A. Notation

Symbol	Definition
$\alpha(d)$	Attraction probability of item d
α_{\max}	Highest attraction probability, $\alpha(1)$
A	Binary attraction vector, where $A(d)$ is the attraction indicator of item d
P_{lpha}	Distribution over binary attraction vectors
\mathcal{A}	Set of active batches
b_{\max}	Index of the last created batch
$\boldsymbol{B}_{b,\ell}$	Items in stage ℓ of batch b
$oldsymbol{c}_t(k)$	Indicator of the click on position k at time t
$oldsymbol{c}_{b,\ell}(d)$	Number of observed clicks on item d in stage ℓ of batch b
$\hat{oldsymbol{c}}_{b,\ell}(d)$	Estimated probability of clicking on item d in stage ℓ of batch b
$ar{m{c}}_{b,\ell}(d)$	Probability of clicking on item d in stage ℓ of batch b, $\mathbb{E}[\hat{c}_{b,\ell}(d)]$
\mathcal{D}	Ground set of items [L] such that $\alpha(1) \ge \ldots \ge \alpha(L)$
δ_T	$\log T + 3\log\log T$
$ ilde{\Delta}_\ell$	$2^{-\ell}$
I_b	Interval of positions in batch b
K	Number of positions to display items
$\operatorname{len}(b)$	Number of positions to display items in batch b
L	Number of items
$oldsymbol{L}_{b,\ell}(d)$	Lower confidence bound of item d , in stage ℓ of batch b
n_ℓ	Number of times that each item is observed in stage ℓ
$oldsymbol{n}_{b,\ell}$	Number of observations of item d in stage ℓ of batch b
$\Pi_K(\mathcal{D})$	Set of all K-tuples with distinct elements from \mathcal{D}
$r(\mathcal{R}, A, X)$	Reward of list \mathcal{R} , for attraction and examination indicators A and X
$r(\mathcal{R}, \alpha, \chi)$	Expected reward of list \mathcal{R}
$\mathcal{R} = (d_1, \ldots, d_K)$	List of K items, where d_k is the k-th item in \mathcal{R}
$\mathcal{R}^* = (1, \dots, K)$	Optimal list of K items
$R(\mathcal{R}, A, X)$	Regret of list \mathcal{R} , for attraction and examination indicators A and X
R(T)	Expected cumulative regret in T steps
T	Horizon of the experiment
$oldsymbol{U}_{b,\ell}(d)$	Upper confidence bound of item d , in stage ℓ of batch b
$\chi(\mathcal{R},k)$	Examination probability of position k in list \mathcal{R}
$\chi^*(k)$	Examination probability of position k in the optimal list \mathcal{R}^*
X	Binary examination matrix, where $X(\mathcal{R}, k)$ is the examination indicator of position k in list \mathcal{R}
P_{χ}	Distribution over binary examination matrices

B. Proof of Theorem 1

Let $\mathbf{R}_{b,\ell}$ be the stochastic regret associated with stage ℓ of batch b. Then the expected T-step regret of MergeRank can be decomposed as

$$R(T) \leq \mathbb{E}\left[\sum_{b=1}^{2K} \sum_{\ell=0}^{T-1} \boldsymbol{R}_{b,\ell}\right]$$

because the maximum number of batches is 2K. Let

$$\bar{\boldsymbol{\chi}}_{b,\ell}(d) = \frac{\bar{\boldsymbol{c}}_{b,\ell}(d)}{\alpha(d)} \tag{12}$$

