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Abstract
Given that in practice training data is scarce for all but a
small set of problems, a core question is how to incorporate
prior knowledge into a model. In this paper, we consider
the case of prior procedural knowledge for neural networks,
such as knowing how a program should traverse a sequence,
but not what local actions should be performed at each
step. To this end, we present an end-to-end differentiable
interpreter for the programming language Forth which
enables programmers to write program sketches with slots
that can be filled with behaviour trained from program
input-output data. We can optimise this behaviour directly
through gradient descent techniques on user-specified
objectives, and also integrate the program into any larger
neural computation graph. We show empirically that our
interpreter is able to effectively leverage different levels
of prior program structure and learn complex behaviours
such as sequence sorting and addition. When connected
to outputs of an LSTM and trained jointly, our interpreter
achieves state-of-the-art accuracy for end-to-end reasoning
about quantities expressed in natural language stories.

1. Introduction
A central goal of Artificial Intelligence is the creation of
machines that learn as effectively from human instruction
as they do from data. A recent and important step towards
this goal is the invention of neural architectures that
learn to perform algorithms akin to traditional computers,
using primitives such as memory access and stack ma-
nipulation (Graves et al., 2014; Joulin & Mikolov, 2015;
Grefenstette et al., 2015; Kaiser & Sutskever, 2015; Kurach
et al., 2016; Graves et al., 2016). These architectures can
be trained through standard gradient descent methods,
and enable machines to learn complex behaviour from
input-output pairs or program traces. In this context, the
role of the human programmer is often limited to providing
training data. However, training data is a scarce resource
for many tasks. In these cases, the programmer may have
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partial procedural background knowledge: one may know
the rough structure of the program, or how to implement
several subroutines that are likely necessary to solve the
task. For example, in programming by demonstration (Lau
et al., 2001) or query language programming (Neelakantan
et al., 2015a) a user establishes a larger set of conditions on
the data, and the model needs to set out the details. In all
these scenarios, the question then becomes how to exploit
various types of prior knowledge when learning algorithms.

To address the above question we present an approach that
enables programmers to inject their procedural background
knowledge into a neural network. In this approach, the
programmer specifies a program sketch (Solar-Lezama
et al., 2005) in a traditional programming language. This
sketch defines one part of the neural network behaviour. The
other part is learned using training data. The core insight
that enables this approach is the fact that most programming
languages can be formulated in terms of an abstract machine
that executes the commands of the language. We implement
these machines as neural networks, constraining parts of the
networks to follow the sketched behaviour. The resulting
neural programs are consistent with our prior knowledge
and optimised with respect to the training data.

In this paper, we focus on the programming language
Forth (Brodie, 1980), a simple yet powerful stack-based
language that facilitates factoring and abstraction. Under-
lying Forth’s semantics is a simple abstract machine. We
introduce @4, an implementation of this machine that is
differentiable with respect to the transition it executes at
each time step, as well as distributed input representations.
Sketches that users write define underspecified behaviour
which can then be trained with backpropagation.

For two neural programming tasks introduced in previous
work (Reed & de Freitas, 2015) we present Forth sketches
that capture different degrees of prior knowledge. For
example, we define only the general recursive structure of
a sorting problem. We show that given only input-output
pairs, @4 can learn to fill the sketch and generalise well
to problems of unseen size. In addition, we apply @4 to
the task of solving word algebra problems. We show that
when provided with basic algorithmic scaffolding and
trained jointly with an upstream LSTM (Hochreiter &
Schmidhuber, 1997), @4 is able to learn to read natural
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language narratives, extract important numerical quantities,
and reason with these, ultimately answering corresponding
mathematical questions without the need for explicit
intermediate representations used in previous work.

The contributions of our work are as follows: i) We present
a neural implementation of a dual stack machine underlying
Forth, ii) we introduce Forth sketches for programming
with partial procedural background knowledge, iii) we
apply Forth sketches as a procedural prior on learning
algorithms from data, iv) we introduce program code
optimisations based on symbolic execution that can speed
up neural execution, and v) using Forth sketches we obtain
state-of-the-art for end-to-end reasoning about quantities
expressed in natural language narratives.

