
Appendix

A Related Works

Existing literature studied the robust regression with respect to Huber loss function [1, 2]. Such
regression can be applied to solve many problems like the people counting problem [3]. To speed up
the regression process, some dimensional reduction techniques can be used to reduce the number
of observations [4], also faster algorithms have been proposed to address the robust regression with
reasonable assumption [5]. Besides, different models of regression were explored, such as Gaussian
process regression [6], active regression with adaptive Huber loss [7].

Recent years, there are lots of randomized sketching and embedding techniques developed for
solving numerical linear algebra problems. There is a long line of works, e.g. [8, 9, 10] for `2 subspace
embedding, and works, e.g. [11, 12, 13, 14] for `p subspace embedding. For more related works, we
refer readers to the book [15]. Based on sketching/embedding techniques, there is a line of works
studied `2 and `p regressions, e.g. [9, 16, 12, 10, 13]. [17] studied linear regression with M-estimator
error measure. We refer to the survey [18] for more details.

Frobenius norm low rank matrix approximation problem is also known as PCA problem. This
problem is well studied. The fastest algorithm is shown by [9]. For the entrywise `p norm low rank
approximation problem, there is no known algorithm with theoretical guarantee until the work [19].
[19] works only for 1 ≤ p ≤ 2. Recently, [20] gives algorithms for all p ≥ 1. But either the running
time is not in polynomial or the rank of the output is not exact k.

B Proof of Fact 2.

Proof. Notice that G1 is a nonzero nondecreasing convex function on R+, thus G−1
1 (1) exists, and G2

is a nonzero nondecreasing function. In addition because s = sup
{

1
y−x (G2(y)−G2(x)) | 0 ≤ x ≤ y ≤ 1

}
,

G2 is also convex. Thus ‖ · ‖G2 is Orlicz norm. Let x ∈ Rn. Notice that if α > 0 satis-
fies

∑n
i=1G1(|xi|/α) ≤ 1, then ∀i ∈ [n], G1(|xi|/α) ≤ 1. It means that |xi| ≤ G−1

1 (1)α, thus∑n
i=1G2(|xi|/(G−1

1 (1)α)) =
∑n

i=1G1(|xi|/α) ≤ 1. Similarly if α satisfies
∑n

i=1G2(|xi|/α) ≤ 1,
then

∑n
i=1G1(G−1

1 (1)|xi|/α) =
∑n

i=1G2(|xi|/α) ≤ 1. Therefore, ‖x‖G1 = ‖x‖G2/G
−1
1 (1).

C Proof of Lemma 3.

Due to convexity of G and G(1) = 1, G(0) = 0, ∀x ∈ [0, 1], G(x) ≤ xG(1) + (1− x)G(0) = x. Since
x ≤ 1, G(1)/G(x) ≤ CG(1/x)2, we have G(x) ≥ x2/CG.

D Proof of Lemma 4.

With out loss of generality, we can assume ∀i ∈ [n], xi ≥ 0. Let x ∈ Rn, α = ‖x‖G. We have∑n
i=1G(xi/α) = 1. If xi/α ≤ 1, due to the convexity of G, G(xi/α) ≤ G(1)·xi/α+G(0)·(1−xi/α) =

1

G(1) · xi/α = xi/α. If xi/α > 1, then G(xi/α) > 1 which contradicts to
∑n

i=1G(xi/α) = 1. Thus,
‖x‖G ≤ ‖x‖1.
‖x/α‖22 =

∑n
i=1(xi/α)2 ≤

∑n
i=1CGG(xi/α) = CG. Then

‖x‖2 ≤
√
CGα.

E Proof of Lemma 5.

Due to the convexity of G(·) and G(0) = 0, ∀0 < x < y, we have G(x) ≤ G(y)x/y+G(0)(1−x/y) =
G(y)x/y. Thus, y/x ≤ G(y)/G(x).

F Proof of Lemma 6.

It is easy to see that ∀x > 0, G(x) 6= 0, since otherwise for y > x, the condition G(y)/G(x) <
CG(y/x)2 would be violated. Let s = G′+(1). There are several cases.

If a ≥ 1 or b ≥ 1. Without loss of generality, assume a ≥ 1.G(a)G(b)/G(ab) = (sa − (s −
1))G(b)/G(ab) ≤ saG(b)/G(ab). since ab ≥ b, G(ab)/G(b) ≥ a. Therefore, G(a)G(b)/G(ab) ≤
saG(b)/G(ab) ≤ s.

If a, b ≤ 1, 0.5 ≤ a ≤ 1 or 0.5 ≤ b ≤ 1, we want to show G(a)G(b)/G(ab) is still bounded.
Without loss of generality, assume that 0.5 ≤ a ≤ 1. Then G(a)G(b)/G(ab) = G(a) G(b)

G(ab) ≤
G(b)/G(ab) ≤ CG/a2 ≤ 4CG.