be the *average examination probability* of item d in stage ℓ of batch b. Let

$$\begin{split} \mathcal{E}_{b,\ell} &= \left\{ \text{Event 1: } \forall d \in \mathbf{B}_{b,\ell} : \bar{\mathbf{c}}_{b,\ell}(d) \in [\mathbf{L}_{b,\ell}(d), \mathbf{U}_{b,\ell}(d)] \,, \\ \text{Event 2: } \forall \mathbf{I}_b \in [K]^2, \ d \in \mathbf{B}_{b,\ell}, \ d^* \in \mathbf{B}_{b,\ell} \cap [K] \text{ s.t. } \Delta &= \alpha(d^*) - \alpha(d) > 0 : \\ n_\ell &\geq \frac{16K}{\chi^*(\mathbf{I}_b(1))(1 - \alpha_{\max})\Delta^2} \log T \implies \hat{\mathbf{c}}_{b,\ell}(d) \leq \bar{\mathbf{\chi}}_{b,\ell}(d)[\alpha(d) + \Delta/4] \,, \\ \text{Event 3: } \forall \mathbf{I}_b \in [K]^2, \ d \in \mathbf{B}_{b,\ell}, \ d^* \in \mathbf{B}_{b,\ell} \cap [K] \text{ s.t. } \Delta &= \alpha(d^*) - \alpha(d) > 0 : \\ n_\ell &\geq \frac{16K}{\chi^*(\mathbf{I}_b(1))(1 - \alpha_{\max})\Delta^2} \log T \implies \hat{\mathbf{c}}_{b,\ell}(d^*) \geq \bar{\mathbf{\chi}}_{b,\ell}(d^*)[\alpha(d^*) - \Delta/4] \right\} \end{split}$$

be the "good event" in stage ℓ of batch b, where $\bar{c}_{b,\ell}(d)$ is the probability of clicking on item d in stage ℓ of batch b, which is defined in (8); $\hat{c}_{b,\ell}(d)$ is its estimate, which is defined in (7); and both χ^* and α_{\max} are defined in Section 5.3. Let $\overline{\mathcal{E}_{b,\ell}}$ be the complement of event $\mathcal{E}_{b,\ell}$. Let \mathcal{E} be the "good event" that all events $\mathcal{E}_{b,\ell}$ happen; and $\overline{\mathcal{E}}$ be its complement, the "bad event" that at least one event $\mathcal{E}_{b,\ell}$ does not happen. Then the expected T-step regret can be bounded from above as

$$R(T) \leq \mathbb{E}\left[\sum_{b=1}^{2K} \sum_{\ell=0}^{T-1} \mathbf{R}_{b,\ell} \mathbb{1}\{\mathcal{E}\}\right] + TP(\overline{\mathcal{E}}) \leq \sum_{b=1}^{2K} \mathbb{E}\left[\sum_{\ell=0}^{T-1} \mathbf{R}_{b,\ell} \mathbb{1}\{\mathcal{E}\}\right] + 4KL(3e+K),$$

where the second inequality is from Lemma 2. Now we apply Lemma 7 to each batch b and get that

$$\sum_{b=1}^{2K} \mathbb{E}\left[\sum_{\ell=0}^{T-1} \boldsymbol{R}_{b,\ell} \mathbb{1}\{\mathcal{E}\}\right] \leq \frac{192K^3L}{(1-\alpha_{\max})\Delta_{\min}} \log T.$$

This concludes our proof.

C. Upper Bound on the Probability of Bad Event $\overline{\mathcal{E}}$

Lemma 2. Let $\overline{\mathcal{E}}$ be defined as in the proof of Theorem 1 and $T \ge 5$. Then

$$P(\overline{\mathcal{E}}) \le \frac{4KL(3e+K)}{T} \,.$$

Proof. By the union bound,

$$P(\overline{\mathcal{E}}) \leq \sum_{b=1}^{2K} \sum_{\ell=0}^{T-1} P(\overline{\mathcal{E}_{b,\ell}}).$$

Now we bound the probability of each event in $\overline{\mathcal{E}_{b,\ell}}$ and then sum them up.

