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In this supplementary document we first present the proofs of all the technical results in Section 2 and 3 of the main paper.
We then expand upon the Section 4 and present extra experiments to strengthen the evaluations from the main paper.

Remarks on transformations in pre-processing step: For all i ∈ {1, ..., k}, after applying the transformation (shift
correction), we pool (Xi, yi) together to estimate β∗. Note that in general the transformation (shift correction) should not
depend on the responses yi, otherwise we get a dependence on the noise. To see this, notice that yi = Xiβi + εi where
Xi is the transformed set of features. But when the transformation depends on yi, then Xi will also depend on εi, which
causes a poor estimation of β∗ (and βi). In situations where the transformations must involve yi, a sensible strategy is to
separate each site’s dataset into two parts, where one part from each site is used to learn the transformation, and the other
part (after applying the learned transformation) is used for pooling towards β∗ estimation and conducting our hypothesis
test.

1. Proof of Section 2
We now provide the proofs of the results presented in the main paper.

Theorem 2.1. τi = σ1

σi
achieve the smallest variance in β̂.

Proof. The choice of τi leads to weighted least squares, which is known to be the best linear unbiased estimator (BLUE)
under uncorrelated heteroscedastic errors. The variance of β̂ is equivalent to the case when ∆βi = 0. In the latter case,
BLUE condition holds and setting τi to the above value achieves lowest variance. The equivalence between variances
under two cases completes the proof.

Lemma 2.2. For multi-site model, we have

‖Biasβ‖22
‖G−1/2∆β‖22

≤ ‖(Σ̂k1)−2(Σ̂k2(n1Σ̂1)−1Σ̂k2 + Σ̂k2)‖∗, (1)

V arβ = σ2
1

∥∥∥(n1Σ̂1)−1 − (n1Σ̂1 + Σ̂k2)−1
∥∥∥
∗
. (2)

Proof. The estimation from single site model is unbiased, and it has the following variance.

V ar1 = tr((XT
1 X1)−1)σ2

1 = tr((n1Σ̂1)−1)σ2
1 (3)
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The estimation error from multi-sites model has the following closed form expression

β̂ − β∗ =
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(4)

First term in the summation from (4) is bias, while second term is variance. We can see that our choice of τi = σ1

σi
resolves

heteroscedastic errors issue among sites. We further simplify bias and variance terms, and obtain

V ar2 = tr((n1Σ̂1 +

k∑
i=2

niτ
2
i Σ̂i)

−1)σ2
1 (5)

The reduced variance statement is proved. For the bias term, it is equivalent as shown below.
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A one step Cauchy Schwartz inequality is then applied. Then our final proof is to show ‖..‖2F on
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is equal to right side of the bias relaxation in (1).
It is easy to see that ‖A‖2F = ‖ATA‖∗. Based on this, we can see the first term of matrix inverse contributes the (Σ̂k1)−2

in (1). Let the other part in (7) be L. We have
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nkτ
2
k Σ̂k

 (8)

After some manipulations, this becomes (Σ̂k2(n1Σ̂1)−1Σ̂k2 + Σ̂k2). The bias part is proved.

Theorem 2.3. a): The multi-sites model has smaller MSE of β̂ than single-site model whenever

H0 :
∥∥∥G−1/2∆β

∥∥∥2

2
≤ σ2

1 . (9)

b): Further, we have the following test statistic,∥∥∥∥∥G−1/2∆β̂

σ1

∥∥∥∥∥
2

2

∼ χ2
(k−1)∗p

(∥∥∥∥G−1/2∆β

σ1

∥∥∥∥2

2

)
, (10)

where ‖G−1/2∆β/σ1‖2 is called a “condition value”.
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Proof. (a): Based on Lemma 2.2, the theorem is proved when right side in (9) is replaced by

σ2
1

∥∥∥(n1Σ̂1)−1 − (n1Σ̂1 + Σ̂k2)−1
∥∥∥
∗

‖(Σ̂k1)−2(Σ̂k2(n1Σ̂1)−1Σ̂k2 + Σ̂k2)‖∗
(11)

We first calculate the numerator

σ2
1

∥∥∥(n1Σ̂1)−1 − (n1Σ̂1 + Σ̂k2)−1
∥∥∥
∗

= σ2
1

∥∥∥[(n1Σ̂1)−1(n1Σ̂1 + Σ̂k2)− I
]

(n1Σ̂1 + Σ̂k2)−1
∥∥∥
∗

= σ2
1

∥∥∥(n1Σ̂1)−1Σ̂k2(n1Σ̂1 + Σ̂k2)−1
∥∥∥
∗

(12)

The denominator is then given by

‖(Σ̂k1)−2(Σ̂k2(n1Σ̂1)−1Σ̂k2 + Σ̂k2)‖∗ = ‖(Σ̂k1)−2((Σ̂k2 + n1Σ̂1)(n1Σ̂1)−1Σ̂k2)‖∗ (13)

Remember Σ̂k1 = Σ̂k2 + n1Σ̂1, , we continue (14)

= ‖((Σ̂k2 + n1Σ̂1)−1(n1Σ̂1)−1Σ̂k2)‖∗ = ‖((n1Σ̂1)−1Σ̂k2(n1Σ̂1 + Σ̂k2)−1)‖∗ (15)

The last step uses the property of ‖..‖∗ norm. The proof is completed by noticing the simplified form of numerator and
denominator. It is clear now that the right side in (9) is exactly σ2

1 .

