, the running time of Algorithm 3 is
nnz(A) + (n+ d)poly(k).

5. Experiments
Implementation setups can be seen in appendix.

5.1. Orlicz Norm Linear Regression
In this section, we show that our algorithm i) has reasonable
and predictable performance under different scenarios and
ii) is flexible, general and easy to use. We perform 3 sets
of experiments. The first is to compare its performance
with the standard `1 and `2 regression under different noise
assumptions and dimensions of the regression problem; the
second is to compare the performance of Orlicz regression
with different G under different noise assumptions; the third
is to experiment with Orlicz function G that is different
from standard `p and Huber function. We evaluate the per-
formance of our Orlicz norm linear regression algorithm on
simulated data.
Comparison with `1 and `2 regression We would like to
see whether Orlicz norm linear regression leads to expected
performance relative to `1 and `2 regression. We choose
our Orlicz norm ‖ · ‖G to be induced by the normalized
Huber function where the Huber function is defined as

f(x) =

{
x2/2 |x| ≤ δ
δ · (|x| − δ/2) o.w. . We chose the pa-

rameter δ to be 0.75. Intuitively, it is between `1 and `2

Table 2. Comparisons of different regressions in different noise and
dimension settings; each entry is the error of `1, `2, Orlicz norm
regression. As expected, `2/`1 regression lead to best performance
under Sparse/Gaussian noise setting, and the performance of Orlicz
norm regression lies in between.

Gaussian Sparse Mixed

balance 211.2/194.5/197.3 25.3/30.7/30.0 37.9/37.8/37.5

overconstraint 25.3/20.0/24.9 2e-9/1.6/1.5 8.7/7.6/7.5

norm (see Figure 1). In all the simulations, we generate
matrix A ∈ Rn×d, ground truth x∗ ∈ Rd, and b to be Ax∗

plus some particular noise. We evaluate the performance of
each algorithm by the `2 distances between the output x and
the ground truth x∗. In terms of algorithm details, since n, d
are not too large in our simulation, we did not apply the `2
subspace embedding to reduce the dimension; we only use
reciprocal exponential random diagonal embedding matrix
to embed ‖ · ‖G to `2 norm (see Theorem 13)1.

We experiment with two n, d combinations, i) n = 200, d =
10 ii) n = 100, d = 75, and 3 noise setting with i) Gaussian
noise ii) sparse noise and iii) mixed noise (addition of i)
and ii)), altogether 2 × 3 = 6 setting. The detail of data
simulation can be seen in appendix. For each experiment
we repeat 50 times and compute the mean. The results are
shown in Table 2. Orlicz norm regression has better perfor-
mance than `1 and `2 when the noise is mixed. When the
noise is Gaussian or sparse, Orlicz norm regression works
better than `1 and `2 respectively. We did not experiment
with Huber loss regression, since if we rescale the data and
make it small/large in absolute values, the Huber regres-
sion will degenerate into respectively `2/`1 regression (see
Introduction). See appendix for results on approximation
ratio.

Choice of δ for G as a normalized Huber function We
compare the performance of Orlicz norm regression induced
by G as normalized Huber loss function with different δ
under different noise assumptions. We fix n = 500, d = 30
and generate A and x as in the first set of experiments (see
appendix). The noise is a mixture of N(0, 5) Gaussian
noise and sparse noise on 1% entries with different scale of
uniform noise from [−s‖Ax∗‖2, s‖Ax∗‖2], where scale s
is chosen from [0, 0.5, 1, 2]. Under each noise assumptions
with different scale s, we compare the performance of Orlicz
norm regression induced by G with δ from [0.05, 0.1, 0.2,
0.4, 1, 2]. We repeat each experiment 50 times and report
the mean of the `2 distance between output x and the ground
truth x∗. The result is shown in Figure 2. When the scale is
0/2, the noise is almost Gaussian/sparse and we expect `2/`1
norm and thus large/small δ to perform the best; anything
scale lying in between these extremes will have an optimal
δ in between. We observe the expected trend: as s increases,
the performance is optimal with smaller δ.

1We use MATLAB’s linprog to solve `1 regression.
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Table 3. Orlicz regression with different choices of G, mean of
the `2 distances between the output and the ground truth in 50
repetitions of experiments.

