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Abstract

Currently, unknown unknowns in high dimensional big data environments can go unnoticed
for a long period of time. The failure to detect anomalies in critical infrastructure data can
result in extensive financial, operational, reputational and life threatening consequences. In
this paper, we describe algorithms for an automatic and unsupervised anomaly detection
that do not necessitate domain expertise, signatures, rules, patterns or semantics under-
standing of the features. We propose several new methodologies for anomaly detection
to protect critical infrastructures, with emphasis on finance, spanning from theory to ac-
tionable technology. Although anomalies can originate from several sources, we also show
that cyber threat, financial and operational malfunction are converging into a single detec-
tion paradigm. Performance comparison between different algorithms (ours and others) is
presented as well as examples from real use cases.

1. Introduction

In the last decade, with the overwhelming increase of interest in big data analytics, the
demand for data driven methods for anomaly detection rose substantially. For example,
anomaly detection that operates on high dimensional big data (HDBD) is of fundamental
importance in cyber security for protecting critical energy infrastructure, transportation,
financial institutions, or telecommunications corporations. Moreover, to find new and un-
seen types of threats and disturbances including advanced financial threats, unsupervised
approaches are required. However, several factors make unsupervised anomaly detection
in HDBD a challenging task: the need to learn the distributions of high dimensional data
points, frequently loosely defined boundaries between normal and abnormal behavior, time
evolving data normality, i.e. what is currently considered as a normal behavior might be
abnormal in future and vice versa. In addition, unsupervised anomaly detection closely
depends on well engineered features, which greatly relies on highly skilled domain experts,
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on data integrity concern, null completion, codes vs. measurements handling and so on.
Failure to correctly address these issues could result in high false alarm rate or potential
financial lost.

In this paper, we focus on an automatic and unsupervised anomaly detection in a struc-
tured HDBD that do not necessitate domain expertise, signatures, rules, patterns or se-
mantics understanding of the features. We propose several new methodologies for anomaly
detection to protect critical infrastructures, with emphasis on finance, spanning from theory
to actionable technology. Although anomalies can be originated from several sources, we
also show that cyber threat, financial and operational malfunction are converging into a
single detection paradigm.

The basic approach in securing critical infrastructures in the past 45 years, classified as
“walls and gates”, has failed. There is no reason to think that barriers between trusted and
untrusted components with policy-mediated pass-through systems, will be more successful in
the future. Rule based detection methodologies, which govern firewalls, signatures/patterns
that govern IDS/IPS and antivirus, are irrelevant today for detection of new and sophisti-
cated malware (virus, worms, back door, spyware, Trojans) masked as a legitimate stream
and penetrate every state-of-the-art commercial barrier on the market. Traditional defense
systems are ineffective. These systems do not catch zero-day attacks and Advanced Persis-
tent Threats (APT), which do not have previously encountered signatures or play by known
rules. In other words, traditional solutions cannot detect unknown unknowns; they are only
able to detect yesterday’s attacks - ones encountered in the past, and those they know they
are looking for.

Currently, the time it takes to detect unknown unknowns in HDBD environments can
go unnoticed for months and even more. The failure to detect anomalies in critical infras-
tructure data can result in extensive financial, operational, reputational and life threatening
consequences.

In the flood of data (40 Trillion GB is an estimation of the size of the digital universe
by 2020 up from 130 billion in 2005') lie tremendous opportunities for us to understand,
process, manipulate and extract intelligence from it, visualize it, connect the dots between
pieces of information and turn HDBD into meaningful insight.

Anomaly detection is the process of identifying unexpected items or events in datasets
which differ from the norm. When the dimension of the data is getting larger, anomaly
detection is becoming more challenging as each feature can appear normal by itself, but
abnormal when combined with other features. Having large datasets, with the appropri-
ate algorithms, will enable to learn normal and abnormal combinations of feature values.
Though deep learning plays a central role in our detection scheme, the scope of this paper
is limited to machine learning algorithms that do not rely on the deep learning approach.
Performance comparison between different algorithms is presented in section 4.1, as well as
examples of two real use cases (sections 4.3 and 4.4).

2. Processing Ideologies of HDBD and Governing Principles for
Unsupervised Anomaly Detection

Anomaly detection in HDBD can be classified into 4 modes-of-operation:
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Unsupervised (unknown unknowns): There is no knowledge about the data and no
labels to classify each member in the dataset into predefined categories. This is the
focus of this paper.

Guided Unsupervised: We have some knowledge about the data and part of its labels.
In this case, unsupervised approach becomes more tailored to this specific knowledge,
which is incorporated in the learning process through label-based feature engineering.