(b): First, we show σ2
1G is the covariance matrix of ∆β̂. We have

cov(∆β̂i,∆β̂j) = cov(β̂i, β̂j)− cov(β̂i, β̂1)− cov(β̂1, β̂j) + cov(β̂1, β̂1) (16)
Since each site is independent from other site, we have (17)

cov(∆β̂i,∆β̂j) = cov(β̂1, β̂1) = σ2
1(n1Σ̂1)−1for i 6= j (18)

cov(∆β̂i,∆β̂i) = cov(β̂i, β̂i) + cov(β̂1, β̂1) = σ2
1((n1Σ̂1)−1 + (ni(σ

2
1/σ

2
i )Σ̂i)

−1) = σ2
1((n1Σ̂1)−1 + (niτ

2
i Σ̂i)

−1)
(19)

∆β̂ follows Gaussian distribution since it is a linear transformation of Gaussian distribution. It’s expectation is ∆β since
each β̂i is an unbiased estimator. Hence, we have

∆β̂ ∼ N(∆β, σ2
1G) (20)

This distribution result, and noticing the connection between Gaussian and non-central χ2 distributions completes the
proof.

Corollary 2.4. For the case where we have two participating sites, the condition (9) from Theorem 2.3 reduces to

H0 : ∆βT ((n1Σ̂1)−1 + (n2τ
2
2 Σ̂2)−1)−1∆β ≤ σ2

1 . (21)

Proof. The proof is follows by noticing the form of G when k = 2.

Theorem 2.5. Analysis in Section 2.1 holds for β in model with Z confounding features, when we replace Σ̂i with

Σ̃i = Σ̂xxi − Σ̂xzi(Σ̂zzi)
−1Σ̂zxi . (22)

Proof. Define γT = (γT1 , ..., γ
T
k ), XT

all =
(
XT

1 , τ2X
T
2 , ..., τkX

T
k

)
, Zall = Diag (Z1, τ2Z2, ..., τkZk). We have

(
β̂
γ̂

)
−
(
β∗

γ∗

)
=

(
XT
allXall XT

allZall
ZTallXall ZTallZall

)−1(
XT
all

ZTall

)
0

τ2X2(∆β2)
..

τkXk(∆βk)

+

(
XT
allXall XT

allZall
ZTallXall ZTallZall

)−1(
XT
all

ZTall

)
ε1
τ2ε2
..
τkεk


(23)
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Using sub-matrix inverse property, we obtain(
XT
allXall XT

allZall
ZTallXall ZTallZall

)−1(
XT
all

ZTall

)
=

(
(X̃T

allX̃all)
−1X̃T

all

(Z̃TallZ̃all)
−1Z̃Tall

)
(24)

We then have

Z̃all = (I −Xall(X
T
allXall)

−1XT
all)Zall (25)

X̃all = (I − Zall(ZTallZall)−1ZTall)Xall =


(I − Z1(ZT1 Z1)−1ZT1 )X1

(I − Z2(ZT2 Z2)−1ZT2 )X2

..
(I − Zk(ZTk Zk)−1ZTk )Xk

 (26)

Define
HZi = (I − Zi(ZTi Zi)−1ZTi ) (27)

Hence, we have

β̂ − β∗ = (X̃T
allX̃all)

−1X̃T
all


0

τ2X2(∆β2)
..

τkXk(∆βk)

+ (X̃T
allX̃all)

−1X̃T
all


ε1
τ2ε2
..
τkεk



= (X̃T
allX̃all)

−1
k∑
i=2

τiX̃
T
i Xi(∆βi) + (X̃T

allX̃all)
−1X̃T

all


ε1
τ2ε2
..
τkεk


(28)

We also observe that
X̃T
i Xi = XT

i HZiXi = XT
i H

2
ZiXi = X̃T

i X̃i (29)

Therefore, we can apply our previous results to a subset of parameters if we replace Xi by X̃i. Since our results only
depend on Σ̂i, we only need to replace it by

1

ni
X̃T
i X̃i =

1

ni
XT
i HZiXi = Σ̂xxi − Σ̂xzi(Σ̂zzi)

−1Σ̂zxi (30)

This proves the theorem.

2. Proof of Section 3
Definition 3.1. The m-sparse minimal and maximal eigenvalues of C, denoted by φmin(m) and φmax(m), are

min
ν:‖ν‖0≤dme

νTCν

νT ν
and max

ν:‖ν‖0≤dme

νTCν

νT ν
(31)

We first list down the two key theorem statements that we prove in this section.
Theorem 3.2. Let 0 ≤ α ≤ 0.4. Assume there exist constants 0 ≤ ρmin ≤ ρmax ≤ ∞ such that

lim inf
n→∞

φmin

(
sp

(
1 +

2α

1− 2α

)2
)
≥ ρmin, and

lim sup
n→∞

φmax(sp + min{
k∑
i=1

ni, kp}) ≤ ρmax.

(32)

Then, for λ ∝ σ
√
n̄ log(kp), there exists a constant ω > 0 such that, with probability converging to 1 for n→∞,

1

k
‖B̂λ −B∗‖2F ≤ ωσ2 s̄ log(kp)

n̄
, (33)

where s̄ = {(1− α)
√
sp + α

√
sh/k}2, σ is the noise level.
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Theorem 3.3. Let 0.4 ≤ α̃ ≤ 1. Assume there exist constants 0 ≤ ρmin ≤ ρmax ≤ ∞ such that

lim inf
n→∞

φmin

(
sh

(
1 +

(1− α̃)

α̃

)2
)
≥ kmin, and

lim sup
n→∞

φmax(sh + min{
k∑
i=1

ni, kp}) ≤ kmax.