Event 1

The probability that event 1 in $\mathcal{E}_{b,\ell}$ does not happen is bounded as follows. Fix I_b and $B_{b,\ell}$. For any $d \in B_{b,\ell}$,

$$\begin{split} P(\bar{\boldsymbol{c}}_{b,\ell}(d) \notin [\boldsymbol{L}_{b,\ell}(d), \boldsymbol{U}_{b,\ell}(d)]) &\leq P(\bar{\boldsymbol{c}}_{b,\ell}(d) < \boldsymbol{L}_{b,\ell}(d)) + P(\bar{\boldsymbol{c}}_{b,\ell}(d) > \boldsymbol{U}_{b,\ell}(d)) \\ &\leq \frac{2e \left\lceil \log(T \log^3 T) \log n_\ell \right\rceil}{T \log^3 T} \\ &\leq \frac{2e \left\lceil \log^2 T + \log(\log^3 T) \log T \right\rceil}{T \log^3 T} \\ &\leq \frac{2e \left\lceil 2 \log^2 T \right\rceil}{T \log^3 T} \\ &\leq \frac{6e}{T \log T} \,, \end{split}$$

where the second inequality is by Theorem 10 of Garivier & Cappe (2011), the third inequality is from $T \ge n_{\ell}$, the fourth inequality is from $\log(\log^3 T) \le \log T$ for $T \ge 5$, and the last inequality is from $\lceil 2 \log^2 T \rceil \le 3 \log^2 T$ for $T \ge 3$. By the union bound,

$$P(\exists d \in \boldsymbol{B}_{b,\ell} \text{ s.t. } \bar{\boldsymbol{c}}_{b,\ell}(d) \notin [\boldsymbol{L}_{b,\ell}(d), \boldsymbol{U}_{b,\ell}(d)]) \leq rac{6eL}{T\log T}$$

for any $B_{b,\ell}$. Finally, since the above inequality holds for any $B_{b,\ell}$, the probability that event 1 in $\mathcal{E}_{b,\ell}$ does not happen is bounded as above.

Event 2

The probability that event 2 in $\mathcal{E}_{b,\ell}$ does not happen is bounded as follows. Fix I_b and $B_{b,\ell}$, and let $k = I_b(1)$. If the event does not happen for items d and d^* , then it must be true that

$$n_{\ell} \geq \frac{16K}{\chi^*(k)(1-\alpha_{\max})\Delta^2} \log T , \quad \hat{\boldsymbol{c}}_{b,\ell}(d) > \bar{\boldsymbol{\chi}}_{b,\ell}(d) [\alpha(d) + \Delta/4] .$$

From the definition of the average examination probability in (12) and a variant of Hoeffding's inequality in Lemma 8, we have that

$$P\left(\hat{\boldsymbol{c}}_{b,\ell}(d) > \bar{\boldsymbol{\chi}}_{b,\ell}(d) [\alpha(d) + \Delta/4]\right) \le \exp\left[-n_{\ell} D_{\mathrm{KL}}(\bar{\boldsymbol{\chi}}_{b,\ell}(d) [\alpha(d) + \Delta/4] \| \bar{\boldsymbol{c}}_{b,\ell}(d))\right] \,.$$

From Lemma 9, $\bar{\chi}_{b,\ell}(d) \ge \chi^*(k)/K$ (Lemma 3), and Pinsker's inequality, we have that

$$\begin{split} \exp\left[-n_{\ell} D_{\mathrm{KL}}(\bar{\boldsymbol{\chi}}_{b,\ell}(d)[\alpha(d) + \Delta/4] \| \bar{\boldsymbol{c}}_{b,\ell}(d))\right] &\leq \exp\left[-n_{\ell} \bar{\boldsymbol{\chi}}_{b,\ell}(d)(1 - \alpha_{\max}) D_{\mathrm{KL}}(\alpha(d) + \Delta/4 \| \alpha(d))\right] \\ &\leq \exp\left[-n_{\ell} \frac{\chi^{*}(k)(1 - \alpha_{\max}) \Delta^{2}}{8K}\right]. \end{split}$$

From our assumption on n_{ℓ} , we conclude that

$$\exp\left[-n_{\ell}\frac{\chi^*(k)(1-\alpha_{\max})\Delta^2}{8K}\right] \le \exp\left[-2\log T\right] = \frac{1}{T^2}.$$

Finally, we chain all above inequalities and get that event 2 in $\mathcal{E}_{b,\ell}$ does not happen for any fixed I_b , $B_{b,\ell}$, d, and d^* with probability of at most T^{-2} . Since the maximum numbers of items d and d^* are L and K, respectively, the event does not happen for any fixed I_b and $B_{b,\ell}$ with probability of at most KLT^{-2} . In turn, the probability that event 2 in $\mathcal{E}_{b,\ell}$ does not happen is bounded by KLT^{-2} .