2. The Forth Abstract Machine
Forth is a simple Turing-complete stack-based program-
ming language (ANSI, 1994; Brodie, 1980). We chose Forth
as the host language of our work because i) it is an estab-
lished, general-purpose high-level language relatively close
to machine code, ii) it promotes highly modular programs
through use of branching, loops and function calls, thus
bringing out a good balance between assembly and higher
level languages, and importantly iii) its abstract machine is
simple enough for a straightforward creation of its contin-
uous approximation. Forth’s underlying abstract machine
is represented by a state S = (D,R,H,c), which contains
two stacks: a data evaluation pushdown stack D (data
stack) holds values for manipulation, and a return address
pushdown stackR (return stack) assists with return pointers
and subroutine calls. These are accompanied by a heap or
random memory access buffer H , and a program counter c.

A Forth program P is a sequence1 of Forth words (i.e.
commands)P =w1...wn. The role of a word varies, encom-
passing language keywords, primitives, and user-defined
subroutines (e.g. DROP discards the top element of the
data stack, or DUP duplicates the top element of the data
stack).2 Each word wi defines a transition function between
machine states wi : S ! S. Therefore, a program P itself
defines a transition function by simply applying the word at
the current program counter to the current state. Although
usually considered as a part of the heap H , we consider
Forth programs P separately to ease the analysis.

An example of a Bubble sort algorithm implemented in
Forth is shown in Listing 1 in everything except lines
3b-4c. The execution starts from line 12 where literals
are pushed on the data stack and the SORT is called. Line
10 executes the main loop over the sequence. Lines 2-7

1Forth is a concatenative language.
2In this work, we restrict ourselves to a subset of all Forth

words, detailed in Appendix A.

1 : BUBBLE ( a1 ... an n-1 -- one pass )
2 DUP IF >R

3a OVER OVER < IF SWAP THEN
4a R> SWAP >R 1- BUBBLE R>
3b { observe D0 D-1 -> permute D-1 D0 R0}
4b 1- BUBBLE R>
3c { observe D0 D-1 -> choose NOP SWAP }
4c R> SWAP >R 1- BUBBLE R>
5 ELSE
6 DROP
7 THEN
8 ;
9 : SORT ( a1 .. an n -- sorted )

10 1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP
11 ;
12 2 4 2 7 4 SORT \ Example call

Listing 1: Three code alternatives (white lines are common
to all, coloured/lettered lines are alternative-specific): i)
Bubble sort in Forth (a lines – green), ii) PERMUTE sketch
(b lines – blue), and iii) COMPARE sketch (c lines – yellow).

denote the BUBBLE procedure – comparison of top two
stack numbers (line 3a), and the recursive call to itself (line
4a). A detailed description of how this program is executed
by the Forth abstract machine is provided in Appendix B.
Notice that while Forth provides common control structures
such as looping and branching, these can always be reduced
to low-level code that uses jumps and conditional jumps
(using the words BRANCH and BRANCH0, respectively).
Likewise, we can think of sub-routine definitions as labelled
code blocks, and their invocation amounts to jumping to the
code block with the respective label.

3. @4: Differentiable Abstract Machine
When a programmer writes a Forth program, they define
a sequence of Forth words, i.e., a sequence of known state
transition functions. In other words, the programmer knows
exactly how computation should proceed. To accommodate
for cases when the developer’s procedural background
knowledge is incomplete, we extend Forth to support the
definition of a program sketch. As is the case with Forth
programs, sketches are sequences of transition functions.
However, a sketch may contain transition functions whose
behaviour is learned from data.

To learn the behaviour of transition functions within a pro-
gram we would like the machine output to be differentiable
with respect to these functions (and possibly representa-
tions of inputs to the program). This enables us to choose
parametrised transition functions such as neural networks.

To this end, we introduce @4, a TensorFlow (Abadi et al.,
2015) implementation of a differentiable abstract machine
with continuous state representations, differentiable words
and sketches. Program execution in @4 is modelled by
a recurrent neural network (RNN), parameterised by the
transition functions at each time step.
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Figure 1: Left: Neural Forth Abstract Machine. A forth sketch P is translated to a low-level code P✓, with slots {...}
substituted by a parametrised neural networks. Slots are learnt from input-output examples (x,y) through the differentiable
machine whose state Si comprises the low-level code, program counter c, data stack D (with pointer d), return stack R
(with pointer r), and the heap H. Right: BiLSTM trained on Word Algebra Problems. Output vectors corresponding to a
representation of the entire problem, as well as context representations of numbers and the numbers themselves are fed into
H to solve tasks. The entire system is end-to-end differentiable.