(34)

Then, for λ̃ ∝ σ
√
n̄ log(kp), there exists a ω > 0 such that, with probability converging to 1 for n→∞, we have

1

k
‖B̂λ −B∗‖2F ≤ ωσ2 s̃ log(kp)

n̄
, (35)

with s̃ = {(1− α̃)
√
sp/k + α̃

√
sh/k}2 instead of s̄.

Comment about Theorem 3.3: We do not penalize by
√
k when the sparsity patterns across sites share few of the features.

To see this, first observe that when sparsity patterns are similar, most of the groups we have are non-sparse, and the effects
of
√
k‖βj‖2 and ‖βj‖1 have the same scale. This is simply because,

√
k
√
a2

1 + ...+ a2
k is close to |a1|+...+|ak|whenever

|a1|, ..., |ak| are close. However when sparsity patterns across sites share few features only, most of the groups are going
to be sparse. For these groups, we should use ‖βj‖2, because in this setting

√
a2

1 + 0 + ...+ 0 is close to |a1|+ 0 + ...+ 0.

3.1. Proof of Theorem 3.2:

We follow the proof procedure from Lasso (Meinshausen & Yu, 2009) and group Lasso (Liu & Zhang, 2009) results. Let
Bλ be the estimator under the absence of noise, i.e., Bλ = B̂λ,0, where B̂λ,ξ is defined as in (37). The `2-distance can
then be bounded by ‖B̂λ −B∗‖2F ≤ 2‖B̂λ −Bλ‖2F + 2‖Bλ −B∗‖2F . The first term on the right-hand side represents the
variance of the estimation, while the second term represents the bias. The bias contribution follows directly from Lemma
3.4 below, and the variance bound term follows from Lemma 3.9.

De-noised response. For 0 < ξ < 1, we define a de-noised version of the response variable as follows,

Yi(ξ) = Xiβi + ξεi (36)

We can regulate the amount of noise with the parameter ξ.

For ξ = 0, only the signal is retained. The original observations with the full amount of noise are recovered for ξ = 1.
Now consider for 0 ≤ ξ ≤ 1 the estimator B̂λ,ξ,

B̂λ,ξ = arg min
B

k∑
i=1

‖Yi(ξ)−Xiβi‖22 + λΛ(B)

Λ(B) = (1− α)
√
k

p∑
j=1

‖βj‖2 + α

p∑
j=1

‖βj‖1

(37)

The ordinary sparse multi-site Lasso estimate is recovered under the full amount of noise so that B̂λ,1 = B̂λ. Using
the notation from the previous results, we have B̂λ,0 = Bλ, for the estimate in the absence of noise. The definition of
the de-noised version of the sparse multi-site Lasso estimator will be helpful for the proof as it allows to characterize the
variance of the estimator.

3.1.1. PART I OF PROOF – DEALING WITH BIAS

Let P∗ be the set of nonzero groups of B∗, i.e., P∗ = {j : βj 6= 0}. The cardinality of P∗ is denoted by sp. For each j
in P∗, let Hj be the set of nonzero elements of βj , i.e., Hj = {i : βji 6= 0}. The number of all nonzero elements of B is
denoted by sh. For the following, let Bλ be the estimator B̂λ,0 with no noise (as defined in (37)). For each λ, the solution
Bλ can be written as Bλ = B∗ + Γλ. We define γj and γi to be j-th column and i-th row of Γ. γ is the transpose of the
unfolded vector of Γ by row. Denote λ2 = λ(1− α) and η = α

1−α . Then

Γλ = arg min
Γ
f(Γ) (38)
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The function f(Γ) is given by

f(Γ) = n̄γTCγ + λ2

 ∑
j∈PC∗

(
√
K‖γj‖2 + η‖γj‖1) +

∑
j∈P∗

√
K(‖βj + γj‖2 − ‖βj‖2)

+

λ2

{∑
j∈P∗

η(‖βjHj + γjHj‖1 − ‖β
jHj)‖+

∑
j∈P∗

η‖γjHC
j ‖1

} (39)

The matrix Γλ is the bias of the sparse multi-site Lasso estimator. We derive first a bound on the Frobenius norm of Γλ.
Lemma 3.4. Assume conditions in Theorem3.2. The Frobenius norm of Γλ is then bounded for sufficiently large values of
n̄, given a constant ω1 > 0, by

‖Γλ‖2F ≤ ω1σ
2 ks̄ log(kp)

n̄
(40)

Proof. f(Γ) = 0 whenever Γ = 0 following the definition from (39). For the true solution Γλ, it follows hence that
f(Γλ) ≤ 0. For notational simplicity, we drop the super-script λ from here on. Using γTCγ ≥ 0, we have ∑

j∈PC∗

(
√
k‖γj‖2) +

∑
j∈PC∗

(η‖γj‖1) +
∑
j∈P∗

η‖γj
HCj
‖1

 ≤
{∑
j∈P∗

√
k‖γj‖2 +

∑
j∈P∗

η‖γjHj‖1

}
(41)

