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Abstract

We introduce FeUdal Networks (FuNs): a novel
architecture for hierarchical reinforcement learn-
ing. Our approach is inspired by the feudal rein-
forcement learning proposal of Dayan and Hin-
ton, and gains power and efficacy by decou-
pling end-to-end learning across multiple levels
– allowing it to utilise different resolutions of
time. Our framework employs a Manager mod-
ule and a Worker module. The Manager operates
at a lower temporal resolution and sets abstract
goals which are conveyed to and enacted by the
Worker. The Worker generates primitive actions
at every tick of the environment. The decoupled
structure of FuN conveys several benefits – in ad-
dition to facilitating very long timescale credit
assignment it also encourages the emergence of
sub-policies associated with different goals set
by the Manager. These properties allow FuN to
dramatically outperform a strong baseline agent
on tasks that involve long-term credit assignment
or memorisation.

1. Introduction
Deep reinforcement learning has recently enjoyed suc-
cesses in many domains (Mnih et al., 2015; Schulman
et al., 2015; Levine et al., 2015; Mnih et al., 2016; Lillicrap
et al., 2015). Nevertheless, long-term credit assignment re-
mains a major challenge for these methods, especially in
environments with sparse reward signals, such as the in-
famous Montezuma’s Revenge ATARI game. It is symp-
tomatic that the standard approach on the ATARI bench-
mark suite (Bellemare et al., 2012) is to use an action-
repeat heuristic, where each action translates into several
(usually 4) consecutive actions in the environment. Yet an-
other dimension of complexity is seen in non-Markovian
environments that require memory – these are particularly
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challenging, since the agent has to learn which parts of ex-
perience to store for later, using only a sparse reward signal.

The framework we propose takes inspiration from feudal
reinforcement learning (FRL) introduced by Dayan & Hin-
ton (1993), where levels of hierarchy within an agent com-
municate via explicit goals. Some key insights from FRL
are that goals can be generated in a top-down fashion, and
that goal setting can be decoupled from goal achievement;
a level in the hierarchy communicates to the level below
it what must be achieved, but does not specify how to do
so. Making higher levels reason at a lower temporal reso-
lution naturally structures the agents behaviour into tempo-
rally extended sub-policies.

The architecture explored in this work is a fully-
differentiable neural network with two levels of hierarchy
(though there are obvious generalisations to deeper hierar-
chies). The top level, the Manager, sets goals at a lower
temporal resolution in a latent state-space that is itself
learnt by the Manager. The lower level, the Worker, oper-
ates at a higher temporal resolution and produces primitive
actions, conditioned on the goals it receives from the Man-
ager. The Worker is motivated to follow the goals by an
intrinsic reward. However, significantly, no gradients are
propagated between Worker and Manager; the Manager re-
ceives its learning signal from the environment alone. In
other words, the Manager learns to select latent goals that
maximise extrinsic reward.

The key contributions of our proposal are: (1) A consistent,
end-to-end differentiable model that embodies and general-
izes the principles of FRL. (2) A novel, approximate transi-
tion policy gradient update for training the Manager, which
exploits the semantic meaning of the goals it produces. (3)
The use of goals that are directional rather than absolute in
nature. (4) A novel RNN design for the Manager – a di-
lated LSTM – which extends the longevity of the recurrent
state memories and allows gradients to flow through large
hops in time, enabling effective back-propagation through
hundreds of steps.

Our ablative analysis (Section 5.4) confirms that transi-
tional policy gradient and directional goals are crucial
for best performance. Our experiments on a selection of
ATARI games (including the infamous Montezuma’s re-
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venge) and on several memory tasks in the 3D DeepMind
Lab environment (Beattie et al., 2016) show that FuN sig-
nificantly improves long-term credit assignment and mem-
orisation.