If a, b ≤ 0.5 and G′(0) > 0. Let G′(0) = c > 0. Therefore, there is a constant δ1 which
may depend on G such that ∀x ∈ (0, δ1), |G(x)−G(0)

x−0 − c| < c
2 . Therefore, ∀x ∈ (0, δ1], G(x) >

c
2x. Due to Lemma 5, ∀x > δ1, G(x)/x > G(δ1)/δ1 > c/2. Therefore, ∀x,G(x) ≥ c

2x. Since
b ≤ 0.5, ab ≤ a ≤ 1. Since G is convex, G(a) ≤ 1−a

1−abG(ab) + a−ab
1−abG(1) = 1−a

1−abG(ab) + a−ab
1−ab .

Therefore, G(a) ≤ G(ab) + (1− a)/(1− ab) ≤ G(ab) + 2a. Similarly, G(b) ≤ 2b+G(ab). Then we
have G(a)G(b) ≤ (2b+G(ab))(2a+G(ab)) ⇒ G(a)G(b)/G(ab) ≤ ab/G(ab) + (2a+ 2b) +G(ab) ≤
2/c+ 2 + 1 ≤ 2/c+ 3.

If a, b ≤ 0.5, G′+(0) = 0, G′′+(0) = c2 > 0. Let ε = c2/4. Since G is twice differentiable
in (0, δG) and G′+(0), G′′+(0) exist, by Taylor’s Theorem, there is a constant δ2 > 0 which may
depend on G such that |G(x) − (G(0) + G′+(0)x + c2x

2/2)| ≤ εx2. Therefore, ∀x ∈ (0, δ2), G(x) ≥
c2x

2/4, G(x) ≤ c2x
2. Hence, ∀a, b ∈ (0, δ2], G(a)G(b)/G(ab) ≤ G(a)G(b)

c2a2b2/4
≤ 4

c2

G(a)
a2

G(b)
b2
≤ 4

c2
c2

2 = 4c2.
Consider a or b > δ2. Without loss of generality, assume a > δ2. Similar to the previous argument,
G(a)G(b)/G(ab) ≤ G(a) G(b)

G(ab) ≤ G(b)/G(ab) ≤ CGb
2/(ab)2 ≤ CG/δ

2
2 . Thus G(a)G(b)/G(ab) is

bounded by CG/δ2
2 in this case.

G Proof of Theorem 9

Without loss of generality, we assume ∀i ∈ [n], xi ≥ 0. Fix i ∈ [n], we have

Pr(ui ≥ G−1(1/n20)) = e−G(G−1(1/n20)) ≥ 1− 1/n20.

2

Define E to be the event that ∀i ∈ [n], ui ≥ G−1(1/n20). By taking union bound over n coordinates,
E happens with probability at least 1− 1/n19. Let α = ‖x‖G. Then, for any γ ≥ 1, we have

Pr(‖f(x)‖G ≥ γα)

= Pr(‖f(x)‖G ≥ γα | E) Pr(E) + Pr(‖f(x)‖G ≥ γα | ¬E) Pr(¬E)

≤Pr(‖f(x)‖G ≥ γα | E) Pr(E) + Pr(¬E)

= Pr(‖f(x)/(γα)‖G ≥ 1 | E) Pr(E) + Pr(¬E)

≤E

(
n∑
i=1

G

(
xi/α ·

1

γui

)
| E

)
Pr(E) + 1/n19

=
n∑
i=1

E

(
G

(
xi/α ·

1

γui

)
| E
)

Pr(E) + 1/n19.

Let r = G−1(1/n20). For a fixed i ∈ [n],

E

(
G

(
xi/α ·

1

γui

)
| E
)

Pr(E)

=

∫ ∞
r

G

(
xi/α

uγ

)
e−G(u)G′(u)du

≤1

γ
G(xi/α)

∫ ∞
1

e−G(u)dG+
1

γ

∫ 1

r
G

(
xi/α

u

)
e−G(u)dG

≤1

γ
G(xi/α) +

1

γ

∫ 1

r
G

(
xi/α

u

)
e−G(u)dG

≤1

γ
G(xi/α) +

1

γ
αGG(xi/α)

∫ 1

r

1

G(u)
e−G(u)dG

≤O(log n)
αG
γ
G(xi/α),

where αG is a constant may depend on G(·). The first inequality follows by G(xi/α · 1/(γu)) ≤
1/γ ·G(xi/α·1/u)+(1−1/γ)·G(0) ≤ G(xi/α·1/u)/γ ≤ G(xi/α)/γ. The second inequality follows by∫∞
r e−xdx ≤ 1. The third inequality follows by Lemma 6. Since xi/α ≤ 1, then there is an αG such
that G(u)G(xi/α · 1/u) ≤ αGG(xi/α). The last inequality follows by

∫∞
1/n20 e

−x/xdx = O(log n).
Thus, we have

n∑
i=1

E

(
G

(
xi/α ·

1

γui

)
| E
)

Pr(E) ≤ O(log n)
αG
γ

n∑
i=1

G(xi/α) ≤ O(log n)
αG
γ
.

Then,

Pr(‖f(x)‖G ≥ γα) ≤ O(log n)
αG
γ

+ 1/n19.

It is equivalent to

Pr(‖f(x)‖G ≤ γα) ≥ 1−O(log n)
αG
γ
− 1/n19.

Set γ = O(log n)αG
δ , we complete the proof.

3

H Proof of Theorem 10

Similar to [21], we can define a well conditioned basis for Orlicz norm.