Since |P∗| = sp,
∑
j∈P∗

|Hj | = sh. It follows that
∑
j∈P∗
‖γj‖2 ≤

√
sp‖γ‖2,

∑
j∈P∗
‖γjHj‖1 ≤

√
sh‖γ‖2, and hence,

using (41),
Λ(Γ) ≤ 2{(1− α)

√
ksp + α

√
sh}‖γ‖2 = 2

√
ks̄‖γ‖2 (42)

Using f(Γ) ≤ 0 again and (42), it follows that

n̄γTCγ ≤ 2λ
√
ks̄‖γ‖2 (43)

Now consider γTCγ. Bounding this term from below and plugging the result into (42) will yield the desired upper bound
on the Frobenius norm of Γ. Let ‖γ(1)‖ ≥ ‖γ(2)‖ ≥ ... ≥ ‖γ(p)‖ be the ordered columns of Γ. Let un for n ∈ N be a
sequence of positive integers, to be chosen later, and define U = {j : ‖γj‖2 ≥ ‖γ(un)‖2}. Define γ(U) and γ(UC) by
setting γj(U) = γj1{i /∈ U} and γj(UC) = γj1{i ∈ U}, followed by unfolding Γ. Then quantity γTCγ can be written
as γTCγ = ‖a+ b‖22, where a := n̄−1/2Xγ(U), b := n̄−1/2Xγ(UC), X = DIAG(X1, ..., Xk). Then

γTCγ = ‖a+ b‖22 ≥ (‖a‖2 − ‖b‖2)2 (44)

Before proceeding, we need to bound the norm ‖γ(UC)‖2 as a function of un. Assume l =
∑p
j=1 ‖γj‖2. It holds for

every j = 1, ..., p that ‖γ(j)‖2 ≤ l/j. Hence,

‖γ(UC)‖22 ≤ (

p∑
j=1

‖γj‖2)2

p∑
j=un+1

1

j2
(45)

Therefore, we have

‖γ(UC)‖2 ≤
p∑
j=1

‖γj‖2
√

1

un
≤ ‖γ‖1

√
1

un
(46)

Based on (42), Λ(Γ) = (1− α)
√
k
∑p
j=1 ‖γj‖2 + α‖γ‖1, and (46), it follows that

‖γ(UC)‖22 ≤ 4‖γ‖22

 1

un

( √
ks̄

(1− α)
√
k + α

)2
 (47)

By definition, since γ(U) has only un nonzero groups,

‖a‖22 = ‖γ(U)TCγ(U)‖22 ≥ φmin(un)‖γ(U)‖22 ≥

φmin(un)‖γ‖22

(
1− 4

{
1

un

(
ks̄

(1− α)
√
k + α

)2
})

(48)
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Here we explain why we obtain φmin(un) instead of φmin(kun). We denote φimin(m) to be m-sparse of n̄−1XT
i Xi. Then

φmin(m) = minki=1 φ
i
min(m) because of block structure. Since we have un nonzero groups, instead of arbitrary kun

nonzero elements, we obtain a higher value φmin(un) = minki=1 φ
i
min(un) instead of φmin(kun). This is the one place

where we consider the block structure of multi-site design.

As γ(UC) has at most min{
∑k
i=1 ni, kp} nonzero groups, using again (47), (42) and the block structure of multi-site

design,

‖b‖22 ≤ 4φmax(min{
k∑
i=1

ni, kp})‖γ‖22

{
1

un

( √
ks̄

(1− α)
√
k + α

)2}
(49)

Using (49), (48) and (44), along with φmax(min{
∑k
i=1 ni, kp}) ≥ φmin(un),

γTCγ ≥ φmin(un)‖γ‖22 ×

1− 4

√√√√φmax(min{
∑k
i=1 ni, kp})

φmin(un)

{
1

un
(

√
ks̄

(1− α)
√
k + α

)2

} (50)

Using conditions in Theorem 3.2 and setting un =
( √

ks̄
(1−α)

√
k+α

)2

, it follows that

γTCγ ≥ ρmin

(
1− 4

√
ρmax

ρmin

)
‖γ‖22 (51)

Using this result together with (43), which says that γTCγ ≤ 2n̄−1λ
√
ks̄‖γ‖2, we have the following for large n̄,

‖Γ‖2F = ‖γ‖22 ≤
1

(ρmin − 4
√
ρminρmax)2

λ2ks̄

n̄2
(52)

The proof of Lemma 3.4 is completed by noticing λ in Theorem 3.2.

3.1.2. PART II OF PROOF – DEALING WITH VARIANCE

The proof for the variance part is two-fold. We first derive a bound on the variance, which is a function of the number of
nonzero groups. We then bound the number of nonzero groups, taking into account the bound on the bias derived above.

Variance of restricted OLS: Before considering the sparse multi-site Lasso estimator, a trivial bound is shown for the
variance of a restricted OLS estimation. For every subset ψ ⊂ {1, , p}, we use it to select a subset of columns from design
matrix Xi for task i. These columns form a matrix Xiψ . Define Xψ = DIAG(X1ψ, X2ψ, ..., Xkψ), and the restricted
OLS-estimator with the noise vector εT = (ε1, ..., εk)T is

θ̂ψ = (XT
ψXψ)−1XT

ψ ε (53)

The `2-norm of this estimator can be bounded.

