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Abstract

Principal Component Analysis (PCA) is a canonical and well-studied tool for dimension-
ality reduction. However, when few data are available, the poor quality of the covariance
estimator at its core may compromise its performance. We leverage this issue by casting
the PCA into a multitask framework, and doing so, we show how to solve simultaneously
several related PCA problems. Hence, we propose a novel formulation of the PCA prob-
lem relying on a novel regularization. This regularization is based on a distance between
subspaces, and the whole problem is solved as an optimization problem over a Riemannian
manifold. We experimentally demonstrate the usefulness of our approach as pre-processing
for EEG signals.

Keywords: dimensionality reduction, multitask learning, Riemannian geometry, Grass-
mann manifold

1. Introduction

Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933; Joliffe, 1986) is a
preprocessing technique widely used in data processing and is a prominent dimensionality
reduction technique in machine learning.

In few words, PCA seeks an accurate low-dimensional approximation to high-dimensional
data. To do so, PCA finds an orthogonal projection of the data to a low-dimensional sub-
space while preserving as much variance as possible, or equivalently while minimizing the
projection error (see Bishop (2006, Chap 12)).

In practice, this boils down to an eigenproblem involving the covariance estimator of
the input variables. Hence, its simplicity and efficiency allowed the proposition of several
variants of PCA over the course of time, ranging from non-linear extensions (Schölkopf et al.,
1997; Vincent et al., 2010) to sparse (Zou et al., 2006) or supervised extensions (De Bie et al.,
2005). In order to efficiently cope with non-stationary data streams, PCA has been studied
from the point of view of subspace tracking (Badeau et al., 2008; Balzano et al., 2010),
where the emphasis is put on efficiently updating the principal subspace while maintaining
the orthonormality constraint. In a related setup, it has also been studied from the online
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learning point of view (Warmuth and Kuzmin, 2007) in order to derive bounds on the
projection error.

In one-dimensional cases, the PCA can be solved by extracting the dominant eigen-
vector of the covariance matrix of the input data. Then multidimensional PCA can be
iteratively performed by solving a one-dimensional problem and followed by a deflation
scheme. However, this problem can also be solved at once by optimizing a generalization
of the one-dimensional cost under orthonormality constraints or by optimizing on a Rie-
mannian manifold1 involving orthogonal matrices (Edelman et al., 1998; Absil et al., 2009).
When such a cost is optimized, the solution may not exactly diagonalize the covariance
matrix but will have the same span as the leading eigenvectors.

As any machine learning method, the quality of the solution obtained by the PCA is
greatly affected by the quality of the covariance estimator used in practice. Being based
on the minimization of a least-squares cost, the quality of the covariance estimator is par-
ticularly affected by outliers. Hence, in order to overcome this situation, several robust
versions of the PCA have been proposed for dealing with noisy data and outliers. Those
approaches either rely on multivariate trimming of the samples (Devlin et al., 1981) or on
a cost function giving less influence to outliers (Candès et al., 2011).

However, in a context where few data are available, the covariance matrix may not be
accurately estimated and the robust approaches are not adapted. If such a situation happens
to several related datasets, one straightforward approach consists in finding a common
principal subspace to all the datasets. As studied in Wang et al. (2011), it boils down to
applying a single PCA over all the data or to finding a subspace approximating all the
covariance matrices. This latter formulation makes the problem close to the Approximate
Joint Diagonalization (AJD) encountered in the Signal Processing community (Flury and
Gautschi, 1986; Cardoso and Souloumiac, 1996).

Obviously, in this context of data scarcity, as the covariance estimator is not reliable, in-
dependently solving a PCA for every dataset would fail. Hence, we need a trade-off between
the flexible straightforward approach (independent PCAs) and the easy-to-use single PCA.
To do so, we propose to cast the PCA into the Multitask Learning (MTL) framework (Ev-
geniou and Pontil, 2004; Argyriou et al., 2008; Zhang and Yeung, 2011). In this setup,
every task amounts to finding a low-rank transformation of each dataset (maximizing the
retained information), and while solving those tasks, a regularization term is introduced to
make those transformations similar to each other. As we focus on the multidimensional case,
we formulate our problem as an optimization problem over a Riemannian matrix manifold,
and using this geometry, we propose a novel regularization term.

Eigenproblems being a classical tool of machine learning (De Bie et al., 2005), their
study in the multitask framework has naturally been proposed. Recently, such an approach
has been developed in Wang et al. (2016). This approach studied the generalized eigenprob-
lems and only extracted the leading eigenvector by casting the problem into a multitask
dictionary learning problem. In essence, our contribution in this paper is very different from
this previous work. Indeed, instead of studying the generalized eigenproblems, we focused
on the PCA problem, but we are able to extract directly a dominant subspace (i.e. the

1. A Riemannian manifold is a smoothly curved non-Euclidean space with additional structures such as a
set of linear local approximations, i.e. the tangent spaces, that are equipped with an inner product (Absil
et al., 2009).
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span of a set of leading eigenvectors) without having to resort to any deflation scheme. As
exposed in this paper, we propose a simple and elegant MTL formulation relying on a novel
regularization.

The use of a multitask methodology has been advocated in challenging applications such
as Brain Computer Interfaces (BCI) where it is difficult to collect data from each task but
the tasks are related (Devlaminck et al., 2011; Samek et al., 2013). In this paper, we provide
some promising results on this difficult application. In order to analyze the behavior of our
approach, we also apply it on synthetic data.