Definition H.1 (Well conditioned basis for Orlicz norm). Given a matrix A ∈ Rn×m with rank
d, let U ∈ Rn×d be a matrix which has the same column space of A. If U satisfies 1. ∀x ∈ Rd,
‖x‖∞ ≤ β‖Ux‖G, 2.

∑d
i=1 ‖Ui‖G ≤ α , then U is an (α, β,G)-well conditioned basis of A.

Fortunately, the such good basis exists for Orlicz norm.

Theorem H.2 (See Connection to Auerbach basis in Section 3.1 of [21]). Given a matrix A ∈ Rn×m
with rank d and norm ‖ · ‖G, there exist a matrix U ∈ Rn×d which is a (d, 1, G) well conditioned
basis of A.

Proof of Theorem 10. Notice thatD−1Ax is exactly the same as f(Ax). There is a matrix U ∈ Rn×d
which is (d, 1, G)-well conditioned basis of A. Since ∀x ∈ Rm, there is always a vector y ∈ Rd such
that Ax = Uy, we only need to prove that with probability at least 0.99,

∀x ∈ Rd, ‖D−1Ux‖G ≤ O(αGd
2 log n)‖Ux‖G,

where D,αG are the same as stated in the Theorem. According to Theorem 9, if we look at a fixed
i ∈ [d], then with probability at least 1 − 0.01/d, ‖D−1Ui‖G ≤ O(αGd log(n)). By taking union
bound, with probability at least 0.99, ∀i ∈ [d], ‖D−1Ui‖G ≤ O(αGd log(n)). Now we have, for any
x ∈ Rd,

‖D−1Ux‖G ≤
d∑
i=1

|xi|‖D−1Ui‖G ≤ ‖x‖∞
d∑
i=1

‖D−1Ui‖G ≤ O(αGd log(n))‖x‖∞
d∑
i=1

‖Ui‖G

≤ O(αGd
2 log(n))‖Ux‖G.

The first inequality follows by triangle inequality. The third inequality follows by ∀i ∈ [d], ‖D−1Ui‖G ≤
O(αGd log(n)). The forth inequality follows by (d, 1, G)-well conditioned basis.

I Proof of Theorem 12

Now, in the following, we present the concept of ε-net.

Definition I.1 (ε-net for `2 norm). Given A ∈ Rn×m with rank d, let S be the `2 unit ball in the
column space of A, i.e. S = {y | ‖y‖2 = 1, ∃x ∈ Rm, y = Ax}. Let N ⊂ S, if ∀x ∈ S, ∃y ∈ N such
that ‖x− y‖2 ≤ ε, then we say N is an ε-net for S.

The following theorem gives an upper bound of the size of ε-net.

Theorem I.2 (Lemma 2.2 of [15]). Given A ∈ Rn×m with rank d, let S be the `2 unit ball in the
column space of A. There exist an ε-net N for S, such that |N | ≤ (1 + 4/ε)d.

It suffices to prove ∀x ∈ Rm, ‖Ax‖2 = 1 we have Ω(1/(α′Gd log n))‖Ax‖G ≤ ‖D−1Ax‖∞. Let
D ∈ Rn×n be a diagonal matrix of which each entry on the diagonal is an i.i.d. random variable
drawn from the distribution with CDF 1− e−G(t). Let α′G ≥ 1 be a sufficiently large constant. Let
S be the `2 unit ball in the column space of A. Let t1 = Θ(α′Gd log n), t2 = Θ(αGd

2 log n), where

4

αG is the parameter stated in Theorem 10. Set ε = O(1/(
√
nCGt1t2)). There exist an ε-net N for

S, and

|N | = eO(d(logn+log(CGα
′
GαG))).

By taking union bound over the net points, according to Theorem 11, with probability at least 0.99,

∀x ∈ N, ‖D−1x‖∞ ≥ Ω(1/(α′Gd log n))‖x‖G. (1)

Also due to Theorem 10, with probability at least 0.99,

∀x ∈ S, ‖D−1x‖G ≤ O(αGd
2 log n)‖x‖G. (2)

By taking union bound, with probability at least 0.98, the above two events will happen. Then, in
this case, consider a y ∈ S, let x ∈ N such that ‖x− y‖2 ≤ ε, let z = x− y, we have

‖D−1y‖∞ ≥ ‖D−1x‖∞ − ‖D−1z‖∞

≥ 1

t1
‖x‖G − t2

√
CG‖z‖G

≥ 1

t1
‖y‖G −

t2
t1
‖z‖G − t2

√
CG‖z‖G

≥ 1

t1
‖y‖G − 2t2

√
CG‖z‖G

≥ 1

t1
‖y‖G −O(

2√
CGt1

)

≥ Ω(1/t1)‖y‖G
= Ω(1/(α′Gd log n))‖y‖G.

The first inequality follows by triangle inequality. The second inequality follows by Equation 1,
Equation 2, and Lemma 4, i.e. ‖D−1z‖∞ ≤ ‖D−1z‖2 ≤

√
CG‖D−1z‖G. The third inequality

follows by triangle inequality. The forth inequality follows by t1, CG ≥ 1. The fifth inequality
follows by Lemma 4: ‖z‖G ≤ ‖z‖1 ≤

√
n‖z‖2 =

√
nε = O(1/(CGt1)). The sixth inequality follows

by Lemma 4: ‖y‖G ≥ 1√
CG
‖y‖2 = 1/

√
CG.