2. Related Work
Building hierarchical agents is a long standing topic in re-
inforcement learning (Sutton et al., 1999; Precup, 2000;
Dayan & Hinton, 1993; Dietterich, 2000; Boutilier et al.,
1997; Dayan, 1993; Kaelbling, 2014; Parr & Russell, 1998;
Precup et al., 1997; 1998; Schmidhuber, 1991; Sutton,
1995; Wiering & Schmidhuber, 1997; Vezhnevets et al.,
2016; Bacon et al., 2017). The options framework (Sut-
ton et al., 1999; Precup, 2000) is a popular formulation for
considering the problem with a two level hierarchy. The
bottom level – an option – is a sub-policy with a termi-
nation condition, which takes in environment observations
and outputs actions until the termination condition is met.
An agent picks an option using its policy-over-options (the
top level) and subsequently follows it until termination, at
which point the policy-over-options is queried again and
the process continues. Options are typically learned using
sub-goals and ‘pseudo-rewards’ that are provided explic-
itly (Sutton et al., 1999; Dietterich, 2000; Dayan & Hinton,
1993). For a simple, tabular case (Wiering & Schmidhu-
ber, 1997; Schaul et al., 2015), each state can be used as a
sub-goal. Given the options, a policy-over-options can be
learned using standard techniques by treating options as ac-
tions. Recently (Tessler et al., 2016; Kulkarni et al., 2016)
have demonstrated that combining deep learning with pre-
defined sub-goals delivers promising results in challenging
environments like Minecraft and Atari, however sub-goal
discovery was not addressed.

A recent work of (Bacon et al., 2017) shows the possibil-
ity of learning options jointly with a policy-over-options
in an end-to-end fashion by extending the policy gradi-
ent theorem to options. When options are learnt end-to-
end, they tend to degenerate to one of two trivial solutions:
(i) only one active option that solves the whole task; (ii)
a policy-over-options that changes options at every step,
micro-managing the behaviour. Consequently, regularis-
ers (Bacon et al., 2017; Vezhnevets et al., 2016) are usually
introduced to steer the solution towards multiple options of
extended length. This is believed to provide an inductive
bias towards re-usable temporal abstractions and to help
generalisation.

A key difference between our approach and the options
framework is that in our proposal the top level produces
a meaningful and explicit goal for the bottom level to
achieve. Sub-goals emerge as directions in the latent state-
space and are naturally diverse. We also achieve signif-
icantly better scores on ATARI than Option-Critic (sec-
tion 5).
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Figure 1. The schematic illustration of FuN (section 3)

There has also been a significant progress in non-
hierarchical deep RL methods by using auxiliary losses and
rewards. (Bellemare et al., 2016a) have significantly ad-
vanced the state-of-the-art on Montezuma’s Revenge by us-
ing pseudo-count based auxiliary rewards for exploration,
which stimulate agents to explore new parts of the state
space. The recently proposed UNREAL agent (Jaderberg
et al., 2016) also demonstrates a strong improvement by us-
ing unsupervised auxiliary tasks to help refine its internal
representations. We note that these benefits are orthogonal
to those provided by FuN, and that both approaches could
be combined with FuN for even greater effect.

3. The model
What is FuN? FuN is a modular neural-network consist-
ing of two modules – the Worker and the Manager. The
Manager internally computes a latent state representation
st and outputs a goal vector gt. The Worker produces ac-
tions conditioned on external observation, its own state, and
the Managers goal. The Manager and the Worker share
a perceptual module which takes an observation from the
environment xt and computes a shared intermediate repre-
sentation zt. The Manager’s goals gt are trained using an
approximate transition policy gradient. This is a particu-
larly efficient form of policy gradient training that exploits
the knowledge that the Worker’s behaviour will ultimately
align with the goal directions it has been set. The Worker
is then trained via intrinsic reward to produce actions that
cause these goal directions to be achieved. Figure 1a il-
lustrates the overall design and the following equations de-
scribe the forward dynamics of our network:

zt = fpercept(xt); st = fMspace(zt) (1)

hMt , ĝt = fMrnn(st, hMt−1); gt = ĝt/||ĝt||; (2)

wt = φ(

t∑
i=t−c

gi) (3)

hW , Ut = fWrnn(zt, hWt−1);πt = SoftMax(Utwt) (4)

where both the Manager and the Worker are recurrent. Here
hM and hW correspond to the internal states of the Man-
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ager and the Worker respectively. A linear transform φ
maps a goal gt into an embedding vectorwt ∈ Rk, which is
then combined via product with matrixUt (Workers output)
to produce policy π – vector of probabilities over primitive
actions. The next section provides the details on goal em-
bedding and the following sections 3.2,3.3 describes how
FuN is trained.