3.1. Machine State Encoding

We map the symbolic machine state S = (D, R, H, c)
to a continuous representation S = (D, R, H, c) into
two differentiable stacks (with pointers), the data stack
D= (D,d) and the return stack R= (R,r), a heap H, and
an attention vector c indicating which word of the sketchP✓

is being executed at the current time step. Figure 1 depicts
the machine together with its elements. All three memory
structures, the data stack, the return stack and the heap, are
based on differentiable flat memory buffersM2{D,R,H},
where D,R,H2Rl⇥v , for a stack size l and a value size v.
Each has a differentiable read operation

readM(a)=aTM

and write operation

writeM(x,a) :M M�(a1T
)�M+xaT

akin to the Neural Turing Machine (NTM) memory (Graves
et al., 2014), where � is the element-wise multiplication,
and a is the address pointer.3 In addition to the memory
buffers D and R, the data stack and the return stack contain
pointers to the current top-of-the-stack (TOS) element
d,r2Rl, respectively. This allows us to implement pushing
as writing a value x into M and incrementing the TOS
pointer as:

pushM(x) :writeM(x,p) (side-effect: p inc(p))

where p2 {d,r}, inc(p)=pTR1
+, dec(p)=pTR�, and

R1
+ and R1� are increment and decrement matrices (left

and right circular shift matrices).
3The equal widths ofH andD allow us to directly move vector

representations of values between the heap and the stack.

Popping is realized by multiplying the TOS pointer and the
memory buffer, and decreasing the TOS pointer:

popM( )= readM(p) (side-effect: p dec(p))

Finally, the program counter c 2 Rp is a vector that, when
one-hot, points to a single word in a program of length
p, and is equivalent to the c vector of the symbolic state
machine.4 We use S to denote the space of all continuous
representations S.

Neural Forth Words It is straightforward to convert
Forth words, defined as functions on discrete machine
states, to functions operating on the continuous space S .
For example, consider the word DUP, which duplicates the
top of the data stack. A differentiable version of DUP first
calculates the value e on the TOS address ofD, as e=dTD.
It then shifts the stack pointer via d inc(d), and writes
e to D using writeD(e,d). The complete description of im-
plemented Forth Words and their differentiable counterparts
can be found in Appendix A.

3.2. Forth Sketches

We define a Forth sketch P✓ as a sequence of continuous
transition functions P = w1 ...wn. Here, wi 2 S ! S
either corresponds to a neural Forth word or a trainable
transition function (neural networks in our case). We will
call these trainable functions slots, as they correspond to
underspecified “slots” in the program code that need to be
filled by learned behaviour.

We allow users to define a slot w by specifying a pair of
a state encoder wenc and a decoder wdec. The encoder

4During training c can become distributed and is considered as
attention over the program code.
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produces a latent representation h of the current machine
state using a multi-layer perceptron, and the decoder
consumes this representation to produce the next machine
state. We hence have w=wdec �wenc. To use slots within
Forth program code, we introduce a notation that reflects
this decomposition. In particular, slots are defined by the
syntax { encoder -> decoder } where encoder
and decoder are specifications of the corresponding slot
parts as described below.

Encoders We provide the following options for encoders:

static produces a static representation, independent of
the actual machine state.

observe e1 ...em: concatenates the elements e1 ...em of
the machine state. An element can be a stack item Di
at relative index i, a return stack item Ri, etc.

linear N, sigmoid, tanh represent chained trans-
formations, which enable the multilayer perceptron
architecture. Linear N projects to N dimensions,
and sigmoid and tanh apply same-named functions
elementwise.

Decoders Users can specify the following decoders:

choose w1...wm: chooses from the Forth wordsw1...wm.
Takes an input vector h of length m to produce a
weighted combination of machine states

Pm
i hiwi(S).

manipulate e1 ...em: directly manipulates the machine
state elements e1 ... em by writing the appropriately
reshaped and softmaxed output of the encoder over the
machine state elements with writeM.

permute e1 ...em: permutes the machine state elements
e1...em via a linear combination of m! state vectors.