J Proof of Theorem 13

Due to Theorem 12 and Theorem 10, with probability at least 0.98, ∀x ∈ Rm,

Ω(1/(α′Gd log n))‖Ax‖G ≤ ‖D−1Ax‖∞ ≤ ‖D−1Ax‖2.

‖D−1Ax‖2 ≤
√
CG‖D−1Ax‖G ≤ O(

√
CGα

′
Gd

2 log n)‖Ax‖G.

K Proof of Theorem 16

Due to Theorem 14 and Theorem 15, with probability at least 0.95, ∀x, ‖Π2Π1D
−1Ax‖2 is a con-

stant approximation to ‖Π1D
−1Ax‖2 and ‖Π1D

−1Ax‖2 is a constant approximation to ‖D−1Ax‖2.
Combining with Theorem 13, we complete the proof.

5

L Proof of Theorem 18

Let x∗ = arg minx∈Rd ‖Ax− b‖G. Due to Theorem 9, with probability at least 0.99,

‖D−1(Ax∗ − b)‖G ≤ O(αG log n)‖Ax∗ − b‖G. (3)

Now let A′ = [A b] ∈ Rn×(d+1). Due to Theorem 16, with probability at least 0.9, we have

∀x ∈ Rd+1,Ω(1/(α′Gd log n))‖A′x‖G ≤ ‖Π2Π1D
−1A′x‖2. (4)

Then,

‖Ax̂− b‖G ≤ O(α′Gd log n)‖Π2Π1D
−1(Ax̂− b)‖2

≤ O(α′Gd log n)‖Π2Π1D
−1(Ax∗ − b)‖2

≤ O(α′Gd log n)‖D−1(Ax∗ − b)‖2
≤ O(α′G

√
CGd log n)‖D−1(Ax∗ − b)‖G

≤ O(αGα
′
G

√
CGd log2 n)‖Ax∗ − b‖G.

The first inequality follows by Equation 4. The second inequality follows by x̂ = (Π2Π1D
−1A)†Π2Π1D

−1b,
which is the optimal solution for minx∈Rd ‖Π2Π1D

−1(Ax−b)‖2. The third inequality follows by The-
orem 14 and Theorem 15. The forth inequality follows by Lemma 4. The last inequality follows by
Equation 3. Let βG = α′G

√
CG, we complete the proof of the correctness of Algorithm 1.

For the running time, according to Theorem 16, computing Π2Π1D
−1A and Π2Π1D

−1b needs
nnz(A)+poly(d) time. Since Π2Π1D

−1A has size poly(d), computing x̂ = (Π2Π1D
−1A)†Π2Π1D

−1b
needs poly(d) running time. The total running time is nnz(A) + poly(d).

M proof of Lemma 20

Before we prove the Lemma, we need following tools.

Lemma M.1 (Concentration bound for sum of half normal random variables). For any k i.i.d.
random Gaussian variables z1, z2, · · · , zk, we have that

Pr

(
1

k

k∑
i=1

|zi| ∈
(

(1− ε)
√

2/π, (1 + ε)
√

2/π
))
≥ 1− e−Ω(kε2).

Lemma M.2. Let G ∈ Rk×m be a random matrix with each entry drawn uniformly from i.i.d.
N(0, 1) Gaussian distribution. With probability at least 0.99, |G|2 ≤ 10

√
km.

Proof. Since E
(
‖G‖2F = km

)
, we have that Pr(‖G‖2F ≥ 100km) ≤ 0.01. Thus, with probability at

least 0.99, we have ‖G‖2 ≤ ‖G‖F ≤ 10
√
km.

Now, let us prove the lemma.

Proof of Lemma 20. Without loss of generality, we only need to prove ∀x ∈ Rn with ‖x‖2 = 1, we
have ‖Bx‖1 ∈ (1− ε, 1 + ε). Let set S = {v | v ∈ Rn, ‖v‖2 = 1}. Due to Theorem I.2, we can find a
set G ⊂ S which satisfies that ∀u ∈ S there exists v ∈ G such that ‖u − v‖2 ≤ (ε/(1000n))10 and
|G| ≤ (4000n/ε)20n. Let k ≥ cε−2n ln(n/ε) where c is a sufficiently large constant. By Lemma M.1,

6

we have that for a fixed v ∈ G, with probability at least 1−e−1000n ln(4000n/ε), ‖Bv‖1 ∈ (1−ε, 1+ε).
By taking union bound over all the points in G, we have

Pr (∀v ∈ G, ‖Bv‖1 ∈ (1− ε, 1 + ε)) ≥ 1− e−980n ln(4000n/ε) ≥ 0.99.