Lemma 3.5. Let mp be a sequence with mp = o(n̄) and mp →∞ for n̄ →∞. It holds with probability converging to 1
for n→∞

max
ψ:|ψ|≤mp

‖θ̂ψ‖22 ≤
2 log kp

n̄

kmp

φ2
min(mp)

σ2 (54)

Proof. We refer the readers to Lemma 3 in (Meinshausen & Yu, 2009) and Lemma 3 in (Liu & Zhang, 2009) for the
proof. Here, we again use block design structure of multi-site problem, the same as in (48), to obtain φmin(mp) instead of
φmin(kmp).

The variance of the sparse multi-site Lasso estimator can be bounded by the variance of restricted OLS estimators, using
bounds on the number of active groups.
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Lemma 3.6. If, for a fixed value of λ, the number of nonzero groups of de-noised estimators B̂λ,ξ is for every 0 ≤ ξ ≤ 1
bounded by m, then

sup
0≤ξ≤1

‖B̂λ,0 − B̂λ,ξ‖2F ≤ C max
ψ:|ψ|≤m

‖θ̂ψ‖22 (55)

with C as a generic constant.

Proof. We refer the readers to Lemma 4 and Lemma 5 in (Liu & Zhang, 2009) for the proof.

Let APλ,ξ be the set of variables in nonzero groups of the de-noised estimator B̂λ,ξ. Define mp to be the largest number of
nonzero groups over all values of 0 ≤ ξ ≤ 1. Then we have kmp = sup0≤ξ≤1 |APλ,ξ|.
Lemma 3.7. Given 0 ≤ α ≤ 0.5, we have

|APλ,ξ|λ2(1− 2α)2 ≤ ‖2XT
Apλ,ξ

(Y −Xβ̂λ,ξ)‖22 (56)

where we defined before that X = DIAG(X1, ..., Xk), Y T = (Y T1 , ..., Y
T
k ). β̂λ,ξ is the transpose of unfolded vector of

B̂λ,ξ by rows. XApλ,ξ
is Xψ when ψ = Apλ,ξ

Proof. The conditions for the solution of sparse multi-site Lasso are presented in (Simon et al., 2013). We use β̂ rather
than β̂λ,ξ for notational simplicity in this proof. We continue to use our notation β̂j to refer the j-th column (here it is a
group) of B̂, and β̂ji to refer the i-th element (task) in β̂j . We define Xj = DIAG(Xj

1 , ..., X
j
k) and Xj

i to be the j-th
column of Xi for task i. In other words, we allow for (k − 1)p number of 0 in Xj

i .

− 2Xj
i

T
(Y −Xβ̂) + λ

{
α

β̂ji
‖β̂ji ‖2

+ (1− α)
β̂ji

‖β̂j‖2/
√
k

}
= 0, when β̂ji 6= 0, β̂j 6= 0,

− 2Xj
i

T
(Y −Xβ̂) + λ(1− α)

β̂ji
‖β̂j‖2/

√
k

= λαvji , with ‖vji ‖2 ≤ 1, when β̂ji = 0, β̂j 6= 0,∥∥∥−2XjT (Y −Xβ̂)
∥∥∥

2
≤ λ
√
k, when β̂j = 0.

(57)

Let DP
λ,ξ = {j ∈ 1, 2, ..., p|group j is active for B̂λ,ξ}. For each j in DP

λ,ξ, we define β̂j∗ to be the vector of all β̂ji 6= 0.
Their corresponding columns Xj

i s from Xj , would form a matrix Xj
∗ . For each j in DP

λ,ξ, we define β̂j∗C to be the vector
of all β̂ji = 0. Their corresponding columns Xj

i s from Xj , would form a matrix Xj
∗C . Then, from (57),

DPλ,ξ∑
j=1

‖2Xj
∗
T

(Y −Xβ̂)‖22 ≥ λ2(1− α)2k

DPλ,ξ∑
j=1

‖β̂j∗‖22
‖β̂j‖22

(58)

Based on the fact that ‖a+ b‖22 ≥ (‖a‖2 − ‖b‖2)2

DPλ,ξ∑
j=1

‖2Xj
∗C
T

(Y −Xβ̂)‖22 ≥
DPλ,ξ∑
j=1

(
λ(1− α)

√
k
‖β̂j∗C‖2
‖β̂j‖2

− λα‖vj∗C‖2

)2

=

DPλ,ξ∑
j=1

{
λ2(1− α)2k

‖β̂j∗C‖
2
2

‖β̂j‖22
+ λ2α2‖vj∗C‖

2
2 − 2λ2α(1− α)

√
k
‖β̂j∗C‖2
‖β̂j‖2

‖vj∗C‖2

}

≥
DPλ,ξ∑
j=1

{
λ2(1− α)2k

‖β̂j∗C‖
2
2

‖β̂j‖22
+ λ2α2‖vj∗C‖

2
2 − λ2α(1− α)

[
k
‖β̂j∗C‖

2
2

‖β̂j‖22
+ ‖vj∗C‖

2
2

]}

= λ2(1− α)(1− 2α)k

DPλ,ξ∑
j=1

‖β̂j∗C‖
2
2

‖β̂j‖22
− λ2α(1− 2α)

DPλ,ξ∑
j=1

‖vj∗C‖
2
2

(59)
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Based on (58) and (59), we have

‖2XT
Apλ,ξ

(Y −Xβ̂)‖22 =

DPλ,ξ∑
j=1

‖2XjT (Y −Xβ̂)‖22 =

DPλ,ξ∑
j=1

‖2Xj
∗
T

(Y −Xβ̂)‖22 +

DPλ,ξ∑
j=1

‖2Xj
∗C
T

(Y −Xβ̂)‖22 (60)