3.3. The Execution RNN

We model execution using an RNN which produces a state
Sn+1 conditioned on a previous state Sn. It does so by
first passing the current state to each function wi in the
program, and then weighing each of the produced next
states by the component of the program counter vector ci
that corresponds to program index i, effectively using c as
an attention vector over code. Formally we have:

Sn+1=RNN(Sn,P✓)=

|P |X

i=1

ciwi(Sn)

Clearly, this recursion, and its final state, are differentiable
with respect to the program codeP✓, and its inputs. Further-
more, for differentiable Forth programs the final state of this
RNN will correspond to the final state of a symbolic execu-
tion (when no slots are present, and one-hot values are used).

: BUBBLE
DUP
BRANCH0 8
>R
{...}
1-
BUBBLE
R>

0
1
2
3
4
5
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7
8 P
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R r

0 1 2 3 4
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Figure 2: @4 segment of the RNN execution of a Forth
sketch in blue in Listing 1. The pointers (d, r) and values
(rows of R and D) are all in one-hot state (colours simply
denote values observed, defined by the top scale), while
the program counter maintains the uncertainty. Subsequent
states are discretised for clarity. Here, the slot {...} has
learned its optimal behaviour.

3.4. Program Code Optimisations

The @4 RNN requires one-time step per transition. After
each time step, the program counter is either incremented,
decremented, explicitly set or popped from the stack. In
turn, a new machine state is calculated by executing all
words in the program and then weighting the result states
by the program counter. As this is expensive, it is advisable
to avoid full RNN steps wherever possible. We use two
strategies to avoid full RNN steps and significantly speed-up
@4: symbolic execution and interpolation of if-branches.

Symbolic Execution Whenever we have a sequence of
Forth words that contains no branch entry or exit points, we
can collapse this sequence into a single transition instead
of naively interpreting words one-by-one. We symbolically
execute (King, 1976) a sequence of Forth words to calculate
a new machine state. We then use the difference between the
new and the initial state to derive the transition function of
the sequence. For example, the sequenceR> SWAP >R that
swaps top elements of the data and the return stack yields the
symbolic state D= r1d2 ...dl. and R= d1r2 ...rl. Compar-
ing it to the initial state, we derive a single neural transition
that only needs to swap the top elements of D and R.

Interpolation of If-Branches We cannot apply symbolic
execution to code with branching points as the branching
behaviour depends on the current machine state, and we
cannot resolve it symbolically. However, we can still
collapse if-branches that involve no function calls or loops
by executing both branches in parallel and weighing their
output states by the value of the condition. If the if-branch
does contain function calls or loops, we simply fall back to
execution of all words weighted by the program counter.
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3.5. Training

Our training procedure assumes input-output pairs of
machine start and end states (xi,yi) only. The output yi

defines a target memory YD
i and a target pointer yd

i on
the data stack D. Additionally, we have a mask Ki that
indicates which components of the stack should be included
in the loss (e.g. we do not care about values above the stack
depth). We use DT (✓,xi) and dT (✓,xi) to denote the final
state of D and d after T steps of execution RNN and using
an initial state xi. We define the loss function as

L(✓)=H(Ki�DT (✓,xi),Ki�YD
i )

+H(Ki�dT (✓,xi),Ki�yd
i )

where H(x, y) = �x log y is the cross-entropy loss,
and ✓ are parameters of slots in the program P . We can
use backpropagation and any variant of gradient descent
to optimise this loss function. Note that at this point it
would be possible to include supervision of the interme-
diate states (trace-level), as done by the Neural Program
Interpreter (Reed & de Freitas, 2015).

4. Experiments
We evaluate @4 on three tasks. Two of these are simple
transduction tasks, sorting and addition as presented in
(Reed & de Freitas, 2015), with varying levels of program
structure. For each problem, we introduce two sketches.

We also test @4 on the more difficult task of answering
word algebra problems. We show that not only can @4 act
as a standalone solver for such problems, bypassing the
intermediary task of producing formula templates which
must then be executed, but it can also outperform previous
work when trained on the same data.