Semi-Supervised: We have full knowledge on a small amount of labeled data (classified)
but we do not know how the complementary data is classified.

Supervised: We have full knowledge of how each member of the dataset is classified into
predefined categories.

Our unsupervised anomaly detection process relies on the following principles: Uncover-
ing unknown unknowns without the need for domain expertise, signatures, rules, patterns,
heuristics, supervision and semantics understanding. There is no limitation on the number
of features (dimension) in the data. The same core technology, classified as a universal core,
supports financial, cyber and industrial verticals without any modification/adaption to a
specific vertical. Emphasis is on efficient processing to get fast and automatic detection in
HDBD with low false positive rate.

3. Different Types of Algorithms for Unsupervised Processing

The algorithms are divided into three main categories: Preprocessing - deals mainly with
data preparation, core algorithms - perform the genuine anomaly detection in the data, and
post-processing - for organizing the results displayed to the user. Preprocessing algorithms
include among others: Categorical to numerical conversion Udell et al. (2016), missing val-
ues replacement Shabat and Averbuch (2012); Udell et al. (2016), normalization, integrity
check and automatic feature adaptation. “Core”-detection algorithms include among others:
geometry extraction (Diffusion maps, Kernels), low rank approximation, density estima-
tion, dictionary learning, neural nets and deep learning. Post-processing algorithms include
among others: threshold calculation for anomaly detection, fusion of the results obtained
from several algorithms, parameter rating, anomaly clustering and similarity search.

In this paper, two algorithms are described: Geometry-based extraction called Diffusion
Maps (DM) Coifman and Lafon (2006a); Lafon (2004) or Nystrém detector, and computa-
tionally efficient randomized low rank matrix decomposition. The algorithms do not require
the data set to be completely anomaly free and can detect anomalies in the training set
itself as long as they are rare.

3.1. Diffusion Maps (DM): Overview

DM methodology is based on constructing a Markovian diffusion process that quantifies
the connectivity between multidimensional data points and follows the dominant geometric
patterns in the data. DM embedding is obtained by spectral analysis of this process (i.e.,
eigenvalues and eigenvectors of its transition operator). This embedding usually provides
a faithful low-dimensional representation of patterns and trends in the analyzed data. To
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classify each newly arrived multidimensional data point in online mode, we use the Nystrom
extension (see Lafon (2004); Coifman and Lafon (2006a)).

Let M C R™ be a dataset that is sampled from a manifold M that lies in the ambient
space R™. Let d < m be the intrinsic dimension of M, thus, it has a d-dimensional tangent
space T(M), at every point z € M. If the manifold is densely sampled, the tangent space
T, (M) can be approximated by a small enough neighborhood around = € M.

DM analyzes the dataset M by exploring the geometry of the manifold M from which
it is sampled This method is based on defining an isotropic kernel operator K f(z) =
Jas K( y)dy (for f : M — R) that consists of the affinities k(z,y), z,y € M. The
afﬁmtles in thls kernel represent similarity, or proximity, between data points in the dataset
and on the manifold. The kernel K can be viewed as a construction of a weighted graph
over the dataset M. The points in M are used as vertices in this graph and the weights of
the edges are defined by the affinities in K.

These affinities in K are assumed to satisfy the following properties: Each data-point
has a positive self-affinity, the affinities are non-negative and symmetric. The graph, which
is defined by the weighted adjacencies in K, is connected.

The affinity kernel is the Gaussian kernel

2
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k(z,y) e e, (1)

where x,y € M and € > 0. This kernel is also used in other dimensionality reduction meth-
ods (e.g., Laplacian Eigenmaps Belkin and Niyogi (2003)) as well as out-of-sample extension
methods (e.g., Geometric Harmonics Coifman and Lafon (2006b) and MSE Bermanis et al.
(2013)).

The graph K represents the intrinsic structure of the manifold and is used by DM
to construct a Markovian (random-walk) diffusion process that follows it. The degree of
each data point (i.e., vertex) € M in this graph is defined as ¢(z f 1 k(z,y)dy. The
diffusion process is defined by normalizing the kernel K with ¢(x) to obtain the transition
probabilities p(x,y) = k(z,y)/q(x), x € M, y € M. These probabilities constitute the row
stochastic transition operator Pf = [, p(x,y)f(y)dy of the diffusion process.

DM computes an embedding of data points on the manifold into a Euclidean space
whose dimensionality is usually significantly lower than the original data dimensionality.
This embedding is a result of spectral analysis of the diffusion kernel.