Now, consider ∀x ∈ Rn with ‖x‖2 = 1, i.e. x ∈ S, we can find v ∈ G such that ‖v − x‖2 ≤
(ε/(1000n))10, and let u = v − x. Then, conditioned on ‖B‖2 ≤ 10

√
tn ·

√
π/2/t, we have

‖Bx‖1 ∈ (‖Bv‖1 − ‖Bu‖1, ‖Bv‖1 + ‖Bu‖1)

⊆ (1− (ε+
√
t‖B‖2‖u‖2), 1 + (ε+

√
t‖B‖2‖u‖2))

⊆ (1− 2ε, 1 + 2ε)

where the first relation follows by triangle inequality, the second relation follows by ‖Bu‖1 ≤√
t‖Bu‖2 ≤

√
t‖B‖2‖u‖2, and the last relation follows by ‖u‖2 ≤ (ε/(1000n))10, ‖B‖2 ≤ 10

√
tn ·√

π/2/t.
According to Lemma M.2, we know that with probability at least 0.99, we have ‖B‖2 ≤ 10

√
tn ·√

π/2/t. By taking union bound, we have with probability at least 0.98, ∀x ∈ S, ‖Bx‖1 ∈ (1 −
2ε, 1 + 2ε). By adjusting the ε, we complete the proof.

N Proof of Theorem 21

Without loss of generality, we assume constant k ≤ 2. Otherwise, we can always adjust constants in
all the related theorems and lemmas to make larger k work. Let x∗ = arg minx∈Rd

∑k
i=1 ‖Aix−bi‖Gi .

By Theorem 9 and taking union bound, we have that with probability at least 0.98,

∀i ∈ {1, 2, · · · , k}, ‖(D(i))−1(Aix
∗ − bi)‖Gi ≤ O(αGi log n)‖Aix∗ − bi‖Gi . (5)

Now let A′i = [Ai bi] ∈ Rni×(d+1). Due to Theorem 16 and union bound, with probability at least
0.8, we have

∀x ∈ Rd+1,Ω(1/(α′Gi
d log ni))‖A′ix‖Gi ≤ ‖Π

(i)
2 Π

(i)
1 (D(i))−1A′ix‖2. (6)

7

Then,

k∑
i=1

‖Aix̂− bi‖Gi ≤
k∑
i=1

O(α′Gi
d log n)‖Π(i)

2 Π
(i)
1 (D(i))−1(Aix̂− bi)‖2

≤
k∑
i=1

O(α′Gi
d log n)‖B(i)Π

(i)
2 Π

(i)
1 (D(i))−1(Aix̂− bi)‖1

≤ O(max
i∈[k]

α′Gi
d log n)‖BΠ2Π1D

−1(Ax̂− b)‖1

≤ O(max
i∈[k]

α′Gi
d log n)‖BΠ2Π1D

−1(Ax∗ − b)‖1

≤ O(max
i∈[k]

α′Gi
d log n)

k∑
i=1

‖B(i)Π
(i)
2 Π

(i)
1 (D(i))−1(Aix

∗ − bi)‖1

≤ O(max
i∈[k]

α′Gi
d log n)

k∑
i=1

‖Π(i)
2 Π

(i)
1 (D(i))−1(Aix

∗ − bi)‖2

≤ O(max
i∈[k]

α′Gi
d log n)

k∑
i=1

‖(D(i))−1(Aix
∗ − bi)‖2

≤ O((max
i∈[k]

√
CGi)(max

i∈[k]
α′Gi

)d log n)

k∑
i=1

‖(D(i))−1(Aix
∗ − bi)‖Gi

≤ O((max
i∈[k]

αGi)(max
i∈[k]

√
CGi)(max

i∈[k]
α′Gi

)d log2 n)
k∑
i=1

‖Aix∗ − bi‖Gi .

The first inequality follows by Equation 6. The second inequality follows by Lemma 20. The
forth inequality follows by x̂ is the optimal solution for minx∈Rd ‖BΠ2Π1D

−1(Ax − b)‖1. The
sixth inequality follows by Lemma 20. The seventh inequality follows by Theorem 14 and The-
orem 15. The eighth inequality follows by Lemma 4. The last inequality follows by Equation 5.
Let β′G = (maxi∈[k] αGi)(maxi∈[k]

√
CGi)(maxi∈[k] α

′
Gi

), we complete the proof of the correctness of
Algorithm 2.

For the running time, according to Theorem 16, computing Π2Π1D
−1A and Π2Π1D

−1b needs∑k
i=1 nnz(Ai)+poly(d) time. Due to Lemma 20, the size of B is poly(d). To compute BΠ2Π1D

−1A
and BΠ2Π1D

−1b, we need additional poly(d) time. Since BΠ2Π1D
−1A has size poly(d), computing

the optimal solution of minx∈Rd ‖BΠ2Π1D
−1(Ax− b)‖1 by using linear programming needs poly(d)

running time. The total running time is
∑k

i=1 nnz(Ai) + poly(d).

O Proof of Theorem 23

Before we prove the Theorem, we need to show following Lemmas.

Lemma O.1 ([19]). Let A ∈ Rn×d, R ∈ Rd×t3 , k be the same as in the Algorithm 3, then with
probability at least 0.9,

min
X∈Rt3×k,Y ∈Rk×d

‖ARXY −A‖pp ≤ O((k log k)1−p/2 log n) min
U∈Rn×k,V ∈Rk×d

‖UV −A‖pp.

