
Proceedings of Machine Learning Research 77:95–101, 2017 KDD 2017: Workshop on Anomaly Detection in Finance

An Automated System for Data Attribute Anomaly
Detection

David Love David.K.Love@aexp.com
American Express

Nalin Aggarwal Nalin.Aggarwal@aexp.com
American Express

Alexander Statnikov Alexander.Statnikov@aexp.com
American Express

Chao Yuan Chao.Yuan@aexp.com

American Express

Abstract

We introduce DataQC, an automated system for data attribute anomaly detection for the
purpose of improving data quality. Large organizations can have non-standardized or in-
consistent data quality checking practices being followed across different departments. The
key motivation behind the development of such a system is to 1) achieve a standard for
anomaly detection 2) facilitate quick identification of obvious anomalies 3) reduce human
judgment in data anomaly detection 4) facilitate prompt corrective action by data scien-
tists. Most of the methods and techniques used during the development of this system are
well known and have been widely used by finance professionals who deal with data. Our
contribution is to provide a system that improves overall efficiency, interpretability, and
objectivity for detecting data attribute anomalies.
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1. Introduction

Financial services companies collect, use and analyze data in a number of ways in the quest
to make smarter, faster decisions that are beneficial to their customers and profitable for
the company. The recent expansion of information technologies and e-commerce have led to
the exponential growth of customer data that can be measured over different granularities
(time periods, transactions, customer segments). As a result of this data influx, there is
an increased likelihood of a data attribute taking unexpected or erroneous values, causing
poor data quality, and thus impacting decision support systems and computer models that
use this data.

Errors in data can come from many places. One obvious cause is simply human error,
which may result in junk values within a continuous attribute, e.g., a FICO score of 8000.
Other errors come from problems in automated data processing systems. For example, a
broken data linkage between a data receiver and sender could result in an unusually large
number of missing values in one or more data attributes. Irrespective of the reason, missing
data can have huge influence on the models or data products developed by data scientist
and mishandling often results in faulty interpretations made by the business.
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Data anomalies can occur even without errors. When collected over a long period of time,
distributions can be observed to drift as the underlying behaviors change. For example, a
typical financial institution may see the proportion of its population with low credit bureau
scores change along with changing economic conditions. This population change could have
more widespread impact among attributes defining the behavior of population like income,
credit available to them etc. Fundamental data shifts like these can adversely affect the
performance of key models and tools deployed by the organization.

Finally, anomalous data attributes could be due to the presence of genuine outliers in
the data. Such cases, despite being a reality of the data, have to be treated properly before
being processed through a typical modeling framework. Although many machine learning
techniques are robust to the presence of outliers, their presence can still affect key steps like
feature engineering and feature selection.

In this paper, we present an automated system for detecting anomalous data attributes
called DataQC. Using DataQC, data scientists can easily run a comprehensive set of data
quality tests against a previously verified reference dataset to quickly highlight how the data
has changed from a prior analysis. These results enable the data scientist to focus their
investigative efforts on parts of the data most likely to need special attention and ultimately
deliver updated models with speed and reliability.

This paper is organized as follows: Section 2 describes the basic statistical methods
used in DataQC; Section 3 describes how the methods are combined to generate an overall
score on the quality of the data; Section 4 describes some visualization techniques used in
DataQC; and Section 5 discusses the results of the use of DataQC.

2. Methods

To detect anomalous data attributes, DataQC leverages a panel of descriptive statistics
that are suitable for big data. The analytical procedures in the system are run against a
benchmark dataset that is provided by the data scientist. This “gold standard” dataset
could be data used in previous experiments that has been checked manually for its cor-
rectness (absence of anomalous attributes). DataQC identifies anomalous attributes which
have significant differences between the benchmark data and the tested data in terms of key
descriptive statistics noted in this section. In the end, the system outputs a score between
0 and 100 where the score of 100 signifies data with zero anomalies while the score of less
than 60 points to significant anomalies and deviations between the benchmark and tested
data.

2.1. Statistics for Anomalous Attributes

Several of the tests described below in this section use Cohen’s d and h statistics to represent
the severity of any distributional changes between the benchmark and test datasets. Cohen’s
d and h measure the effect size (in units of the standard deviation) of changes in mean
and proportion, respectively (Carson, 2012; Coe, 2002; Cohen, 1977). These statistics are
preferable to standard hypothesis testing methods like the Student’s t-test because, in the
case of big data, extremely small changes in the distribution will reach statistical significance
(Cohen, 1990; Sharpe, 2004). For the purpose of data quality control, we are interested only
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in changes that are large enough to have practical significance, which can be achieved with
the effect size statistics.