≥ λ2(1− α)2k

DPλ,ξ∑
j=1

‖β̂j∗‖22
‖β̂j‖22

+ λ2(1− α)(1− 2α)k

DPλ,ξ∑
j=1

‖β̂j∗C‖
2
2

‖β̂j‖22
− λ2α(1− 2α)

DPλ,ξ∑
j=1

‖vj∗C‖
2
2 (61)

≥ λ2(1− α)(1− 2α)k

DPλ,ξ∑
j=1

‖β̂j∗‖22 + ‖β̂j∗C‖
2
2

‖β̂j‖22
− λ2α(1− 2α)

DPλ,ξ∑
j=1

‖vj∗C‖
2
2 (62)

≥ λ2(1− α)(1− 2α)k|DP
λ,ξ| − λ2α(1− 2α)k|DP

λ,ξ| (63)

= λ2(1− 2α)2k|DP
λ,ξ| = λ2(1− 2α)2|APλ,ξ| (64)

The next lemma provides an asymptotic upper bound on the number of selected variables, the proof of which is similar to
Lemma 5 in (Meinshausen & Yu, 2009).

Lemma 3.8. Assume conditions in Theorem 3.2, with probability converging to 1 for n→∞,

sup
0≤ξ≤1

|APλ,ξ| ≤
{(

1 +
α

1− 2α

)√
ksp +

α

1− 2α

√
sh

}2

(65)

Proof. Based on Lemma 3.7,

(1− 2α)2kmp = (1− 2α)2 sup
0≤ξ≤1

|APλ,ξ| ≤
1

λ2
sup

0≤ξ≤1
‖2XT

Apλ,ξ
(Y −Xβ̂λ,ξ)‖22 (66)

We decompose the right side into two parts and then have

(1− 2α)2kmp ≤

(
1

λ
sup

0≤ξ≤1
‖2XT

Apλ,ξ
X(β∗ − β̂λ,ξ)‖2 +

1

λ
sup

0≤ξ≤1
‖2XT

Apλ,ξ
ε‖2

)2

(67)

Similarly, we know from proof in Lemma 3.5 that

sup
0≤ξ≤1

‖2XT
Apλ,ξ

ε‖22 ≤ 2kmp log(kp)σ2n̄ (68)

Based on the definition of λ, there exists a constant $1 > 0, such that

sup0≤ξ≤1‖2XT
Apλ,ξ

ε‖22
λ2

≤ $2
1kmp (69)

Therefore, we have

(1− 2α)2kmp ≤

(
1

λ
sup

0≤ξ≤1
‖2XT

Apλ,ξ
X(β∗ − β̂λ,ξ)‖2 +$1

√
kmp

)2

(70)

Define FPλ,ξ = {i : β∗i 6= 0} ∪APλ,ξ. Based on the block trick we used in proof of Lemma 3.4,

‖XT
Apλ,ξ

X(β∗ − β̂λ,ξ)‖22 ≤ ‖XT
Fpλ,ξ

XFpλ,ξ
(β∗ − β̂λ,ξ)‖22 ≤ n̄2φ2

max(sp + min{
k∑
i=1

ni, kp})‖β∗ − β̂λ,ξ‖22 (71)

From the assumption on φmax(sp + min{
∑k
i=1 ni, kp}), we know

‖XT
Apλ,ξ

X(β∗ − β̂λ,ξ)‖22 ≤ n̄2ρ2
max‖β∗ − β̂λ,ξ‖22 (72)
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Therefore, we have

(1− 2α)2kmp ≤

(
2

λ
n̄ρmax sup

0≤ξ≤1
‖β∗ − β̂λ,ξ‖2 +$1

√
kmp

)2

(73)

≤

(
2

λ
n̄ρmax‖β∗ − β̂λ,0‖2 +

2

λ
n̄ρmax sup

0≤ξ≤1
‖β̂λ,0 − β̂λ,ξ‖2 +$1

√
kmp

)2

(74)

Because β is the unfolded vector of B, actually sup0≤ξ≤1 ‖β̂λ,0 − β̂λ,ξ‖2 = sup0≤ξ≤1 ‖B̂λ,0 − B̂λ,ξ‖F . From Lemmas
3.5 and 3.6, definition of λ and the assumption on φmin, we obtain the bound

4n̄2ρ2
max

λ2
sup

0≤ξ≤1
‖β̂λ,0 − β̂λ,ξ‖22 ≤ C

4n̄2ρ2
max

λ2

2 log(kp)

n̄

kmp

φ2
min(mp)

σ2 ≤ $2
2kmp (75)

Here, $2 > 0 is a constant. We define $ = $1 +$2. Now, we obtain

(1− 2α)2kmp ≤
(

2

λ
n̄ρmax‖β∗ − β̂λ,0‖2 +$

√
kmp

)2

(76)

By setting the constant term in λ large enough, we can have $/(1− 2α) ≤ 5$ ≤ 0.026, and hence

kmp ≤ (18/17.5)2(2ρmax)2 n̄
2‖β∗ − β̂λ,0‖22
(1− 2α)2λ2

≤
{(

1 +
α

1− 2α

)√
ksp +

α

1− 2α

√
sh

}2

(77)

The last inequality is obtained by plugging in Lemma 3.4. The constant can be 1 by setting the constant term in λ large
enough.