Lemma O.2 ([13]). Let 1 ≤ p ≤ 2. Given a matrix A ∈ Rn×d, d ≤ n, let D ∈ Rn×n be a
diagonal matrix of which each entry on the diagonal is an i.i.d. random variable drawn from the

8

distribution with CDF 1− e−tp . Let Π1 ∈ Rt1×n be a sparse embedding matrix (see Theorem 18) and
let Π2 ∈ Rt2×t1 be a random Gaussian matrix (see Theorem 19) where t1 = Ω(d2), t2 = Ω(d). Then,
with probability at least 0.9,

∀x ∈ Rd,Ω(1/min{(d log d)1/p, (d log d log n)1/p−1/2})‖Ax‖p ≤ ‖Π2Π1D
−1Ax‖2.

Lemma O.3. Let A ∈ Rn×d, S ∈ Rt2×n, R ∈ Rd×t3 , k be the same as in the Algorithm 3, then with
probability at least 0.9,

min
X∈Rt2×k,Y ∈Rk×t2

‖ARXY SA−A‖pp ≤ β min
U∈Rn×k,V ∈Rk×d

‖UV −A‖pp,

where β = O(min((k log k)2−p/2 logp+1 n, (k log k)2−p log2+p/2 n)).

Proof. Let X∗, V ∗ = arg minX∈Rt3×k,V ∈Rk×d ‖ARXV −A‖pp. Let U∗ = ARX∗, Ṽ = (SU∗)†SA. Let
γ = min{k log k, (k log k log n)1−p/2}. We have

‖U∗Ṽ −A‖pp ≤ 2p−1‖U∗(Ṽ − V ∗)‖pp + 2p−1‖U∗V ∗ −A‖pp

≤ O(γ)

d∑
i=1

‖SU∗(Ṽ − V ∗)i‖p2 + 2p−1‖U∗V ∗ −A‖pp

≤ O(γ)
d∑
i=1

(‖S(U∗Ṽ −A)i‖2 + ‖S(U∗V ∗ −A)i‖2)p + 2p−1‖U∗V ∗ −A‖pp

≤ O(γ)
d∑
i=1

(2‖S(U∗V ∗ −A)i‖2)p + 2p−1‖U∗V ∗ −A‖pp

≤ O(γ)

d∑
i=1

‖D−1
1 (U∗V ∗ −A)i‖p2 + 2p−1‖U∗V ∗ −A‖pp

≤ O(γ)‖D−1
1 (U∗V ∗ −A)‖pp + 2p−1‖U∗V ∗ −A‖pp

≤ O(γ) logp(nd)‖U∗V ∗ −A‖pp + 2p−1‖U∗V ∗ −A‖pp
= O(γ logp(n))‖U∗V ∗ −A‖pp.

The first inequality follows by convexity of xp. The second inequality follows by Lemma O.2. The
third inequality follows by triangle inequality. The forth inequality follows by Ṽ = (SU∗)†SA. The
fifth inequality follows by Theorem 14 and Theorem 15. The sixth inequality follows by p ≤ 2. The
seventh inequality follows by Theorem 9.

Due to Lemma O.1, we have

‖U∗V ∗ −A‖pp ≤ O((k log k)1−p/2 log n) min
U∈Rn×k,V ∈Rk×d

‖UV −A‖pp.

Thus, we have

min
X,Y
‖ARXY SA−A‖pp

≤‖U∗Ṽ −A‖pp
≤O(min((k log k)2−p/2 logp+1 n, (k log k)2−p log2+p/2 n)) min

U,V
‖UV −A‖pp.

9

Lemma O.4 ([19]). Let A ∈ Rn×d, S ∈ Rt2×n, R ∈ Rd×t3 , k, T2 ∈ Rd×t3 be the same as in the
Algorithm 3, then with probability at least 0.9, if for α ≥ 1, X̃, Ỹ satisfy

‖ARX̃Ỹ SAT2 −AT2‖pp ≤ αmin
X,Y
‖ARXY SAT2 −AT2‖pp,

then

‖ARX̃Ỹ SA−A‖pp ≤ αO(log n) min
X,Y
‖ARXY SA−A‖pp.

Lemma O.5. Let A ∈ Rn×d, S ∈ Rt2×n, R ∈ Rd×t2 , k, T1 ∈ Rt2×n, T2 ∈ Rd×t3 be the same as in the
Algorithm 3, then with probability at least 0.9, if for α ≥ 1

t3∑
i=1

‖T1(ARX̃Ỹ SAT2 −AT2)i‖p2 ≤ αmin
X,Y

t3∑
i=1

‖T1(ARXY SAT2 −AT2)i‖p2,

then

‖ARX̃Ỹ SAT2 −AT2‖pp ≤ αβmin
X,Y
‖ARXY SAT2 −AT2‖pp,

where β = O(min(k log k logp n, (k log k)1−p/2 log1+p/2 n)).