Table 1 summarizes the usual recommended cut offs for small, medium, and large effect
sizes (Ellis, 2009; Carson, 2012; Ferguson, 2009).

Table 1: Cohen’s d and Cohen’s h cut offs

Cohen’s d / Cohen’s h Effect Size

0.2 Small
0.5 Medium
0.8 Large

2.2. Missing Rates

Problems in data pipeline linkages can result in missing values appearing in the final out-
put dataset. To test for this possibility empirically, DataQC tests for significantly large
differences in rate of missing values for each attribute in the dataset. Following the recom-
mendations from Section 2.1, we adapt use of the Cohen’s h test statistic, defined as

h = 2 |arcsin
√
pT − arcsin

√
pB| , (1)

where pB and pT are the missing rates in the benchmark and test datasets, respectively
(Cohen, 1977).

Cutoffs for the Cohen’s h are chosen based on the guidelines listed in Table 1. Any
attribute with an h value falling above the cutoff is marked as anomalous and in need of
further investigation.

2.3. Means

DataQC checks for changes in distribution using three complementary methods. The first
and simplest method is to check for changes in the mean value of each attribute. DataQC
focuses on the effect size of difference in the means by calculating Cohen’s d statistic,

d =
x̄T − x̄B
σB

,

where x̄B and x̄T are the sample means of the benchmark and test data, respectively, and
σB is the standard deviation of the benchmark data (Cohen, 1977).

Cutoffs are again selected sing the guidelines in Table 1. Any attribute with a d value
above the cutoff is marked as anomalous.

Since the mean is sensitive to extreme values in the data, DataQC calculates the mean
(and variance) by flooring and capping the observations at the 1st and 99th percentiles.

97



KDDADF2017

2.4. Single Attribute Distribution

Testing for the difference in the means cannot find all changes in distribution of an attribute.
To determine whether other, more subtle changes in the distribution have occurred, DataQC
constructs and compares the histograms of the benchmark and test datasets. Bins for the
histograms are selected by a linear spacing between the 1st and 99th percentiles of the
benchmark data, with two additional bins to count values outside this interval. The relative
frequency of each bin is determined, and differences in these frequencies are assessed using
Cohen’s h statistic defined in equation (1). An attribute if marked as anomalous if at least
one bin falls above the cutoff value.

2.5. Multiple Attribute Distribution

The histogram method from Section 2.4 may fail to detect changes in the interaction between
multiple data attributes. Simply extending the histogram-based analysis of the previous
section suffers from the curse of dimensionality in two ways: the number of possible com-
binations of attributes grows exponentially with the number of attributes, and the density
of observations decreases as more dimensions are included. To counteract these problems,
DataQC builds a Random Forest classifier (Breiman, 1996; Dietterich, 2000) to distinguish
between the benchmark and test datasets. The Random Forest method was chosen because
it works well across a variety of problems and requires the very little classifier-specific data
preprocessing, e.g., random forest can be used without data scaling and with only sentinel
imputation values. An anomaly score is generated for the test dataset overall (not the
individual attributes) using the Gini coefficient of the classifier evaluated on a holdout set
combined with the attribute importance rankings from the classifier.

2.6. Extreme Values

The final aspect to compare between benchmark and test data is the existence of extreme
values. DataQC concentrates on examining the largest value in each dataset, and calculates
the standardized value for both benchmark and test data,

E =
max(x)− x̄B,99

σB,99
, (2)

where x̄B,99 is the mean of benchmark data above the 99th percentile, and σB,99 is the
standard deviation of the same subset. Equation (2) is calculated for both benchmark and
test datasets, notated EB and ET , respectively.

DataQC examines differences in extreme values using two rubrics: (a) difference in
normalized extreme values (eT − eB) and (b) ratio of extreme values eT

eB
. Attributes are

marked as anomalous if both statistics are sufficiently large.

3. Overall Anomaly Scores

DataQC provides an overall anomaly score for each of the above tests. The Random Forest
classifier method described in Section 2.5 generates a score from the Gini coefficient on
a holdout set and the attribute importance scores generated by the classifier. All other
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methods create anomaly scores from the percentage of attributes not marked as anomalous
from each test. This system was tested across many different data sets. Table 2 lists
categories for the severity of data anomaly were selected based on user feedback.

Table 2: Score ranges for low, medium, and high levels of anomalous attributes

Score Attribute Anomaly Level

100 – 80 Low
80 – 60 Medium
< 60 High

In practice, all the data sets showing high attribute anomaly level must be investigated
by the analyst.

3.1. Levels of Analysis

It is often desirable to reproduce the analysis from this section through different levels of
the data. There are two levels that are most common: repeating the analysis broken down
by time frame and by segment.