4.1. Experimental Setup

Specific to the transduction tasks, we discretise memory
elements during testing. This effectively allows the trained
model to generalise to any sequence length if the correct
sketch behaviour has been learned. We also compare against
a Seq2Seq (Sutskever et al., 2014) baseline. Full details of
the experimental setup can be found in Appendix E.

4.2. Sorting

Sorting sequences of digits is a hard task for RNNs, as they
fail to generalise to sequences even marginally longer than
the ones they have been trained on (Reed & de Freitas,
2015). We investigate several strong priors based on Bubble
sort for this transduction task and present two @4 sketches in
Listing 1 that enable us to learn sorting from only a few hun-
dred training examples (see Appendix C.1 for more detail):

Table 1: Accuracy (Hamming distance) of Permute and
Compare sketches in comparison to a Seq2Seq baseline on
the sorting problem.

Test Length 8 Test Length: 64

Train Length: 2 3 4 2 3 4

Seq2Seq 26.2 29.2 39.1 13.3 13.6 15.9
@4 Permute 100.0 100.0 19.82 100.0 100.0 7.81
@4 Compare 100.0 100.0 49.22 100.0 100.0 20.65

PERMUTE. A sketch specifying that the top two elements
of the stack, and the top of the return stack must be per-
muted based on the values of the former (line 3b). Both
the value comparison and the permutation behaviour
must be learned. The core of this sketch is depicted in
Listing 1 (b lines), and the sketch is explained in detail
in Appendix D.

COMPARE. This sketch provides additional prior proce-
dural knowledge to the model. In contrast to PERMUTE,
only the comparison between the top two elements on the
stack must be learned (line 3c). The core of this sketch is
depicted in Listing 1 (c lines).

In both sketches, the outer loop can be specified in @4 (List-
ing 1, line 10), which repeatedly calls a functionBUBBLE. In
doing so, it defines sufficient structure so that the behaviour
of the network is invariant to the input sequence length.

Results on Bubble sort A quantitative comparison of our
models on the Bubble sort task is provided in Table 1. For a
given test sequence length, we vary the training set lengths
to illustrate the model’s ability to generalise to sequences
longer than those it observed during training. We find that
@4 quickly learns the correct sketch behaviour, and it is able
to generalise perfectly to sort sequences of 64 elements after
observing only sequences of length two and three during
training. In comparison, the Seq2Seq baseline falters when
attempting similar generalisations, and performs close to
chance when tested on longer sequences. Both @4 sketches
perform flawlessly when trained on short sequence lengths,
but under-perform when trained on sequences of length 4
due to arising computational difficulties (COMPARE sketch
performs better due to more structure it imposes). We
discuss this issue further in Section 5.

4.3. Addition

Next, we applied @4 to the problem of learning to add two
n-digit numbers. We rely on the standard elementary school
addition algorithm, where the goal is to iterate over pairs
of aligned digits, calculating the sum of each to yield the
resulting sum. The key complication arises when two digits
sum to a two-digit number, requiring that the correct extra
digit (a carry) be carried over to the subsequent column.
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1 : ADD-DIGITS
( a1 b1...an bn carry n -- r1 r2...r_{n+1} )

2 DUP 0 = IF
3 DROP
4 ELSE
5 >R \ put n on R

6a { observe D0 D-1 D-2 -> tanh -> linear 70
-> manipulate D-1 D-2 }

7a DROP
6b { observe D0 D-1 D-2 -> tanh -> linear 10

-> choose 0 1 }
7b { observe D-1 D-2 D-3 -> tanh -> linear 50

-> choose 0 1 2 3 4 5 6 7 8 9 }
>R SWAP DROP SWAP DROP SWAP DROP R>

8 R> 1- SWAP >R \ new_carry n-1
9 ADD-DIGITS \ call add-digits on n-1 subseq.

10 R> \ put remembered results back on the stack
11 THEN
12 ;

Listing 2: Manipulate sketch (a lines – green) and the
choose sketch (b lines – blue) for Elementary Addition.
Input data is used to fill data stack externally

We assume aligned pairs of digits as input, with a carry for
the least significant digit (potentially 0), and the length of
the respective numbers. The sketches define the high-level
operations through recursion, leaving the core addition to
be learned from data.