Event 3

This bound is analogous to that of event 2.

Total probability

The maximum number of stages in any batch in BatchRank is $\log T$ and the maximum number of batches is 2K. Hence, by the union bound,

$$P(\overline{\mathcal{E}}) \le \left(\frac{6eL}{T\log T} + \frac{KL}{T^2} + \frac{KL}{T^2}\right) (2K\log T) \le \frac{4KL(3e+K)}{T}$$

This concludes our proof. ■

D. Upper Bound on the Regret in Individual Batches

Lemma 3. For any batch b, positions I_b , stage ℓ , set $B_{b,\ell}$, and item $d \in B_{b,\ell}$,

$$\frac{\chi^*(k)}{K} \leq \bar{\chi}_{b,\ell}(d) \,,$$

where $k = I_b(1)$ is the highest position in batch b.

Proof. The proof follows from two observations. First, by Assumption 6, $\chi^*(k)$ is the lowest examination probability of position k. Second, by the design of DisplayBatch, item d is placed at position k with probability of at least 1/K.

Lemma 4. Let event \mathcal{E} happen and $T \ge 5$. For any batch b, positions I_b , set $B_{b,0}$, item $d \in B_{b,0}$, and item $d^* \in B_{b,0} \cap [K]$ such that $\Delta = \alpha(d^*) - \alpha(d) > 0$, let $k = I_b(1)$ be the highest position in batch b and ℓ be the first stage where

$$\tilde{\Delta}_{\ell} < \sqrt{\frac{\chi^*(k)(1 - \alpha_{\max})}{K}} \Delta$$

Then $U_{b,\ell}(d) < L_{b,\ell}(d^*)$ *.*

Proof. From the definition of n_{ℓ} in BatchRank and our assumption on Δ_{ℓ} ,

$$n_{\ell} \ge \frac{16}{\tilde{\Delta}_{\ell}^2} \log T > \frac{16K}{\chi^*(k)(1 - \alpha_{\max})\Delta^2} \log T.$$

$$\tag{13}$$

Let $\mu = \bar{\chi}_{b,\ell}(d)$ and suppose that $U_{b,\ell}(d) \ge \mu[\alpha(d) + \Delta/2]$ holds. Then from this assumption, the definition of $U_{b,\ell}(d)$, and event 2 in $\mathcal{E}_{b,\ell}$,

$$D_{\mathrm{KL}}(\hat{\boldsymbol{c}}_{b,\ell}(d) \| \boldsymbol{U}_{b,\ell}(d)) \ge D_{\mathrm{KL}}(\hat{\boldsymbol{c}}_{b,\ell}(d) \| \mu[\alpha(d) + \Delta/2]) \mathbb{1}\{\hat{\boldsymbol{c}}_{b,\ell}(d) \le \mu[\alpha(d) + \Delta/2]\}$$
$$\ge D_{\mathrm{KL}}(\mu[\alpha(d) + \Delta/4] \| \mu[\alpha(d) + \Delta/2]) .$$

From Lemma 9, $\mu \ge \chi^*(k)/K$ (Lemma 3), and Pinsker's inequality, we have that

$$D_{\mathrm{KL}}(\mu[\alpha(d) + \Delta/4] \| \mu[\alpha(d) + \Delta/2]) \ge \mu(1 - \alpha_{\max})D_{\mathrm{KL}}(\alpha(d) + \Delta/4 \| \alpha(d) + \Delta/2)$$
$$\ge \frac{\chi^*(k)(1 - \alpha_{\max})\Delta^2}{8K}.$$