Follow from Lemmas 3.5,3.6, and 3.8, the next lemma bounds the variance part of the sparse multi-sites Lasso estimator:

Lemma 3.9. Assume conditions in Theorem3.2, there exists a constant ω2 > 0, with probability converging to 1 for
n→∞,

‖Bλ − B̂λ,1‖2F = ‖B̂λ,0 − B̂λ,1‖2F ≤ ω2σ
2 ks̄ log(kp)

n̄
(78)

Proof. We have defined Bλ as the estimator B̂λ,0 with no noise before Lemma 3.4.
Based on Lemmas 3.5 and 3.6

‖B̂λ,0 − B̂λ,1‖2F ≤
2 log kp

n̄

kmp

φ2
min(mp)

σ2 (79)

Based on Lemma 3.8, assumption on φmin and 0 ≤ α ≤ 0.4,

‖B̂λ,0 − B̂λ,1‖2F ≤
2 log kp

n̄

kmp

φ2
min(mp)

σ2 ≤ ω2σ
2 ks̄ log(kp)

n̄
(80)

The lemma 3.4 and 3.9 together complete the proof of Theorem 3.2

3.2. Proof of Theorem 3.3:

The proof is similar to that of Theorem 3.2. Recall that in this case, however, we do not penalize
√
k on group penalty.

Hence, we have the following result about bias contribution of Theorem 3.3.

Lemma 3.10. Assume conditions in Theorem 3.3. The Frobenius norm of Γλ is then bounded for sufficiently large values
of n̄, given a constant ω1 > 0, by

‖Γλ‖2F ≤ ω1σ
2 ks̃ log(kp)

n̄
(81)
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Proof. The proof procedure is same as Lemma 3.4. But instead of (42), we now have

Λ(Γλ) ≤ 2{(1− α̃)
√
sp + α̃

√
sh}‖γλ‖2 = 2

√
ks̃‖γλ‖2 (82)

because we do not have
√
k penalization on group penalty. Hence, in Lemma 3.10, we have s̃ = {(1 − α̃)

√
sp/k +

α̃
√
sh/k}2, instead of s̄ = {(1− α̃)

√
sp + α̃

√
sh/k}2.

For restricted OLS estimation, we redefine few things here. For every subset ψ ⊂ {1, ..., kp} with |ψ| ≤
∑k
i=1 ni, we

define Xψ to be the combination of columns from design matrix X , where X = DIAG(X1, X2, ..., Xk). The restricted
OLS-estimator of the noise vector εT = (ε1, ..., εk)T is then given by,

θ̂ψ = (XT
ψXψ)−1XT

ψ ε (83)

For the variance contribution, the proof is similar to that of Theorem 3.2. We present the required Lemmas for Theorem
3.3 here.

Lemma 3.11. Let mn be a sequence with mn = o(kn̄) and mn →∞ for n̄→∞. It holds with probability converging to
1 for n→∞

max
ψ:|ψ|≤mn

‖θ̂ψ‖22 ≤
2 log kp

n̄

mn

φ2
min(mn)

σ2 (84)

Lemma 3.12. If, for a fixed value of λ, the number of active variables of de-noised estimators B̂λ,ξ is for every 0 ≤ ξ ≤ 1
bounded by m, then

sup
0≤ξ≤1

‖B̂λ,0 − B̂λ,ξ‖2F ≤ C max
ψ:|ψ|≤m

‖θ̂ψ‖22 (85)

with C as a generic constant.

Let A1
λ,ξ be the set of active variables of the de-noised estimator B̂λ,ξ. Let mn to be the largest number of active variables

over all values of 0 ≤ ξ ≤ 1. Then we have mn = sup0≤ξ≤1 |A1
λ,ξ|.

Lemma 3.13. For any 0 ≤ α̃ ≤ 1, we have

|A1
λ,ξ|λ2α̃2 ≤ ‖2XT

A1
λ,ξ

(Y −Xβ̂λ,ξ)‖22 (86)

where we defined before that X = DIAG(X1, ..., Xk), Y T = (Y T1 , ..., Y
T
k ). β̂λ,ξ is the transpose of unfolded vector of

B̂λ,ξ by rows. XA1
λ,ξ

is Xψ when ψ = A1
λ,ξ

Lemma 3.14. Assume conditions in Theorem 3.3, with probability converging to 1 for n→∞,

sup
0≤ξ≤1

|A1
λ,ξ| ≤

{
√
sh +

1− α̃
α̃

√
sp

}2

(87)

Lemma 3.15. Assume conditions in Theorem3.3, there exists a constant ω2 > 0, with probability converging to 1 for
n→∞,

‖Bλ − B̂λ,1‖2F = ‖B̂λ,0 − B̂λ,1‖2F ≤ ω2σ
2 ks̃ log(kp)

n̄
(88)

Lemma 3.10 and Lemma 3.15 complete the proof of Theorem 3.3



When can Multi-Site Datasets be Pooled for Regression?

3. Extra set of simulations (corresponding to Section 4.1 in the main paper)
3.1. Hypothesis Test Simulation when p = 6
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Figure 1. The figure is similar to the simulations done in Figure 3 (which is also the one Figure 3 in the main paper). However, here the
dimension p of β is 6 instead of 3. (a,c) are MSE of β̂ and the corresponding acceptance rate of our hypothesis test (from Section2.1).
(b,d) are MSE of β̂ and γ̂1 and the corresponding acceptance rate (from Section2.2). These are based on 100 bootstrap repetitions. The
solid line in (c,d) represents the point where the condition from Theorem 2.3 is equal to 1. The dotted line is when MSE of β̂ is the same
for single-site and multi-site models.