3.1. Goal embedding
The goal g modulates the policy via a multiplicative
interaction in a low dimensional goal-embedding space
Rk, k << d. The Worker first produces an embedding
vector for every action, represented by rows of matrix
U ∈ R|a|×k (eq. 4). To incorporate goals from the Man-
ager, the last c goals are first pooled by summation and then
embedded into a vector w ∈ Rk using a linear projection
φ (eq. 3). The projection φ is linear, with no biases, and
is learnt with gradients coming from the Worker’s actions.
The embedding matrix U is then combined with the goal
embedding w via a matrix-vector product (eq. 4). Since
φ has no biases it can never produce a constant non-zero
vector – which is the only way the setup could ignore the
Manager’s input. This makes sure that the goal output by
the Manager always influences the final policy. Notice how,
due to pooling of goals over several time-steps, the condi-
tioning from the Manager varies smoothly.

3.2. Learning
We consider a standard reinforcement learning setup. At
each step t, the agent receives an observation xt from the
environment and selects an action at from a finite set of
possible actions. The environment responds with a new ob-
servation xt+1 and a scalar reward rt. The process contin-
ues until the terminal state is reached, after which it restarts.
The goal of the agent is to maximise the discounted return
Rt =

∑∞
k=0 γ

krt+k+1 with γ ∈ [0, 1]. The agent’s be-
haviour is defined by its action-selection policy π. FuN
produces a distribution over possible actions (a stochastic
policy) as defined in eq. 4.

The conventional wisdom would be to train the whole ar-
chitecture monolithically through gradient descent on ei-
ther the policy directly or via TD-learning. Notice, that
since FuN is fully differentiable we could train it end-to-
end using a policy gradient algorithm operating on the ac-
tions taken by the Worker. The outputs g of the Manager
would be trained by gradients coming from the Worker.
This, however would deprive Manager’s goals g of any se-
mantic meaning, making them just internal latent variables
of the model. We propose instead to independently train
Manager to predict advantageous directions (transitions) in
state space and to intrinsically reward the Worker to follow
these directions. If the Worker can fulfil the goal of mov-
ing in these directions (as it is rewarded for doing), then we
ought to end up taking advantageous trajectories through

state-space. We formalise this in the following update rule
for the Manager:

∇gt = AMt ∇θdcos(st+c − st, gt(θ)), (5)

where AMt = Rt − VMt (xt, θ) is the Manager’s ad-
vantage function, computed using a value function esti-
mate VMt (xt, θ) from the internal critic; dcos(α, β) =
αTβ/(|α||β|) is the cosine similarity between two vectors.
Note: the dependence of s on θ is ignored when computing
∇θdcos – this avoids trivial solutions. Notice that now gt
acquires a semantic meaning as an advantageous direction
in the latent state space at a horizon c, which defines the
temporal resolution of the Manager.

The intrinsic reward that encourages the Worker to follow
the goals is defined as:

rIt = 1/c

c∑
i=1

dcos(st − st−i, gt−i) (6)

We use directions because it is more feasible for the Worker
to be able to reliably cause directional shifts in the latent
state than it is to assume that the Worker can take us to
(potentially) arbitrary new absolute locations. It also gives
a degree of invariance to the goals and allows for structural
generalisation – the same directional sub-goal g can invoke
a sub-policy that is valid and useful in a large part of the
latent state space; e.g. evade an enemy, swim up for air, etc.
We compare absolute against directional goals empirically
in section 5.4.