From the definition of $U_{b,\ell}(d), T \ge 5$, and above inequalities,

$$n_{\ell} = \frac{\log T + 3\log\log T}{D_{\mathrm{KL}}(\hat{\boldsymbol{c}}_{b,\ell}(d) \, \| \, \boldsymbol{U}_{b,\ell}(d))} \leq \frac{2\log T}{D_{\mathrm{KL}}(\hat{\boldsymbol{c}}_{b,\ell}(d) \, \| \, \boldsymbol{U}_{b,\ell}(d))} \leq \frac{16K\log T}{\chi^*(k)(1 - \alpha_{\max})\Delta^2} \, .$$

This contradicts to (13), and therefore it must be true that $U_{b,\ell}(d) < \mu[\alpha(d) + \Delta/2]$ holds.

On the other hand, let $\mu^* = \bar{\chi}_{b,\ell}(d^*)$ and suppose that $L_{b,\ell}(d^*) \le \mu^*[\alpha(d^*) - \Delta/2]$ holds. Then from this assumption, the definition of $L_{b,\ell}(d^*)$, and event 3 in $\mathcal{E}_{b,\ell}$,

$$D_{\mathrm{KL}}(\hat{\boldsymbol{c}}_{b,\ell}(d^*) \| \boldsymbol{L}_{b,\ell}(d^*)) \ge D_{\mathrm{KL}}(\hat{\boldsymbol{c}}_{b,\ell}(d^*) \| \mu^*[\alpha(d^*) - \Delta/2]) \, \mathbb{1}\{\hat{\boldsymbol{c}}_{b,\ell}(d^*) \ge \mu^*[\alpha(d^*) - \Delta/2]\} \\ \ge D_{\mathrm{KL}}(\mu^*[\alpha(d^*) - \Delta/4] \| \mu^*[\alpha(d^*) - \Delta/2]) \; .$$

From Lemma 9, $\mu^* \ge \chi^*(k)/K$ (Lemma 3), and Pinsker's inequality, we have that

$$D_{\rm KL}(\mu^*[\alpha(d^*) - \Delta/4] \| \mu^*[\alpha(d^*) - \Delta/2]) \ge \mu^*(1 - \alpha_{\rm max}) D_{\rm KL}(\alpha(d^*) - \Delta/4 \| \alpha(d^*) - \Delta/2) \\\ge \frac{\chi^*(k)(1 - \alpha_{\rm max})\Delta^2}{8K} \,.$$

From the definition of $L_{b,\ell}(d^*)$, $T \ge 5$, and above inequalities,

$$n_{\ell} = \frac{\log T + 3\log\log T}{D_{\mathrm{KL}}(\hat{c}_{b,\ell}(d) \| \mathbf{L}_{b,\ell}(d^*))} \le \frac{2\log T}{D_{\mathrm{KL}}(\hat{c}_{b,\ell}(d^*) \| \mathbf{L}_{b,\ell}(d^*))} \le \frac{16K\log T}{\chi^*(k)(1 - \alpha_{\max})\Delta^2} \,.$$

This contradicts to (13), and therefore it must be true that $L_{b,\ell}(d^*) > \mu^*[\alpha(d^*) - \Delta/2]$ holds. Finally, based on inequality (11),

$$\mu^* = \frac{\bar{\boldsymbol{c}}_{b,\ell}(d^*)}{\alpha(d^*)} \ge \frac{\bar{\boldsymbol{c}}_{b,\ell}(d)}{\alpha(d)} = \mu$$

and item d is guaranteed to be eliminated by the end of stage ℓ because

$$\begin{aligned} \boldsymbol{U}_{b,\ell}(d) &< \mu[\alpha(d) + \Delta/2] \\ &\leq \mu\alpha(d) + \frac{\mu^*\alpha(d^*) - \mu\alpha(d)}{2} \\ &= \mu^*\alpha(d^*) - \frac{\mu^*\alpha(d^*) - \mu\alpha(d)}{2} \\ &\leq \mu^*[\alpha(d^*) - \Delta/2] \\ &< \boldsymbol{L}_{b,\ell}(d^*) \,. \end{aligned}$$