3.2. Sparse Multi-Sites Lasso Simulation

Table 1. Add multi-sites Lasso on Lasso.

α 0 0.05 0.95 0.97 (OUR) 1

CDR 0.1423 0.1463 0.2747 0.2863 0.2955
CDV 78 78 75 75 73
CDG 5 5 3 3 1

We report correctly discovered number of active variables (CDV), ratio of CDV and total number of discovered variables
(CDR), and correctly discovered number of always-active features (CDG).
From Table1 and Table 2 we see that our chosen α helps sparse multi-sites Lasso to discover more or preserve always-active
features. The number and rate of correctly discovered number of active variables given by our chosen α are also among
the best.
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Table 2. Add Lasso on multi-sites Lasso.

α 0 0.05 0.25 (OUR) 0.95 1

CDR 0.2292 0.2381 0.2453 0.2841 0.2885
CDV 80 80 79 75 73
CDG 16 16 15 11 11

3.3. Figure Examples for Choosing α
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Figure 2. These plots show that site-active set from simultaneous inference provides information of always-active features (which is then
used to choose the hyper-parameters α an λ). In (a), we add Lasso on multi-sties Lasso, and α = 0.25 is chosen. Similarly, in Figure(b),
we add multi-sites Lasso on Lasso, and α = 0.97 is chosen.

We here point out a caveat about our choice of α when sparsity patterns share few features and always-active features exist.
In this setting, we do want to discover more always-active features. Hence, we decrease α from 1 and stop at the point
where we just select one more always-active feature. In other words, we choose the α left to the one described in main
body.
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4. Longer version of Section 4 from the main paper
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Figure 3. (a,c) are MSE of β̂ and the corresponding acceptance rate of our hypothesis test (from Section2.1). (b,d) are MSE of β̂ and γ̂1
and the corresponding acceptance rate from Section 2.2). These are based on 100 bootstrap repetitions. The solid line in (c,d) represents
the point where the condition from Theorem 2.3 is equal to 1. The dotted line is when MSE of β̂ is the same for single-site and multi-site
models.
We now provide few more details about the different curves observed in Figure 3, beyond what is reported in the main paper
due to space constraint. First, we check whether the gap between the sufficient condition (from Theorem 2.3) and the point
where single-site and multi-site models have same MSE is small. The solid lines in Figure 3(c,d) correspond to the point
where the condition value defined in Theorem 2.3 is equal to 1. The dotted lines (where condition value is approximately
3.3) are the points where the MSE of multi-site model starts to increase above the MSE of single-site one. In other words,
to the left of the dotted lines that MSE of β̂ from multi-sites model is smaller than single-site model. To the right of these
lines it is larger. We see that the gap is reasonably small. We then check the type I error of our hypothesis test. On the
left side of solid lines, the sufficient condition holds and our hypothesis test accepts the combination with high rate around
95%, i.e., the type I error is well-controlled. Further, the power of our hypothesis test is evident when MSE of β̂ from
multi-sites model is worse than single-site model. Though our sufficient condition is conservative for the combination, by
noticing that χ2 test is progressive, our test has a high power on the right side of dotted line. In the regime between the two
lines, the multi-sites model has slightly better MSE of β̂ compared to single-site model, and our hypothesis test accepts the
combination with high rate.
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Figure 4. (a) shows the solution path of λ when sparsity patterns share few features across sites, and group Lasso penalty is added to
balance Lasso penalty. (b) shows the alternate regime where sparsity patters are similar. The `2 loss is plotted, based on 10-fold cross
validation.

4.1. AD dataset details

The two datasets we use are – an open-source Alzheimer’s Disease Neuroimage Initiative (ADNI) dataset, and a local
dataset (ADlocal). ADNI is an open consortium with the goal of understanding AD related cognitive decline, and in the
process, develop clinical interventions aimed at delaying the disease onset. ADlocal corresponds to a recent (smaller)
initiative local study for the AD related decline. We used 318 samples from ADNI and 156 samples from ADlocal. The
input variables are 8 Cerebrospinal fluid (CSF) protein levels, and the response is hippocampus volume. The CSF proteins
are “1-38-Tr”, “1-40-Tr”, “1-42-Tr”, “NFL”, ”AB42”, “htau”, “ptau181”, and “Neurogranin”. The two datasets have
different age and diagnosis distributions, and hence, we subsample 81 samples from either of sites to control age and
diagnosis variation. Using these 81 samples from each dataset, we perform domain adaptation (using a maximum mean
discrepancy objective as a measure of distance between the two marginals) and transform CSF proteins from ADlocal to
match ADNI. The transformed data are then used to evaluate our proposed framework. The results in Figure 5 are already
explained in the main body.
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Figure 5. Evaluating combined models. (a,c) In this first setting x-axis represents number/fraction of ADNI labeled samples used in
training along with ADlocal labeled data. The dotted line in (a) is where the sample sizes of ADNI and ADlocal in training datasets
match. y-axis shows square root of mean prediction error (computed on the remaining unused ADNI data) scaled by estimated noise
level in ADNI responses. Error bars give 95% confidence interval. (c) shows the acceptance rate of our hypothesis test. (b,d) show the
same evaluations for the alternate setting where equal number of ADNI and ADlocal samples are used for training.
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