The original feudal reinforcement learning formulation
of Dayan & Hinton (1993) advocated completely conceal-
ing the reward from the environment from lower levels of
hierarchy. In practice we take a softer approach by adding
an intrinsic reward for following the goals, but retaining the
environment reward as well. The Worker is then trained to
maximise a weighted sum Rt + αRIt , where α is a hyper-
parameter that regulates the influence of the intrinsic re-
ward. The Workers policy π can be trained to maximise
intrinsic reward by using any off-the shelf deep reinforce-
ment learning algorithm. Here we use an advantage actor
critic (Mnih et al., 2016):

∇πt = ADt ∇θ log π(at|xt; θ) (7)

The advantage function estimator ADt = (Rt + αRIt −
V Dt (xt; θ)) is calculated using an internal critic, which es-
timates the value functions for both rewards.

Note that the Worker and Manager can potentially have dif-
ferent discount factors γ for computing the return. This al-
lows, for instance, the Worker to be more greedy and focus
on immediate rewards while the Manager can consider a
long-term perspective.
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3.3. Transition Policy Gradients
We now motivate our proposed update rule for the Manager
as a novel form of policy gradient with respect to a model
of the Worker’s behaviour. Consider a high-level policy
ot = µ(st, θ) that selects among sub-policies (possibly
from a continuous set), where we assume for now that these
sub-policies are fixed duration behaviours (lasting for c
steps). Corresponding to each sub-policy is a transition dis-
tribution, p(st+c|st, ot), that describes the distribution of
states that we end up at the end of the sub-policy, given the
start state and the sub-policy enacted. The high-level policy
can be composed with the transition distribution to give a
‘transition policy’ πTP (st+c|st) = p(st+c|st, µ(st, θ)) de-
scribing the distribution over end states given start states.
It is valid to refer to this as a policy because the original
MDP is isomorphic to a new MDP with policy πTP and
transition function st+c = πTP (st) (i.e. the state always
transitions to the end state picked by the transition policy).
As a result, we can apply the policy gradient theorem to the
transition policy πTP , so as to find the performance gradi-
ent with respect to the policy parameters,

∇θπTPt = E [(Rt − V (st))∇θ log p(st+c|st, µ(st, θ))]
(8)

In general, the Worker may follow a complex trajectory. A
naive application of policy gradients requires the agent to
learn from samples of these trajectories. But if we know
where these trajectories are likely to end up, by modelling
the transitions, then we can skip directly over the Worker’s
behaviour and instead follow the policy gradient of the pre-
dicted transition. FuN assumes a particular form for the
transition model: that the direction in state-space, st+c−st,
follows a von Mises-Fisher distribution. Specifically, if the
mean direction of the von Mises-Fisher distribution is given
by g(ot) (which for compactness we write as gt) we would
have p(st+c|st, ot) ∝ edcos(st+c−st,gt). If this functional
form were indeed correct, then we see that our proposed
update heuristic for the Manager, eqn.5, is in fact the proper
form for the transition policy gradient arrived at in eqn.8.

Note that the Worker’s intrinsic reward (eqn. 6) is based
on the log-likelihood of state trajectory. Through that the
FuN architecture actively encourages the functional form
of the transition model to hold true. Because the Worker is
learning to achieve the Manager’s direction, its transitions
should, over time, closely follow a distribution around this
direction, and hence our approximation for transition pol-
icy gradients should hold reasonably well.

4. Architecture details
This section provides the particular details of the model as
described in section 3. The perceptual module fpercept is
a convolutional network (CNN) followed by a fully con-
nected layer. The CNN has a first layer with 16 8x8 fil-

ters of stride 4, followed by a layer with with 32 4x4 fil-
ters of stride 2. The fully connected layer has 256 hidden
units. Each convolutional and fully-connected layer is fol-
lowed by a rectifier non-linearity1. The state space which
the Manager implicitly models in formulating its goals is
computed via fMspace, which is another fully connected
layer followed by a rectifier non-linearity. The dimension-
ality of the embedding vectors, w, is set as k = 16. To en-
courage exploration in transition policy, at every step with
a small probability ε we emit a random goal sampled from
a uni-variate Gaussian.

The Worker’s recurrent network fWrnn is a standard
LSTM (Hochreiter & Schmidhuber, 1997). For the Man-
ager’s recurrent network, fMrnn, we propose a novel de-
sign – the dilated LSTM, which is introduced in the next
section. Both fMrnn and fWrnn have 256 hidden units.