This concludes our proof. ■

Lemma 5. Let event \mathcal{E} happen and $T \ge 5$. For any batch b, positions I_b where $I_b(2) = K$, set $B_{b,0}$, and item $d \in B_{b,0}$ such that d > K, let $k = I_b(1)$ be the highest position in batch b and ℓ be the first stage where

$$\tilde{\Delta}_{\ell} < \sqrt{\frac{\chi^*(k)(1-\alpha_{\max})}{K}} \Delta$$

for $\Delta = \alpha(K) - \alpha(d)$. Then item d is eliminated by the end of stage ℓ .

Proof. Let $B^+ = \{k, \ldots, K\}$. Now note that $\alpha(d^*) - \alpha(d) \ge \Delta$ for any $d^* \in B^+$. By Lemma 4, $L_{b,\ell}(d^*) > U_{b,\ell}(d)$ for any $d^* \in B^+$; and therefore item d is eliminated by the end of stage ℓ .

Lemma 6. Let \mathcal{E} happen and $T \ge 5$. For any batch b, positions I_b , and set $B_{b,0}$, let $k = I_b(1)$ be the highest position in batch b and ℓ be the first stage where

$$\tilde{\Delta}_{\ell} < \sqrt{\frac{\chi^*(k)(1-\alpha_{\max})}{K}} \Delta_{\max}$$

for $\Delta_{\max} = \alpha(s) - \alpha(s+1)$ and $s = \underset{d \in \{I_b(1), \dots, I_b(2)-1\}}{\arg \max} [\alpha(d) - \alpha(d+1)]$. Then batch b is split by the end of stage ℓ .

Proof. Let $B^+ = \{k, \ldots, s\}$ and $B^- = B_{b,0} \setminus B^+$. Now note that $\alpha(d^*) - \alpha(d) \ge \Delta_{\max}$ for any $(d^*, d) \in B^+ \times B^-$. By Lemma 4, $L_{b,\ell}(d^*) > U_{b,\ell}(d)$ for any $(d^*, d) \in B^+ \times B^-$; and therefore batch b is split by the end of stage ℓ .

Lemma 7. Let event \mathcal{E} happen and $T \geq 5$. Then the expected T-step regret in any batch b is bounded as

$$\mathbb{E}\left[\sum_{\ell=0}^{T-1} \boldsymbol{R}_{b,\ell}\right] \leq \frac{96K^2L}{(1-\alpha_{\max})\Delta_{\max}}\log T$$

Proof. Let $k = I_b(1)$ be the highest position in batch b. Choose any item $d \in B_{b,0}$ and let $\Delta = \alpha(k) - \alpha(d)$.

First, we show that the expected per-step regret of any item d is bounded by $\chi^*(k)\Delta$ when event \mathcal{E} happens. Since event \mathcal{E} happens, all eliminations and splits up to any stage ℓ of batch b are correct. Therefore, items $1, \ldots, k-1$ are at positions $1, \ldots, k-1$; and position k is examined with probability $\chi^*(k)$. Note that this is the highest examination probability in batch b (Assumption 4). Our upper bound follows from the fact that the reward is linear in individual items (Section 3.1).