The specified high-level behaviour includes the recursive
call template and the halting condition of the recursion (no
remaining digits, line 2-3). The underspecified addition
operation must take three digits from the previous call, the
two digits to sum and a previous carry, and produce a single
digit (the sum) and the resultant carry (lines 6a, 6b and 7a,
7b). We introduce two sketches for inducing this behaviour:

MANIPULATE. This sketch provides little prior procedu-
ral knowledge as it directly manipulates the @4 machine
state, filling in a carry and the result digits, based on the
top three elements on the data stack (two digits and the
carry). Depicted in Listing 2 in green.

CHOOSE. Incorporating additional prior information,
CHOOSE exactly specifies the results of the computa-
tion, namely the output of the first slot (line 6b) is the
carry, and the output of the second one (line 7b) is the
result digit, both conditioned on the two digits and the
carry on the data stack. Depicted in Listing 2 in blue.

The rest of the sketch code reduces the problem size by one
and returns the solution by popping it from the return stack.

Quantitative Evaluation on Addition In a set of ex-
periments analogous to those in our evaluation on Bubble
sort, we demonstrate the performance of @4 on the addition
task by examining test set sequence lengths of 8 and 64
while varying the lengths of the training set instances
(Table 2). The Seq2Seq model again fails to generalise

Table 2: Accuracy (Hamming distance) of Choose and
Manipulate sketches in comparison to a Seq2Seq baseline
on the addition problem. Note that lengths corresponds to
the length of the input sequence (two times the number of
digits of both numbers).

Test Length 8 Test Length 64

Train Length: 2 4 8 2 4 8

Seq2Seq 37.9 57.8 99.8 15.0 13.5 13.3
@4 Choose 100.0 100.0 100.0 100.0 100.0 100.0
@4 Manipulate 98.58 100.0 100.0 99.49 100.0 100.0

to longer sequences than those observed during training.
In comparison, both the CHOOSE sketch and the less
structured MANIPULATE sketch learn the correct sketch
behaviour and generalise to all test sequence lengths (with
an exception of MANIPULATE which required more data to
train perfectly). In additional experiments, we were able to
successfully train both the CHOOSE and the MANIPULATE
sketches from sequences of input length 24, and we tested
them up to the sequence length of 128, confirming their
perfect training and generalisation capabilities.

4.4. Word Algebra Problems

Word algebra problems (WAPs) are often used to assess the
numerical reasoning abilities of schoolchildren. Questions
are short narratives which focus on numerical quantities,
culminating with a question. For example:

A florist had 50 roses. If she sold 15 of them and then later
picked 21 more, how many roses would she have?

Answering such questions requires both the understanding
of language and of algebra — one must know which
numeric operations correspond to which phrase and how to
execute these operations.

Previous work cast WAPs as a transduction task by mapping
a question to a template of a mathematical formula, thus
requiring manuall labelled formulas. For instance, one
formula that can be used to correctly answer the question
in the example above is (50 - 15) + 21 = 56. In pre-
vious work, local classifiers (Roy & Roth, 2015; Roy et al.,
2015), hand-crafted grammars (Koncel-Kedziorski et al.,
2015), and recurrent neural models (Bouchard et al., 2016)
have been used to perform this task. Predicted formula
templates may be marginalised during training (Kushman
et al., 2014), or evaluated directly to produce an answer.

In contrast to these approaches, @4 is able to learn both, a
soft mapping from text to algebraic operations and their
execution, without the need for manually labelled equations
and no explicit symbolic representation of a formula.

Model description Our model is a fully end-to-end
differentiable structure, consisting of a @4 interpreter, a
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\ first copy data from H: vectors to R and numbers to D
1 { observe R0 R-1 R-2 R-3 -> permute D0 D-1 D-2 }
2 { observe R0 R-1 R-2 R-3 -> choose + - * / }
3 { observe R0 R-1 R-2 R-3 -> choose SWAP NOP }
4 { observe R0 R-1 R-2 R-3 -> choose + - * / }
\ lastly, empty out the return stack

Listing 3: Core of the Word Algebra Problem sketch. The
full sketch can be found in the Appendix.

sketch, and a Bidirectional LSTM (BiLSTM) reader.