4.1. Dilated LSTM
We propose a novel RNN architecture for the Manager,
which operates at lower temporal resolution than the data
stream. The main contribution here is the inductive bias to-
wards slowly varying outputs, which have very long-term
temporal dependencies. We define a dilated LSTM anal-
ogously to dilated convolutional networks (Yu & Koltun,
2016). For a dilation radius r let the full state of the net-
work be h = {ĥi}ri=1, i.e. it is composed of r sepa-
rate groups of sub-states or ‘cores’. At time t the net-
work is governed by the following equations: ĥt%rt , gt =

LSTM(st, ĥ
t%r
t−1; θ

LSTM), where % denotes the modulo op-
eration and allows us to indicate which group of cores is
currently being updated. We make the parameters of the
LSTM network θLSTM explicit to stress that the same set
of parameters governs the update for each of the r groups
within the dLSTM.

At each time step only the corresponding part of the state is
updated and the output is pooled across the previous c out-
puts. This allows the r groups of cores inside the dLSTM
to preserve the memories for long periods, yet the dLSTM
as a whole is still able to process and learn from every in-
put experience, and is also able to update its output at ev-
ery step. This idea is similar to clockwork RNNs (Koutnı́k
et al., 2014), however there the top level “ticks” at a fixed,
slow pace, whereas the dLSTM observes all the available
training data instead. In the experiments we set r = 10,
and this was also used as the predictions horizon, c.

5. Experiments
The goal of our experiments is to demonstrate that FuN
learns non-trivial, helpful, and interpretable sub-policies

1This is substantially the same CNN as in (Mnih et al., 2016;
2015), the only difference is that in the pre-processing stage we
retain all colour channels.
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Figure 2. a) Learning curve on Montezuma’s Revenge b) This is a visualisation of sub-goals learnt by FuN in the first room. For each time
step we compute the latent state st and the corresponding goal gt. We then find a future state for which cos(st − st, gt) is maximized.
The plot corresponds to the number of past states for which a frame maximizes the goal - i.e. the taller the bar, the more frequently that
state was a maximizer of the goal for some previous state. Notice that FuN has learnt a semantically meaningful sub-goals – the tall bars
in the plot (i.e. consistent goals) correspond to interpretably useful waypoints in Montezuma.

and sub-goals, and also to validate components of the archi-
tecture. We start by describing technical details of the ex-
perimental setup and then present results on Montezuma’s
revenge – an infamously hard ATARI game – in section 5.1.
Section 5.2 presents results on more ATARI games and
extensively compares FuN to LSTM baseline with differ-
ent discount factors and BPTT lengths. In section 5.3 we
present results on a set of visual memorisation tasks in
3D environment. Section 5.4 presents an ablation study of
FuN, validating our design choices.

Baseline. Our main baseline is a recurrent LSTM net-
work on top of a representation learned by a CNN. The
LSTM (Hochreiter & Schmidhuber, 1997) architecture is
a widely used recurrent network and it was demonstrated
to perform very well on a suite of reinforcement learn-
ing problems (Mnih et al., 2016). LSTM uses 316 hid-
den units2 and its inputs are the feature representation of
an observation and the previous action of the agent. Action
probabilities and the value function estimate are regressed
from its hidden state. All the methods the same CNN ar-
chitecture, input pre-processing, and an action repeat of 4.

Optimisation. We use the A3C method (Mnih et al.,
2016) for all reinforcement learning experiments. It
was shown to achieve state-of-the-art results on sev-
eral challenging benchmarks (Mnih et al., 2016). We
cut the trajectory and run backpropagation through time
(BPTT) (Mozer, 1989) after K forward passes of a net-
work or if a terminal signal is received. For FuN K =
400, for LSTM, unless otherwise stated, K = 40. We
discuss different choice of K for LSTM in section 5.2.
The optimization process runs 32 asynchronous threads us-
ing shared RMSProp. There are 3 hyper-parameters in

2This choice means that FuN and the LSTM baseline to have
roughly the same number of total parameters.