We analyze two cases. First, suppose that $\Delta \leq 2K\Delta_{\max}$ for Δ_{\max} in Lemma 6. Then by Lemma 6, batch b splits when the number of steps in a stage is at most

$$\frac{16K}{\chi^*(k)(1-\alpha_{\max})\Delta_{\max}^2}\log T.$$

By the design of DisplayBatch, any item in stage ℓ of batch b is displayed at most $2n_{\ell}$ times. Therefore, the maximum regret due to item d in the last stage before the split is

$$\frac{32K\chi^*(k)\Delta}{\chi^*(k)(1-\alpha_{\max})\Delta_{\max}^2}\log T \le \frac{64K^2\Delta_{\max}}{(1-\alpha_{\max})\Delta_{\max}^2}\log T = \frac{64K^2}{(1-\alpha_{\max})\Delta_{\max}}\log T.$$

Now suppose that $\Delta > 2K\Delta_{\text{max}}$. This implies that item d is easy to distinguish from item K. In particular,

$$\alpha(K) - \alpha(d) = \Delta - (\alpha(k) - \alpha(K)) \ge \Delta - K\Delta_{\max} \ge \frac{\Delta}{2}$$

where the equality is from the identity

$$\Delta = \alpha(k) - \alpha(d) = \alpha(k) - \alpha(K) + \alpha(K) - \alpha(d);$$

the first inequality is from $\alpha(k) - \alpha(K) \le K\Delta_{\max}$, which follows from the definition of Δ_{\max} and $k \in [K]$; and the last inequality is from our assumption that $K\Delta_{\max} < \Delta/2$. Now we apply the derived inequality and, by Lemma 5 and from the design of DisplayBatch, the maximum regret due to item d in the stage where that item is eliminated is

$$\frac{32K\chi^*(k)\Delta}{\chi^*(k)(1-\alpha_{\max})(\alpha(K)-\alpha(d))^2}\log T \le \frac{128K}{(1-\alpha_{\max})\Delta}\log T \le \frac{64}{(1-\alpha_{\max})\Delta_{\max}}\log \frac{64}{(1-\alpha_{\max})\Delta_$$

The last inequality is from our assumption that $\Delta > 2K\Delta_{\max}$.

Because the lengths of the stages quadruple and BatchRank resets all click estimators at the beginning of each stage, the maximum expected regret due to any item d in batch b is at most 1.5 times higher than that in the last stage, and hence

$$\mathbb{E}\left[\sum_{\ell=0}^{T-1} \mathbf{R}_{b,\ell}\right] \leq \frac{96K^2 |\mathbf{B}_{b,0}|}{(1-\alpha_{\max})\Delta_{\max}} \log T$$

This concludes our proof. ■

E. Technical Lemmas

Lemma 8. Let $(X_1)_{i=1}^n$ be *n* i.i.d. Bernoulli random variables, $\bar{\mu} = \sum_{i=1}^n X_i$, and $\mu = \mathbb{E}[\bar{\mu}]$. Then

 $P(\bar{\boldsymbol{\mu}} \geq \boldsymbol{\mu} + \boldsymbol{\varepsilon}) \leq \exp[-nD_{\mathrm{KL}}(\boldsymbol{\mu} + \boldsymbol{\varepsilon} \parallel \boldsymbol{\mu})]$

for any $\varepsilon \in [0, 1 - \mu]$, and

$$P(\bar{\boldsymbol{\mu}} \le \mu - \varepsilon) \le \exp[-nD_{\mathrm{KL}}(\mu - \varepsilon \| \mu)]$$

for any $\varepsilon \in [0, \mu]$.

Proof. We only prove the first claim. The other claim follows from symmetry.

From inequality (2.1) of Hoeffding (1963), we have that

$$P(\bar{\boldsymbol{\mu}} \ge \mu + \varepsilon) \le \left[\left(\frac{\mu}{\mu + \varepsilon} \right)^{\mu + \varepsilon} \left(\frac{1 - \mu}{1 - (\mu + \varepsilon)} \right)^{1 - (\mu + \varepsilon)} \right]^n$$

for any $\varepsilon \in [0, 1 - \mu]$. Now note that

$$\left[\left(\frac{\mu}{\mu+\varepsilon}\right)^{\mu+\varepsilon} \left(\frac{1-\mu}{1-(\mu+\varepsilon)}\right)^{1-(\mu+\varepsilon)} \right]^n = \exp\left[n \left[(\mu+\varepsilon) \log \frac{\mu}{\mu+\varepsilon} + (1-(\mu+\varepsilon)) \log \frac{1-\mu}{1-(\mu+\varepsilon)} \right] \right]$$
$$= \exp\left[-n \left[(\mu+\varepsilon) \log \frac{\mu+\varepsilon}{\mu} + (1-(\mu+\varepsilon)) \log \frac{1-(\mu+\varepsilon)}{1-\mu} \right] \right]$$
$$= \exp\left[-n D_{\mathrm{KL}}(\mu+\varepsilon \| \mu) \right].$$