Under mild conditions on the kernel K the resulting diffusion affinity kernel has a discrete
decaying spectrum of eigenvalues 1 = A\g > |A1| > |A2] > ... (see Lafon (2004)). These
eigenvalues are used in DM together with their corresponding eigenvectors 1 = ¢, ¢1, @2, . ..
to define the DM embedding of the data. Each data point € M is embedded by DM to the
diffusion coordinates that are given by ®(z) £ (¢~ (z)A\[¢1(x), ..., ¢ (z)\sgs(2)), where ¢
is the diffusion time parameter and the exact value of & depends on the kernel’s spectrum.
In most cases, ¢ is significantly smaller than the original dimensionality of the observable
data.

As a result of the spectral theorem, the Euclidean distances in the embedded space cor-
respond to the diffusion distance metric of the diffusion process defined by P (Coifman and
Lafon (2006a); Lafon (2004)). This metric quantifies the connectivity between data points
in the diffusion process by considering the several possible diffusion paths between them
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within a time step t. Therefore, the resulting embedded space of DM follows the geometry
that is defined by the underlying diffusion process of DM. When the data points are sampled
from a low-dimensional manifold, this diffusion geometry reveals the intrinsic structure of
the underlying manifold and the DM embedding provides a meaningful representation of
the data. Additional analysis techniques can then be applied to the embedded space to
perform common learning tasks, such as clustering, classification and anomaly detection
(see David (2009); Rabin (2010)).

3.1.1. EXTENSION SCHEMES FOR NEWLY ARRIVED MULTIDIMENSIONAL DATA POINTS

A newly arrived multidimensional data point is embedded by several possible techniques
into a small subspace such as manifold, as proposed in Kaymaz (2005); Rabin and Fishelov
(2017), or using a multi-scale scheme Bermanis et al. (2013), Interpolative Decomposition
Cheng et al. (2005) or Nystrom extension.

Nystrom extension finds a numerical approximation for the continuous eigenfunction
problem

/Gwy y)dy = Ap(x).

Discretization is achieved by 1 > i=1 G(wi, 75)d(x5) = Ad(x;). The Nystrom extension of ¢
to a new data point z is given by

A 1 &
AjZ (@, 2)p(2;)-
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In our setup, G is a Gaussian kernel matrix, g;; = e~ < . The eigenfunctions of G
constitute an orthonormal basis for R”. Any vector f = (f(x1), f(x2),..., f(x,)) can be
decomposed according to f = > 7" (f, $i)¢i. [ is extended to z by flz) = Yo (f, bi)di().
It is important to mention that the direct computation of the kernel for n data points
in R? takes O(n?d) operations, and an additional O(n?k) operations for computing its
rank k SVD. It takes also O(n?) in memory for storing the kernel. These computational
requirements make it impractical for processing large data. In order to cope with this
problem, random Fourier features Rahimi and Recht (2008) are used with batch computing
to reduce memory requirements and computational complexity. As described in Yu et al.
(2016), by using structured random projections based on fast Hadamard transform, the
computational complexity can be reduced to O(ndlogd). Incorporating the fast structured
random Fourier features, reduces the computational complexity to linear in the number of
data points and enable the algorithm to process large data on a GPU with a limited memory
amount.

Eventually, the anomalies are detected in the following way: The training data is pro-
jected into a manifold according to the DM methodology. Newly arrived multidimensional
data points are projected onto the manifold using out-of-sample extension methodologies.
If the newly arrived multidimensional data point falls inside the manifold it is classified
as normal, otherwise it is considered an anomaly. The decision of point is an anomaly is
defined by computing its score, based on a nearest-neighbor-based density estimation. The
threshold is estimated by performing a model fitting to a probability density function.
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Computation time of the randomized LU - CPU vs GPU
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Figure 1: Running time comparison between CPU and GPU

3.2. Low Rank Approximations for Anomaly Detection

Low rank approximations play a central role in machine learning and specifically in anomaly
detection. In this paper we propose an approach for low rank approximations in anomaly
detection by finding a linear subspace that captures only the normal data points and not
the anomalies. Each data point gets a score that reflects how well it is spanned by the
subspace. In order to compute efficiently a low rank approximation in an LU form of a
given matrix, it is possible to use the Randomized LU decomposition Shabat et al. (2016),
which is a fast matrix factorization method that uses random projections. This approach
enables the derivation of theoretical error bounds, and can be fully parallelized to run on
a GPU without any CPU-GPU data transfer. The method can be further accelerated by
using sparse random projections Clarkson and Woodruff (2013), as described in Aizenbud
et al. (2016).