FuN and 2 in the LSTM baselines. For each method,
we ran 100 experiments, each using randomly sampled
hyper-parameters. Learning rate and entropy penalty
were sampled from a LogUniform(10−4, 10−3) interval
for LSTM. For FuN the learning rate was sampled from
LogUniform(10−4.5, 10−3.5), to account for higher gradi-
ents due to longer BPTT unrolls. The learning rate was
linearly annealed from a sampled value to half the initial
rate for all agents. To explore intrinsic motivation in FuN,
we sample its weight α ∼ Uniform(0, 1). We define a
training epoch as one million observations. When report-
ing learning curves, we plot the average episode score of
the top 5 agents (according to the final score) against the
training epochs. For all ATARI experiments we clip the
reward to [−1,+1] interval

5.1. Montezuma’s revenge
Montezuma’s revenge is one of the hardest games avail-
able through the ALE (Bellemare et al., 2012). The game
is infamous for challenging agents with lethal traps and
sparse rewards. We had to broaden and intensify our
hyper-parameter search for the LSTM baseline to see any
progress at all for that model. We have experimented with
many different hyper-parameter configurations for LSTM
baseline, for instance expanding learning rate search to
LogUniform(10−3, 10−2), and we report on the configu-
ration that worked best. We use a small discount 0.99 for
LSTM; for FuN we use 0.99 in Worker and 0.999 in Man-
ager. Figure 2b analyses the sub-goals learnt by FuN in
the first room. They turn out to be meaningful milestones,
which bridge the agents progress to its first extrinsic re-
ward – picking up the key. Interestingly, two of the learnt
sub-goals correspond to roughly the same locations as the
ones hand-crafted in (Kulkarni et al., 2016) (ladder and
key), but here they are learnt by the agent itself. Figure 2a
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Figure 3. ATARI training curves. Epochs corresponds to a million training steps of an agent. The value is the average per episode score
of top 5 agents, according to the final score. We used two different discount factors 0.95 and 0.99.

Goal

Figure 4. FuN in water maze, top down view. The left plot visu-
alises FuN trajectories during one episode. The first trajectory
(green) performs a search for the target in different locations,
while subsequent ones (other colours) perform searches along a
circle of a fixed radius matched to that of the target, always finding
the target. The right plot visualises different learnt sub-policies,
produced by sampling a random g and fixing it for 200 steps. Each
colour corresponds to a different g, the black circle represents the
starting location.

plots the learning curves. Notice how FuN starts learning
much earlier and achieves much higher scores. It takes
> 300 epochs for LSTM to reach the score 400, which
corresponds to solving the first room (take the key, open
a door); it stagnates at that score until about 900 epochs,
when it starts exploring further. FuN solves the first room
in less than 200 epochs and immediately moves on to ex-
plore further, eventually visiting several other rooms and
scoring up to 2600 points.

5.2. ATARI
Experiments in this section validate that the capabilities of
FuN go beyond what standard tools for long-term credit
assignment – discount factors and BPTT unroll length –
can provide for a baseline LSTM agent. We use two dis-
counts 0.99 and 0.95 for both FuN and LSTM agents.
(For the experiments on FuN only the discount for the
Manager changes, while the Worker’s discount is fixed at
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Figure 5. Training curves for memory tasks on Labyrinth.

0.95.) For the LSTM we explore BPTT of 40 and 100,
while for FuN we use a BPTT unroll of 400. For LSTM
with BPTT 100 we search for learning rate in the inter-
val LogUniform(10−4.5, 10−3.5), as for FuN. We use a di-
verse set of ATARI games, some of which involve long-
term credit assignment and some which are more reactive.