This concludes the proof. ■

Lemma 9. For any $c, p, q \in [0, 1]$,

$$c(1 - \max\{p, q\})D_{\rm KL}(p \| q) \le D_{\rm KL}(cp \| cq) \le cD_{\rm KL}(p \| q) .$$
⁽¹⁴⁾

Proof. The proof is based on differentiation. The first two derivatives of $D_{\text{KL}}(cp \parallel cq)$ with respect to q are

$$\frac{\partial}{\partial q} D_{\rm KL}(cp \,\|\, cq) = \frac{c(q-p)}{q(1-cq)}, \quad \frac{\partial^2}{\partial q^2} D_{\rm KL}(cp \,\|\, cq) = \frac{c^2(q-p)^2 + cp(1-cp)}{q^2(1-cq)^2};$$

and the first two derivatives of $cD_{\mathrm{KL}}(p \parallel q)$ with respect to q are

$$\frac{\partial}{\partial q} [cD_{\rm KL}(p \| q)] = \frac{c(q-p)}{q(1-q)}, \quad \frac{\partial^2}{\partial q^2} [cD_{\rm KL}(p \| q)] = \frac{c(q-p)^2 + cp(1-p)}{q^2(1-q)^2}$$

The second derivatives show that $D_{\text{KL}}(cp \parallel cq)$ and $cD_{\text{KL}}(p \parallel q)$ are convex in q for any p. Their minima are at q = p. Now we fix p and c, and prove (14) for any q. The upper bound is derived as follows. Since

$$D_{\mathrm{KL}}(cp \parallel cx) = cD_{\mathrm{KL}}(p \parallel x) = 0$$

when x = p, the upper bound holds when $cD_{\mathrm{KL}}(p \parallel x)$ increases faster than $D_{\mathrm{KL}}(cp \parallel cx)$ for any $p < x \leq q$, and when $cD_{\mathrm{KL}}(p \parallel x)$ decreases faster than $D_{\mathrm{KL}}(cp \parallel cx)$ for any $q \leq x < p$. This follows from the definitions of $\frac{\partial}{\partial x}D_{\mathrm{KL}}(cp \parallel cx)$ and $\frac{\partial}{\partial x}[cD_{\mathrm{KL}}(p \parallel x)]$. In particular, both derivatives have the same sign and $\left|\frac{\partial}{\partial x}D_{\mathrm{KL}}(cp \parallel cx)\right| \leq \left|\frac{\partial}{\partial x}[cD_{\mathrm{KL}}(p \parallel x)]\right|$ for any feasible $x \in [\min \{p, q\}, \max \{p, q\}]$.

The lower bound is derived as follows. The ratio of $\frac{\partial}{\partial x} [cD_{\mathrm{KL}}(p \parallel x)]$ and $\frac{\partial}{\partial x} D_{\mathrm{KL}}(cp \parallel cx)$ is bounded from above as

$$\frac{\frac{\partial}{\partial x}[cD_{\mathrm{KL}}(p \parallel x)]}{\frac{\partial}{\partial x}D_{\mathrm{KL}}(cp \parallel cx)} = \frac{1-cx}{1-x} \le \frac{1}{1-x} \le \frac{1}{1-\max\{p,q\}}$$

for any $x \in [\min\{p,q\}, \max\{p,q\}]$. Therefore, we get a lower bound on $D_{\mathrm{KL}}(cp \parallel cx)$ when we multiply $cD_{\mathrm{KL}}(p \parallel x)$ by $1 - \max\{p,q\}$.