The BiLSTM reader reads the text of the problem and
produces a vector representation (word vectors) for each
word, concatenated from the forward and the backward pass
of the BiLSTM network. We use the resulting word vectors
corresponding only to numbers in the text, numerical values
of those numbers (encoded as one-hot vectors), and a vector
representation of the whole problem (concatenation of the
last and the first vector of the opposite passes) to initialise
the @4 heap H. This is done in an end-to-end fashion,
enabling gradient propagation through the BiLSTM to the
vector representations. The process is depicted in Figure 1.

The sketch, depicted in Listing 3 dictates the differentiable
computation.5 First, it copies values from the heap H
– word vectors to the return stack R, and numbers (as
one-hot vectors) on the data stack D. Second, it contains
four slots that define the space of all possible operations
of four operators on three operands, all conditioned on the
vector representations on the return stack. These slots are i)
permutation of the elements on the data stack, ii) choosing
the first operator, iii) possibly swapping the intermediate
result and the last operand, and iv) the choice of the second
operator. The final set of commands simply empties out
the return stack R. These slots define the space of possible
operations, however, the model needs to learn how to utilise
these operations in order to calculate the correct result.

Results We evaluate the model on the Common Core (CC)
dataset, introduced by Roy & Roth (2015). CC is notable for
having the most diverse set of equation patterns, consisting
of four operators (+, -,⇥, ÷), with up to three operands.

We compare against three baseline systems: (1) a local
classifier with hand-crafted features (Roy & Roth, 2015),
(2) a Seq2Seq baseline, and (3) the same model with a data
generation component (GeNeRe) Bouchard et al. (2016).
All baselines are trained to predict the best equation, which
is executed outside of the model to obtain the answer. In
contrast, @4 is trained end-to-end from input-output pairs
and predicts the answer directly without the need for an
intermediate symbolic representation of a formula.

Results are shown in Table 3. All RNN-based methods
5Due to space constraints, we present the core of the sketch

here. For the full sketch, please refer to Listing 4 in the Appendix.

Table 3: Accuracies of models on the CC dataset. Asterisk
denotes results obtained from Bouchard et al. (2016). Note
that GeNeRe makes use of additional data

Model Accuracy (%)

Template Mapping
Roy & Roth (2015) 55.5
Seq2Seq⇤ (Bouchard et al., 2016) 95.0
GeNeRe⇤ (Bouchard et al., 2016) 98.5

Fully End-to-End
@4 96.0

(bottom three) outperform the classifier-based approach.
Our method slightly outperforms a Seq2Seq baseline,
achieving the highest reported result on this dataset without
data augmentation.

5. Discussion
@4 bridges the gap between a traditional programming lan-
guage and a modern machine learning architecture. How-
ever, as we have seen in our evaluation experiments, faith-
fully simulating the underlying abstract machine architec-
ture introduces its own unique set of challenges.

One such challenge is the additional complexity of per-
forming even simple tasks when they are viewed in terms of
operations on the underlying machine state. As illustrated
in Table 1, @4 sketches can be effectively trained from small
training sets (see Appendix C.1), and generalise perfectly
to sequences of any length. However, difficulty arises when
training from sequences of modest lengths. Even when
dealing with relatively short training length sequences,
and with the program code optimisations employed, the
underlying machine can unroll into a problematically large
number states. For problems whose machine execution is
quadratic, like the sorting task (which at input sequences
of length 4 has 120 machine states), we observe significant
instabilities during training from backpropagating through
such long RNN sequences, and consequent failures to train.
In comparison, the addition problem was easier to train due
to a comparatively shorter underlying execution RNNs.

The higher degree of prior knowledge provided played an
important role in successful learning. For example, the
COMPARE sketch, which provides more structure, achieves
higher accuracies when trained on longer sequences.
Similarly, employing softmax on the directly manipulated
memory elements enabled perfect training for the MANIP-
ULATE sketch for addition. Furthermore, it is encouraging
to see that @4 can be trained jointly with an upstream LSTM
to provide strong procedural prior knowledge for solving a
real-world NLP task.
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6. Related Work
Program Synthesis The idea of program synthesis is as
old as Artificial Intelligence, and has a long history in com-
puter science (Manna & Waldinger, 1971). Whereas a large
body of work has focused on using genetic programming
(Koza, 1992) to induce programs from the given input-
output specification (Nordin, 1997), there are also various
Inductive Programming approaches (Kitzelmann, 2009)
aimed at inducing programs from incomplete specifications
of the code to be implemented (Albarghouthi et al., 2013;
Solar-Lezama et al., 2006). We tackle the same problem of
sketching, but in our case, we fill the sketches with neural
networks able to learn the slot behaviour.