Figure 3 plots the learning curves. A few categories
emerge. On Ms. Pacman, Amidar, and Gravitar FuN with
a low Manager discount of 0.99 strongly outperforms all
other methods. All of these games are known to require
long-term reasoning to play well. Enduro stands out as all
the LSTM agents completely fail at it. In this game the
agent controls a racing car and scores points for overtak-
ing other racers; this requires accelerating and steering for
significant amount of time before the first reward is expe-
rienced. Frostbite is a hard game (Vezhnevets et al., 2016;
Lake et al., 2016) that requires both long-term credit as-
signment and good exploration. The best-performing frost-
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bite agent is FuN with 0.95 Manager discount, which out-
performs the rest by a factor of 7. On Hero and Space
Invaders all agents perform equally well. On Seaquest
and Breakout, the baseline LSTM with a more aggressive
discount of 0.95 is the best. This suggests that in these
games long-term credit assignment is not important and
the agent is better off optimising more immediate rewards
in a greedy fashion. Alien is the only game where us-
ing different discounts doesn’t meaningfully influence the
agents performance; here we see the baseline LSTM out-
performs our FuN model, although both still achieve a sat-
isfactory scores. We provide qualitative analysis of sub-
policies learnt on Seaquest in supplementary material.

Note how using an unroll for BPTT=100 in the baseline
LSTM significantly hurts its performance (hence we do not
explore longer unrolls), while FuN performs very well with
BPTT of 400 thanks to its ability to leverage the dLSTM.
Being able to train a recurrent network over very long se-
quences could be an enabling tool for many memory related
task, as we demonstrate in section 5.3.

Option-critic architecture (Bacon et al., 2017) is, to
the best of our knowledge, the only other end-to-end train-
able system with sub-policies. The experimental results for
Option-Critic on 4 ATARI (Bacon et al., 2017) games show
scores similar those from a flat DQN (Mnih et al., 2015)
baseline agent. Notice that our baseline (Mnih et al., 2016)
is much stronger than DQN. We also ran FuN on the same
games as Option-Critic (Asterix, Ms. Pacman, Seaquest
and Zaxxon) and after 200 epochs it achieves a similar
score on Seaquest, doubles it on Ms. Pacman, more than
triples it on Zaxxon and gets more than 20x improvement
on Asterix (see supplementary material for plots).
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Figure 6. Ablative analysis

5.3. Memory in Labyrinth
DeepMind Lab (Beattie et al., 2016) is a first-person 3D
game platform extended from OpenArena. It’s a visually
complex 3D environment with agent actions corresponding
to movement and orientation. We use 4 different levels that
test long-term credit assignment and visual memory:

Water maze is a reproduction of the Morris water maze
experiment (Morris, 1981) from the behavioural science lit-
erature. An agent is dropped into a circular pool of wa-
ter with a concealed platform at unknown random location.
The agent can move around and upon stepping on the plat-
form it receives a reward and the trial restarts. The platform
remains in the same location for the rest of the episode,
while agent starts each trial at a random location. The walls
of the pool are decorated with visual cues to assist localisa-
tion.

T-maze is another classic animal cognition test. The
agent spawns in a small T-shaped maze. Two objects with
randomly chosen shape and colour are spawned at the left
and right ”baiting” locations. One of them is assigned a re-
ward of +1 and the other a reward of -1. When the agent
collects one of the objects, it receives the reward and is re-
spawned at the beginning of the T-maze. The objects are
also re-instantiated in the same locations and with the same
rewards on the re-spawn event. The agent should remem-
ber which object gives the positive reward across re-spawns
and collect it as many times as possible within the fixed
time given for the episode. T-maze+ is a modification of
T-maze, where at each trial the length of corridors can vary,
adding additional dimension of complexity.

Non-match is a visual memorisation task. Each trial be-
gins in small room with an out of reach object being dis-
played in one of two display pods. There is a pad in the
middle, which upon touching, the agent is rewarded with 1
point, and is teleported to a second room which has two ob-
jects in it, one of which matches the object in the previous
room. Collecting the matching object gives a reward of -10
points, collecting the non matching object gives a reward of
10 points. Once either is collected, the agent is teleported
back to the first room, with the same object being shown.