`1 `1.5 `2 Gδ=0.25 Gδ=0.75 G`1.5

17.0 45.0 909.8 60.2 405.7 14.7

Beyond Huber function - A General Framework We ex-
plore a variant Orlicz function G and evaluate it under a
particular setting; the evaluation criteria is the same as the
first set of the experiments. The G is of the same form
aforementioned, except that it now grows at the order of
x1.5 when x is small. We denote it by G`1.5 , which is the
normalization of function f , and f is defined as: f(x) ={
x1.5/1.5 x ≤ δ
δ0.5 · (|x| − δ/3) o.w. . We generate a 500×30 ma-

trix A and the ground truth vector x∗ in the same way as be-
fore, and then addN(0, 5) Gaussian noises and 1 sparse out-
lier with scale s = 100. We find that the modified G`1.5 un-
der this settings outperforms `1, `2, `1.5, Gδ=0.25, Gδ=0.75

regression by a significant amount where Gδ=0.25, Gδ=0.75

are Orlicz norm induced by regular normalized Huber func-
tion with δ = 0.25, 0.75 respectively. The results are shown
in Table 3. This experiment demonstrates that our algo-
rithm is i) flexible enough to combine the advantage of norm
functions, ii) general for any function that satisfies the nice
property, and iii) easy to experiment with different settings,
as long as we can compute G and G−1.

5.2. `1 low rank matrix approximation
In this section, we evaluate the performance of the `1 low
rank matrix approximation algorithm. We mainly compare
the `1 norm error of our algorithm with the error of (Song
et al., 2017) and standard PCA. Inputs are a matrix A ∈
Rn×d and a rank parameter k; the goal is to output a rank
k matrix B such that ‖A − B‖1 is as small as possible.
The details of implementations are in the appendix. For
each input, we run the algorithm 50 times and pick the best
solution.

Datasets. We first run experiment on synthetic data: we
randomly choose two matrices U ∈ R2000×5, V ∈ R5×2000

with each entry drawn uniformly from (0, 1) Then we ran-
domly choose 100 entries of UV , and add random outliers
uniformly drawn from (−100, 100) on those entries, thus

Figure 2. Performance of Orlicz regression with G induced by
different δ under different scale of sparse noise. The larger the
sparse noise, the smaller the δ that leads to the best performance,
which makes the norm closer to `1

we can get a matrix A ∈ R2000×2000. In our experiment,
‖A‖1 is about 5.0× 106. Then, we run experiments on real
datasets diabetes and glass in UCI repository(Bache & Lich-
man, 2013). The data matrix of diabetes has size 768× 8,
and the data matrix of glass has size 214× 9. For each data
matrix, we randomly add outliers on 1% number of entries.

For each dataset, we evaluate the ‖A−B‖1. The result for
the experiment on synthetic data is shown in Table 4, and
the results for diabetes and glass are shown in Figure 3. The
running time of algorithm in (Song et al., 2017) on diabetes
and on glass are 5.69 and 11.97 seconds respectively, with
ours being 3.18 and 3.74 seconds respectively. We also find
that our algorithm consistently outperforms the other two
alternatives (note that the y-coordinates are at log scale with
base 10).
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Ours, Cauchy+Exponential
PCA

Figure 3. `1 norm error v.s. target rank.

Table 4. `1 rank-5 approximation on the synthetic data.
Opt PCA (Song et al., 2017) Ours

`1 loss (×104) 0.50 3.53 1.36 1.04

6. Conclusion and Future Work
In this paper we presented an efficient subspace embedding
algorithm for orlicz norm and demonstrated its usefulness
in regression/low rank approximation problem on synthetic
and real datasets. Nevertheless, O(d log2 n) is still a large
theoretical approximation factor, and hence it is worth i) in-
vestigating whether the theoretical approximation ratio can
be smaller if input are under some statistical distribution ii)
calculating the actual approximation ratio with ground truth
obtained by some slower but more accurate optimization
algorithm. It is also worth examining whether our exponen-
tial embedding sketching method preserves the statistical
properties of the regression error, since we assumed a dif-
ferent noise distribution from Gaussian/double-exponential
as a starting point (Raskutti & Mahoney, 2014; Lopes et al.,
2018).
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