Probabilistic and Bayesian Programming Our work
is closely related to probabilistic programming languages
such as Church (Goodman et al., 2008). They allow users
to inject random choice primitives into programs as a way
to define generative distributions over possible execution
traces. In a sense, the random choice primitives in such
languages correspond to the slots in our sketches. A core
difference lies in the way we train the behaviour of slots:
instead of calculating their posteriors using probabilistic
inference, we estimate their parameters using backprop-
agation and gradient descent. This is similar in-kind to
TerpreT’s FMGD algorithm (Gaunt et al., 2016), which
is employed for code induction via backpropagation. In
comparison, our model which optimises slots of neural
networks surrounded by continuous approximations of
code, enables the combination of procedural behaviour and
neural networks. In addition, the underlying programming
and probabilistic paradigm in these programming languages
is often functional and declarative, whereas our approach
focuses on a procedural and discriminative view. By using
an end-to-end differentiable architecture, it is easy to seam-
lessly connect our sketches to further neural input and output
modules, such as an LSTM that feeds into the machine heap.

Neural approaches Recently, there has been a surge of
research in program synthesis, and execution in deep learn-
ing, with increasingly elaborate deep models. Many of these
models were based on differentiable versions of abstract
data structures (Joulin & Mikolov, 2015; Grefenstette et al.,
2015; Kurach et al., 2016), and a few abstract machines,
such as the NTM (Graves et al., 2014), Differentiable
Neural Computers (Graves et al., 2016), and Neural GPUs
(Kaiser & Sutskever, 2015). All these models are able to
induce algorithmic behaviour from training data. Our work
differs in that our differentiable abstract machine allows us
to seemingly integrate code and neural networks, and train
the neural networks specified by slots via backpropagation.
Related to our efforts is also the Autograd (Maclaurin et al.,
2015), which enables automatic gradient computation in

pure Python code, but does not define nor use differentiable
access to its underlying abstract machine.

The work in neural approximations to abstract structures
and machines naturally leads to more elaborate machin-
ery able to induce and call code or code-like behaviour.
Neelakantan et al. (2015a) learned simple SQL-like
behaviour–—querying tables from the natural language
with simple arithmetic operations. Although sharing
similarities on a high level, the primary goal of our model
is not induction of (fully expressive) code but its injection.
(Andreas et al., 2016) learn to compose neural modules to
produce the desired behaviour for a visual QA task. Neural
Programmer-Interpreters (Reed & de Freitas, 2015) learn
to represent and execute programs, operating on different
modes of an environment, and are able to incorporate
decisions better captured in a neural network than in many
lines of code (e.g. using an image as an input). Users inject
prior procedural knowledge by training on program traces
and hence require full procedural knowledge. In contrast,
we enable users to use their partial knowledge in sketches.

Neural approaches to language compilation have also been
researched, from compiling a language into neural networks
(Siegelmann, 1994), over building neural compilers (Gruau
et al., 1995) to adaptive compilation (Bunel et al., 2016).
However, that line of research did not perceive neural in-
terpreters and compilers as a means of injecting procedural
knowledge as we did. To the best of our knowledge, @4
is the first working neural implementation of an abstract
machine for an actual programming language, and this
enables us to inject such priors in a straightforward manner.

7. Conclusion and Future Work
We have presented @4, a differentiable abstract machine
for the Forth programming language, and showed how it
can be used to complement programmers’ prior knowledge
through the learning of unspecified behaviour in Forth
sketches. The @4 RNN successfully learns to sort and
add, and solve word algebra problems, using only program
sketches and program input-output pairs. We believe @4,
and the larger paradigm it helps establish, will be useful for
addressing complex problems where low-level representa-
tions of the input are necessary, but higher-level reasoning
is difficult to learn and potentially easier to specify.

In future work, we plan to apply @4 to other problems in
the NLP domain, like machine reading and knowledge
base inference. In the long-term, we see the integration of
non-differentiable transitions (such as those arising when
interacting with a real environment), as an exciting future
direction which sits at the intersection of reinforcement
learning and probabilistic programming.
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