DataQC offers the automatic capacity to repeat all tests (except Section 2.5) for each
time frame and for each segment. Scores are generated individually for each analysis that
is performed.

4. Data Quality Visualization

Data visualization is an important part of the analysis process that can reveal interesting
aspects of the data that automated tests may miss. DataQC incorporates visualization
by using the method of t-Distributed Stochastic Neighbor Embedding (t-SNE) to provide
a robust visualization of many-dimensional data (Maaten and Hinton, 2008). t-SNE is
a dimensionality reduction technique that preserves small distances between observations
at the expense of making larger distances less meaningful. This means that neighboring
points in the transformed data are also likely to be neighbors in the original dataset, thus
preserving clusters in the original dataset.

DataQC uses t-SNE to provide a tool that can be helpful in answering several questions,
outlined in the subsections below. None of the important variables highlighted (bench-
mark/test distinction, time frame, segment) are included in input for training the t-SNE
transformation. Example t-SNE plots can be seen in Figure 1.

4.1. How Similar are the Benchmark and Test Datasets?

The benchmark and test datasets can be highlighted on the t-SNE plots in different col-
ors. This provides a visual method of determining how different the datasets are. If the
observations of benchmark and test data are well mixed throughout the plot, then we can
conclude that the datasets are similar (e.g., Figure 1(a)) On the other hand, if there are
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(a) Well-mixed observations (b) HIghly separated observations by
segemnt

Figure 1: t-SNE Plots. This shows two example cases of t-SNE plots, where the classes
are well mixed (1(a)) or well separated (1(b))

areas made up mostly or entirely of one dataset, this can point towards places of interest
in the quality control process (e.g., Figure 1(b)).

4.2. Does the Data Change Over Time?

By highlighting the time frame of each observation, DataQC can provide insight on whether
the data changes substantially over the set of time frames. Similar to the analysis provided in
Section 4.1, well mixed observations would indicate low dependence on time, while distinct
regions of solid colors show that time is an important component of this dataset.

4.3. Is Segment-Level Modeling Important?

Often in the practice of modeling one finds the question of the size of model to build: one
large model or several smaller models on distinguishable segments of the data? DataQC’s
visualization techniques can be used to provide insight into this decision. When the segments
are highlighted in the t-SNE plot, highly separated segments provide evidence that segment-
level models may perform better than a single integrated model. Well mixed segments
provide evidence of the opposite.

5. Results & Conclusions

In this paper we have introduced a novel data attribute anomaly detection system called
DataQC. This system allows organizations to perform an objective and effective assessment
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of their data using the same high standard across business units and use cases. As a result,
data scientists can have cleaner datasets and the opportunity to build more robust models.

The use of DataQC has reduced data scientists’ manual data assessment effort by 90%
and has significantly increased the accuracy of detecting anomalous data attributes. Use of
this system also ensured consistently high standard for data assessment. To date, DataQC
has been leveraged for all key customer financial datasets that constitute the basis of pre-
dictive models.

References

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Cristi Carson. The effective use of effect size indices in institutional research. Citováno dne,
11:2016, 2012.

Robert Coe. It’s the effect size, stupid: What effect size is and why it is important. 2002.

Jacob Cohen. Statistical power analysis for the behavioral sciences (revised ed.), 1977.

Jacob Cohen. Things i have learned (so far). American psychologist, 45(12):1304, 1990.

Thomas G Dietterich. An experimental comparison of three methods for constructing en-
sembles of decision trees: Bagging, boosting, and randomization. Machine learning, 40
(2):139–157, 2000.

Paul D. Ellis. Thresholds for interpreting effect sizes, 2009. URL http://www.polyu.edu.

hk/mm/effectsizefaqs/thresholds_for_interpreting_effect_sizes2.html.

Christopher J Ferguson. An effect size primer: A guide for clinicians and researchers.
Professional Psychology: Research and Practice, 40(5):532, 2009.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

Donald Sharpe. Beyond significance testing: Reforming data analysis methods in behavioral
research. 2004.

101

http://www.polyu.edu.hk/mm/effectsizefaqs/thresholds_for_interpreting_effect_sizes2.html
http://www.polyu.edu.hk/mm/effectsizefaqs/thresholds_for_interpreting_effect_sizes2.html

	Introduction 
	Methods
	Statistics for Anomalous Attributes
	Missing Rates
	Means
	Single Attribute Distribution
	Multiple Attribute Distribution
	Extreme Values

	Overall Anomaly Scores
	Levels of Analysis

	Data Quality Visualization
	How Similar are the Benchmark and Test Datasets?
	Does the Data Change Over Time?
	Is Segment-Level Modeling Important?

	Results & Conclusions