Given an input m x n matrix A, a desired rank k£ and the number of random projections
[, the randomized LU returns the matrices L, U, P, @, where L and U are lower and upper
trapezoidal matrices respectively, and P, () are orthogonal permutation matrices such that

|ILU — PAQ||2 < C(m,n,l, k)ogy1,

where oj11 is the k + 1 largest singular value of A and the factor C(m,n,l, k) appears ex-
plicitly in Shabat et al. (2016) along with the corresponding success probability. Estimating
the rank k of the data can be performed using a variety of models (see, for example Gavish
and Donoho (2014); Kritchman and Nadler (2008)). Algorithm 1 describes the randomized
LU decomposition. Figure 1 shows a comparison between the CPU and GPU running time
on a 20,000 x 20,000 matrix for different low rank approximations (indicated in the algo-
rithm by ”k”) in single precision. The number of random projections was [ = k + 5. The
GPU used was GTX-1080 and the CPU was Intel 6950X running with 10 cores.

3.2.1. BUILDING DICTIONARIES FOR CLASSIFICATION/DETECTION

Following algorithm 1 it can be shown that D := PTL approximates the range of A and
can therefore be used as a dictionary. The approximation error for the range is given by
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Algorithm 1 Randomized LU Decomposition

Input: A matrix to decompose of size m x n; k desired rank; [ number of columns to use.
Output:  Matrices P,Q,L,U such that PAQ = LU where P,Q are per-
mutation matrices and L,U are lower and upper triangular matrices, respec-
tively.

1: Create a Gaussian random matrix G of size n X [.

Y + AG

Perform RRLU decomposition Pan (2000) to Y, such that PY Q, = L,U,,.
Choose a basis from L, by picking the first k& columns, L, < L,(:,1: k).
B + LLPA /*t is the pseudo inverse.

Perform LU decomposition to B with column pivoting BQ = LUy,

L+ LyL,

U + Ub.

HDDTA - AH < C(m7 n,l, k)0k+1-

When high accuracy is achieved, for example by using power iterations Martinsson et al.
(2010); Li et al. (2017), the error becomes ||[DDTA — A|| = op41(A).

During the training phase, the dictionary D is computed according to algorithm 1.
The score of a newly arrived measurement x is then determined by the approximation
error |DDTx — z||. Therefore, points with low score are by definition well represented
by the dictionary D and are similar to normal data, while anomalies are susceptible to
have high scores. In practice, due to the inherent random nature of the algorithm, the
dictionary learning procedure is performed several times and a representative span of range

A is derived.

4. Results

4.1. Accuracy comparison with other algorithms

In this section we present the detection performance of the two algorithms (geometry and
dictionary) described above and compare it to the results obtained from other unsuper-
vised anomaly detection algorithms reported in Goldstein and Uchida (2016). The algo-
rithms described in Fig. 2 were applied to 10 datasets (both algorithms and datasets were
adapted from Goldstein and Uchida (2016)): Breast cancer Wisconsin (Diagnostic), Pen-
Based recognition of handwritten text (global), Pen-Based recognition of handwritten text
(local), letter recognition, speech accent data, landsat satellitem, thyroid disease, Statlog
shuttle, Object images (ALOI) and KDD-Cup00 HTTP. All the datasets contain different
features for a variety of anomaly detection tasks.

We adopt the AUC (area under the curve) as a measure to assess the accuracy of our
anomaly detection algorithms. We choose then to compute the average AUC on all the
10 datasets considered to address consistency of the performance across all the datasets.
Figure 3 depicts the average accuracy over all the data sets reported for our algorithms
and for some of the most accurate algorithms reported in Goldstein and Uchida (2016). It
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| Unsupervised Anomaly Detection Algorithms |
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Figure 2: Unsupervised anomaly detection algorithms (taken from Goldstein and Uchida
(2016))
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Figure 3: Average accuracy of a variety of algorithms applied to several datasets described
in the text.

can be seen that the nearest neighbor-based (k-NN) and the clustering-based (WCBLOF)
algorithms are the two most accurate algorithms reported in Goldstein and Uchida (2016).
However, both the geometry and dictionary detectors we present are superior to all the
algorithms that appear in Fig. 3.

4.2. Computation time comparison with other algorithms

Besides the high anomaly detection accuracy required, algorithms should also comply with
good computational performance. We compile in Fig. 4 the computation time (in log scale)
of our diffusion and dictionary algorithms on all the datasets described in the precedent
section. It can be seen that it takes less than 1 sec for our dictionary-based algorithm to
find anomalies in most of the datasets considered, with a very favorable speed scaling when
moving from small datasets (thyroid for example) to large ones (aloi or kdd99 for example).
A very good computation time is also reached by our diffusion algorithm, which is a kernel
based method that usually leads to very poor speed performance. Even the largest dataset
(kdd99) that contains 620,098 rows and 29 columns is analyzed within only 41 sec on a
4-core CPU laptop with a i7-7700HQ processor.