For all agents we include reward as a part of the observa-
tion. Figure 5 plots the learning curves. FuN consitently
outperforms the LSTM baseline – it learns faster and also
reaches a higher final reward. We analyse the FuN agent’s
behaviour in more detail in Figure 4b. It demonstrates that
FuN learns meaningful sub-policies, which are then effi-
ciently integrated with memory to produce rewarding be-
haviour. Interestingly, the LSTM agent doesn’t appear to
use its memory for water maze task at all, always circling
the maze at the roughly the same radius.
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Figure 7. Action repeat transfer

5.4. Ablative analysis
This section empirically validates the main innovations of
this paper: transition policy gradient for training the Man-
ager; relative rather than absolute goals; intrinsic motiva-
tion for the Worker. First we consider a ‘non-Feudal’ FuN –
it has exactly the same network architecture as FuN, but the
Managers output g is trained with gradients coming directly
from the Worker and no intrinsic reward is used, much like
in Option-Critic architecture (Bacon et al., 2017). Second,
g is learnt using a standard policy gradient approach with
the Manager emitting the mean of a Gaussian distribution
from which goals are sampled (as if the Manager were solv-
ing a continuous control problem (Schulman et al., 2016;
Mnih et al., 2016; Lillicrap et al., 2015)). Third, we ex-
plore a variant of FuN in which g specifies absolute, rather
than relative/directional, goals (and the Worker’s intrinsic
reward is adjusted accordingly) but otherwise everything is
the same. The experiments (Figure 6) reveal that, although
alternatives do work to some degree their performance is
significantly inferior. We also evaluate a purely feudal ver-
sion of FuN – in which the Worker is trained from the in-
trinsic reward alone. This ablation performs better than
other, but still inferior to the full FuN approach. It shows
that allowing the Worker to experience the external reward
is beneficial.

5.5. ATARI action repeat transfer
One of the advantages of FuN is the clear separation of du-
ties between Manager and Worker. The Manager learns a
transition policy, while the Worker learns to operate primi-
tive actions to enact these transitions. This transition policy
is invariant to the underlying embodiment of the agent – the
way its primitive actions translate into state space transi-
tions. Potentially, the transition policy can be transferred
between agents with different embodiment – e.g. robot
models with different bodies or different operational fre-
quency. We provide evidence towards that possibility by
transferring policies across agents with different action re-
peat on ATARI. Action repeat is a heuristic used in all suc-
cessful agents (Mnih et al., 2015; 2016; Bellemare et al.,
2016b; Vezhnevets et al., 2016). It enables better explo-
ration, eases credit assignment, and saves computation by
repeating an action chosen by the agent several (= 4) times.

To perform transfer, we initialise the FuN system with pa-
rameters extracted from an agent trained with action re-
peat of 4 and then make the following adjustments: (i)
we accordingly adjust the discounts for all rewards; (ii)
we increase the dilation of the dLSTM by a factor of 4;
(iii) we increase the Manager’s goal horizon c by a fac-
tor of 4. (These modifications adapt all the “hard-wired”
but explicitly temporally sensitive aspects of the agent.)
We then train this agent without action repeat. As a base-
line we use an LSTM agent transferred in a similar way
(with adjusted discounts) as well as FuN and LSTM agents
trained without action repeat from scratch. Figure 7 shows
the corresponding learning curves. The transferred FuN
agent (green curve) significantly outperforms every other
method. Furthermore it shows positive transfer on each en-
vironment, whereas LSTM only shows positive transfer on
Ms. Pacman.

6. Discussion and future work
How to create agents that can learn to decompose their be-
haviour into meaningful primitives and then reuse them to
more efficiently acquire new behaviours is a long standing
research question. The solution to this question may be an
important stepping stone towards agents with general in-
telligence and competence. This paper introduced FeUdal
Networks, a novel architecture that formulates sub-goals as
directions in latent state space, which, if followed, translate
into a meaningful behavioural primitives. FuN clearly sep-
arates the module that discovers and sets sub-goals from
the module that generates the behaviour through primitive
actions. This creates a natural hierarchy that is stable and
allows both modules to learn in complementary ways. Our
experiments clearly demonstrate that this makes long-term
credit assignment and memorisation more tractable. This
also opens many avenues for further research, for instance:
deeper hierarchies can be constructed by setting goals at
multiple time scales, scaling agents to truly large environ-
ments with sparse rewards and partial observability. The
modular structure of FuN is also lends itself to transfer and
multitask learning – learnt behavioural primitives can be
re-used to acquire new complex skills, or alternatively the
transitional policies of the Manager can be transferred to
agents with different embodiment.
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