Proof. Let X∗, Y ∗ = arg minX,Y
∑t3

i=1 ‖T1(ARXY SAT2 − AT2)i‖p2. Let L = AR,N = SAT2,M =
AT2. Let γ = min{k log k, (k log k log n)1−p/2}. Let H̃ = X̃Ỹ and let H∗ = X∗Y ∗. We have

‖LH̃N −M‖pp
≤2p−1‖LH̃N − LH∗N‖pp + 2p−1‖LH∗N −M‖pp

≤O(γ)

t3∑
i=1

‖T1(LH̃N − LH∗N)i‖p2 + 2p−1‖LH∗N −M‖pp

≤O(γ)

t3∑
i=1

(‖T1(LH̃N −M)i‖2 + ‖T1(LH∗N −M)i‖2)p + 2p−1‖LH∗N −M‖pp

≤O(γ)

t3∑
i=1

(‖T1(LH̃N −M)i‖p2 + ‖D−1
2 (LH∗N −M)i‖p2) + 2p−1‖LH∗N −M‖pp

≤O(γ)(

t3∑
i=1

‖T1(LH̃N −M)i‖p2 + ‖D−1
2 (LH∗N −M)‖pp) + 2p−1‖LH∗N −M‖pp

≤O(γ)(α

t3∑
i=1

‖T1(LH∗N −M)i‖p2 + ‖D−1
2 (LH∗N −M)‖pp) + 2p−1‖LH∗N −M‖pp

≤O(γ)(α

t3∑
i=1

‖D−1
2 (LH∗N −M)i‖p2 + ‖D−1

3 (LH∗N −M)‖pp) + 2p−1‖LH∗N −M‖pp

≤O(γ)α‖D−1
2 (LH∗N −M)‖pp + 2p−1‖LH∗N −M‖pp

≤O(γ logp(n))α‖LH∗N −M‖pp.

The first inequality follows by convexity of xp. The second inequality follows by Lemma O.2. The
third inequality follows by triangle inequality. The forth inequality follows by convexity of xp,
Theorem 14 and Theorem 15. The fifth inequality follows by p ≤ 2. The sixth inequality follows by
the property of X̃, Ỹ . The seventh inequality follows by Theorem 14 and Theorem 15. The eighth
inequality follows by p ≤ 2. Then the ninth inequality follows by Theorem 9.

10

Now let us prove Theorem:

Proof. Notice that X̂, Ŷ = arg minX∈Rt2×k,Y ∈Rk×t3 ‖T1ARXY SAT2 − T1AT2‖2F , we have

(

t3∑
i=1

‖T1(ARX̂Ŷ SAT2 −AT2)i‖p2)1/p ≤ O((k log k)1/p−1/2)(min
X,Y

t3∑
i=1

‖T1(ARXY SAT2 −AT2)i‖p2)1/p.

It means

(

t3∑
i=1

‖T1(ARX̂Ŷ SAT2 −AT2)i‖p2) ≤ O((k log k)1−p/2)(min
X,Y

t3∑
i=1

‖T1(ARXY SAT2 −AT2)i‖p2).

According to Lemma O.5, we have

‖ARX̂Ŷ SAT2 −AT2‖pp ≤ β1 min
X,Y
‖ARXY SAT2 −AT2‖pp,

where β1 = O(min((k log k)2−p/2 logp n, (k log k)2−p log1+p/2 n)). Due to Lemma O.4, we have

‖ARX̂Ŷ SA−A‖pp ≤ O(β1 log n) min
X,Y
‖ARXY SA−A‖pp.

Then, according to Lemma O.3, we have

‖ARX̂Ŷ SA−A‖pp ≤ β2 min
U∈Rn×k,V ∈Rk×d

‖UV −A‖pp,

where β2 = O(min((k log k)4−p log2p+2 n, (k log k)4−2p log4+p n)). For the running time: SA, T1A
can be computed in nnz(A) time. Thus, total running time is nnz(A) + (n+ d)poly(k).

P Implementation Setups

We implement all the algorithms in MATLAB. We ran experiments on a machine with 16G main
memory and Intel Core i7-3720QM@2.60GHz CPU. The operating system is Ubuntu 14.04.5 LTS.
All the experiments were in single threaded mode.

Q Data Simulation for Comparison with `1 and `2 Regression

We generate a matrix A ∈ Rn×d, x∗ ∈ Rd as following: set each entry of the first d + 5 rows of A
as i.i.d. standard random Gaussian variable, each entry of x∗ as i.i.d. standard random Gaussian
variable. For n ≥ i ≥ d+ 6, we uniformly choose p ∈ [d+ 5], and set Ai = Ap, bi = bp. We perform
experiments under 3 different noise assumptions and 2 dimension combinations of N, d and in total
3 × 2 = 6 experiments. The 3 different noise assumptions are, respectively i) N(0, 50) Gaussian
noise with on all the entries of Ax∗; ii) sparse noise, where we randomly pick 3% number of entries
of Ax∗, and add uniform random noise from [−‖Ax∗‖2, ‖Ax∗‖2] on each entry to get b; iii) mixed
noise, which is N(0, 5) Gaussian noise plus sparse noise. The 2 different dimension combinations
are i) balance, where n = 100 ≈ d = 75; ii) overconstraint, where n = 200� d = 10.

11

R Experiments on Approximation Ratio

Here is a documentation of our preliminary experiments on calculating the actual approximation
ratio for the experiment settings mentioned in Section 5.1, Comparison with `1 and `2 regres-
sion. The approximation ratio of interest is calculated as follows: ‖Ax

′−b‖G
‖Ax∗−b‖G , where x

′ is the output
of our novel embedding based algorithm and x∗ is the optimal solution. Since ‖ · ‖G is convex, we
can formulate this problem as a convex optimization problem and use a vanilla gradient descent
algorithm to calculate the optimal solution. We heuristically stop our gradient descent algorithm
when the one step brings less than 10−7 improvement on the loss function and set the learning
rate to be 0.001. Admittedly, we have not yet thoroughly and rigidly examined the convergence of
the vanilla gradient descent algorithm (a direction of future work), and hence such calculation of
approximation ratio is only a preliminary attempt.