Although a direct comparison of our speed performance and that of the algorithms in
Goldstein and Uchida (2016) is obviously hazardous and greatly depends on the hardware
used, we can still present a comparison of the computation speed scale up when moving
from the thyroid dataset made of 6916 rows, to the aloi dataset with its 50000 rows up to the
kdd99 dataset. All these are composed of close to 25 features, which enables us to directly
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Computation time (sec) Computation time scale
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Figure 4: Computation time (in sec) for Figure 5: Computation time scale for five dif-
our two algorithms applied to all the ferent algorithms applied to aloi and kdd99
datasets described in the text. relative to the thyroid dataset.

compare the increase in the computation speed as a function of the number of rows in the
dataset. The results are shown in Fig. 5. The computation time scale presented in Fig 5
for aloi and kdd99 are relative to the thyroid dataset. Only the fastest three algorithms
appearing in Goldstein and Uchida (2016) are shown for comparison. It should be noted
that the computation time of the HBOS and rPCA algorithms for the thyroid dataset is
reported to be less than 0.1 sec. We therefore set it to 0.1 sec, which results in a comparison
which is not favorable to us. It can be seen that with increasing dataset size our algorithms
perform much better than even the fastest algorithms we compare with that are reported
in Fig. 2.

4.3. ATM Security: A real case

In this section, we briefly present a real use case encountered in our joint work with one
of our customers. The customer is the ATM monitoring and security department of a top
international bank, headquartered in the US. The bank suffers from high losses due to
new fraud scenarios undetected by legacy technology and from an increasing instances of
security breaches. The data was collected from 2,520 ATM machines in north America
and consisted of 14,000,000 ATM transactions logs and account information. The project
was performed within 9 days on site. The algorithms detected unknown events, including
suspected fraud, abnormal activity and operational deficiencies. Our approach provided also
useful pin-point forensic information and transformed weeks of investigation into hours. In
addition to unknown fraudulent activity, operational malfunctions and potential security
breaches that were detected, we also discovered data integrity issues which had a great
impact on the customer operations.

4.4. Anti-Money Laundering: A real case

In another real scenario, the goal was to detect cases of anti-money laundering (AML).
The customer was the compliance and AML department of a European multinational bank.
The customer had to challenge late detection of criminal activity, low accuracy and ana-
lyst alert fatigue. The data contain 50,000,000 transactions gathered during 18 months,
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in addition to account information such as balance and transfers, and socio-demographic
profiles. Our algorithms detected ML and terror funding (TF) cases even before the case
file was opened. We were also able to cluster all the alerts into 23 clusters and 20 single
anomalies, substantially reducing the number of false alarms and of events to investigate.
In addition, we discovered new instances of money laundering 11 months prior to the reg-
ulatory notification, and which were not detected by existing controls. We also uncovered
known money laundering cases on average 70 days prior to existing controls, unknown ML
and TF events that were not detected by existing systems and regulators. Finally, we also
increased forensic and detection efficiency by reducing by 40% the number of alerts and by
establishing a priority on clustered alerts.

5. Conclusions and Future Work

Currently, the time it takes to detect unknown unknowns in HDBD environments can long,
in some cases more than months. The failure to detect anomalies in critical infrastructure
data can result in extensive financial, operational, reputational and life threatening conse-
quences. The paper describes automatic unsupervised anomaly detection algorithms that
uncover unknown unknowns without the need to have domain expertise, signatures, rules,
patterns, heuristics, supervision and semantics understanding. The same core technology,
classified as a universal core, supports financial, cyber and industrial verticals without any
modification/adaption to a specific vertical. Emphasis was channeled to efficient processing
to get fast detection in HDBD with low false positive rate.

Anomaly detection methodology is divided into three main categories: Preprocessing -
deals mainly with data preparation, core algorithms - perform the genuine anomaly detec-
tion in the data, and post-processing - for organizing the results displayed to the user. Each
category has open research and developments challenges for the future such as: automatic
feature selection, adaptation and manipulation in preprocessing category, neural nets and
deep learning with low false positive in “core” detection algorithms, threshold calculation
for anomaly detection, fusion of the results obtained from several algorithms, anomaly clus-
tering and visualization to support fast forensic in post-processing algorithms.
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