Under the mixed noise setting, we varied different scale s of the uniform noise to be 0, 1, 2, 3
and delta to be 0.1, 0.25, 0.5, 0.75. With n = 200, d = 10, for each of these 4 * 4 = 16 settings, we
run the algorithm repeatedly for 50 times, and the worst approximation ratio is 1.06 among these
800 runs. Experimentally, it is far below the theoretical guarantee d log2(n) ≈ 584 � 1.06, and
the approximation ratio is robust among different noise settings. For n = 100, d = 75, due to time
limit, we only run each of the 16 settings for 5 times, and the worst approximation ratio is 1.31.

S Implementation Detail for Low Rank Approximation

• For our algorithm, set t1 = 4k, t2 = 8t1, set S ∈ Rt1×n, T1 ∈ Rt2×n to be two random cauchy
matrices, and set R ∈ Rd×t1 , T2 ∈ Rd×t2 to be two embedding matrices with exponential ran-
dom variables (see Theorem 16.) We solve the minimization problem minX,Y ‖T1ARXY SAT2−
T1AT2‖2F , and set B = ARXY SA.

• For algorithm in [19], we set t1 = 4k, t2 = 8t1. We set S ∈ Rt1×n, T1 ∈ Rt2×n, R ∈
Rd×t1 , T2 ∈ Rd×t2 to be four random cauchy matrices. We solve the minimization problem
minX,Y ‖T1ARXY SAT2 − T1AT2‖2F , and set B = ARXY SA.

• For PCA, we project A onto the space spanned by top k singular vectors to get B.

References
[1] Olvi L Mangasarian and David R. Musicant. Robust linear and support vector regression. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(9):950–955, 2000.

[2] Art B Owen. A robust hybrid of lasso and ridge regression. Contemporary Mathematics, 443:59–72,
2007.

[3] Jacopo Cavazza and Vittorio Murino. People counting by huber loss regression.

[4] Leo N Geppert, Katja Ickstadt, Alexander Munteanu, Jens Quedenfeld, and Christian Sohler. Random
projections for bayesian regression. Statistics and Computing, pages 1–23, 2015.

[5] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression via hard thresholding. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 721–729. Curran Associates, Inc., 2015.

[6] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[7] Jacopo Cavazza and Vittorio Murino. Active regression with adaptive huber loss. arXiv preprint
arXiv:1606.01568, 2016.

12

[8] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins.
Journal of computer and System Sciences, 66(4):671–687, 2003.

[9] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input sparsity
time. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 81–90.
ACM, 2013.

[10] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser sub-
space embeddings. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium
on, pages 117–126. IEEE, 2013.

[11] Christian Sohler and David P Woodruff. Subspace embeddings for the `1-norm with applications. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 755–764. ACM,
2011.

[12] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in input-sparsity time
and applications to robust linear regression. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 91–100. ACM, 2013.

[13] David Woodruff and Qin Zhang. Subspace embeddings and `p regression using exponential random
variables. In Conference on Learning Theory, pages 546–567, 2013.

[14] Ruosong Wang and David P Woodruff. Tight bounds for `p oblivious subspace embeddings. arXiv
preprint arXiv:1801.04414, 2018.

[15] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in
Theoretical Computer Science, 10(1-2):1–157, 2014.

[16] Petros Drineas, Michael W Mahoney, S Muthukrishnan, and Tamás Sarlós. Faster least squares approx-
imation. Numerische Mathematik, 117(2):219–249, 2011.

[17] Kenneth L Clarkson and David P Woodruff. Sketching for m-estimators: A unified approach to robust
regression. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 921–939. Society for Industrial and Applied Mathematics, 2015.

[18] Michael W Mahoney et al. Randomized algorithms for matrices and data. Foundations and Trends R©
in Machine Learning, 3(2):123–224, 2011.

[19] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with entrywise `1-norm
error. In Proceedings of the 49th Annual Symposium on the Theory of Computing. ACM, arXiv preprint
arXiv:1611.00898, 2017.

[20] Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Panigrahy, and David P
Woodruff. Algorithms for `p low rank approximation. arXiv preprint arXiv:1705.06730, 2017.

[21] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney. Sampling
algorithms and coresets for `p regression. SIAM Journal on Computing, 38(5):2060–2078, 2009.

13

	Related Works
	Proof of Fact 2.
	Proof of Lemma 3.
	Proof of Lemma 4.
	Proof of Lemma 5.
	Proof of Lemma 6.
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 12
	Proof of Theorem 13
	Proof of Theorem 16
	Proof of Theorem 18
	proof of Lemma 20
	Proof of Theorem 21
	Proof of Theorem 23
	Implementation Setups
	Data Simulation for Comparison with 1 and 2 Regression
	Experiments on Approximation Ratio
	Implementation Detail for Low Rank Approximation