To summarize, the key contributions of our paper are twofold: First and foremost, we
formulate on a matrix manifold the problem of dominant subspace extraction for multitask
variance maximization. As a result, it makes it possible to solve at once several related
PCA problems of fixed dimensionality. Secondly, we propose a relevant regularization (hav-
ing an interpretation from the point of view of Riemannian geometry) for this multitask
problem. Then, the problem is naturally formulated as an optimization problem over a Rie-
mannian matrix manifold. Through experiments on synthetic data and a signal processing
application, we demonstrate the efficacy of our proposed dimensionality reduction method.

2. Multitask Variance Maximization

In this section, we define the problem of multitask variance maximization and then present
our proposed method.

2.1. Problem Setup

This problem being defined as a collection of instances of single-task variance maximization,
we first start by introducing the single-task version of variance maximization.

For any random data variable x ∈ Rd following a distribution p(x), the goal of variance
maximization is to estimate from i.i.d. samples {xi}ni=1 drawn from p(x) the k-dimensional
subspace (k < d; we assume k is known and fixed) on which the projected point of x has
the maximum variance.

For any matrix M ∈ Rd×k, we denote the span of the columns of M by Span(M). For
any k-dimensional subspace S and any orthogonal matrix U ∈ Rd×k, we say that U is an
orthogonal basis matrix of S if Span(U) = S. Any d-by-k orthogonal matrix determines a
unique subspace as an orthogonal basis matrix while there are infinitely many orthogonal
basis matrices for any given subspace with dimensionality d ≥ 2. Since the orthogonal
projection onto any subspace S is given as Rd ∋ x 7→ UU⊤x ∈ S using any basis matrix U
of S, an orthogonal basis matrix U∗ of the optimal subspace S∗ is obtained as a solution
to the following problem:

U∗ = argmax
U∈Rd×k: U⊤U=Ik

E
x∼p(x)

[
∥UU⊤x−UU⊤µ∥2

]
(1)

= argmax
U∈Rd×k: U⊤U=Ik

Tr(U⊤CU), (2)

where µ = Ex∼p(x)[x] is the population mean of x, C = Ex∼p(x)[(x − µ)(x − µ)⊤] is the
population covariance of x, and Ik is the k-by-k identity matrix. Again, U∗ is not uniquely
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determined because the objective function is invariant under orthogonal transformations
since Tr((UO)⊤C(UO)) = Tr(U⊤CUOO⊤) = Tr(U⊤CU) for any orthogonal matrix
O ∈ Rk×k. As made clear later in this paper, in order to deal with the orthogonality
constraint as well as with this invariance to rotations, we will use Grassmann manifolds for
the formulation of the problem (Edelman et al., 1998).

In multitask variance maximization, which is the main subject of this paper, we have
multiple different instances of variance maximization. We call such instances as tasks.
More specifically, given T sets of i.i.d. samples {xt,i}nt

i=1, t = 1, . . . , T , following underlying
probability distributions p1(x1), . . . , pT (xT ) respectively, we are required to estimate the
optimal k-dimensional subspaces, whose basis matrices U∗

t , t = 1, . . . , T , are given by

U∗
t = argmax

Ut∈Rd×k: U⊤
t Ut=Ik

Tr(U⊤
t CtUt), (3)

where µt = Ext∼pt(xt)[xt], and Ct = Ext∼pt(xt)[(xt − µt)(xt − µt)
⊤].

2.2. Principal Component Analysis

In many applications, the population covariance matrix Ct is often unknown, and the
objective function of Eq. (3) cannot be directly evaluated. A common way to alleviate this
is to resort to the sample covariance matrix defined by Ĉt =

1
nt−1

∑nt
i=1(xt,i − µ̂t)(xt,i −

µ̂t)
⊤ with µ̂t = 1

nt

∑nt
i=1 xt,i to approximate the objective function as Tr(U⊤

t CtUt) ≈
Tr(U⊤

t ĈtUt).
In the case of the single task learning setup (i.e. T = 1), the method of solving such an

approximated problem is widely known as Principal Component Analysis (PCA) (see, e.g.,
Joliffe (1986)) and can be solved by taking the leading k orthonormal eigenvectors of Ĉt.
PCA and its variants have been proven to be useful in many applications such as model
reduction in control theory (Moore, 1981) and denoising for image processing (Zhang et al.,
2010). In our multitask setting, we refer to the method of applying PCA to every task
independently as Independent PCA (I-PCA) and the method of applying it to the union of
the datasets from all the tasks as Common PCA (C-PCA). The notable difference between
these two methods is that C-PCA gives the same subspace for all the tasks whereas I-PCA
could give completely different subspaces for different tasks.

I-PCA may provide good estimates of the optimal subspaces when sufficiently many
data samples are available, but when we have only scarce data samples, the solutions Ût to
the problem in Eq. (3) may be badly affected by unreliable covariance estimation resulting
in poor performance on unseen data. In fact, the solution is undetermined when the sample
size nt is less than the dimensionality k of the subspace.

A straightforward countermeasure to this data-scarcity problem is to adopt C-PCA in
order to simply increase the sample size. However, this corresponds to assuming that all
the tasks share the identical optimal solution, which may be unreasonable when the tasks
have considerable heterogeneity.

The objective of this paper is to improve the performance over both I-PCA and C-
PCA when the tasks are different but related to each other in the sense that their optimal
subspaces are similar to each other. In such a case, solving all the tasks simultaneously while
sharing information with each other may improve performance. This strategy of jointly
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learning multiple tasks with taking the advantage of their relatedness is called multitask
learning and has been shown to work well in many other applications (Caruana, 1998;
Evgeniou and Pontil, 2004; Argyriou et al., 2008; Zhang and Yeung, 2011; Jacob et al.,
2009).

2.3. Regularized Multitask PCA

One of the most successful approaches to multitask learning is the regularization ap-
proach (Evgeniou and Pontil, 2004; Argyriou et al., 2008; Jacob et al., 2009). In this
approach, the tasks maintain different learning parameters but they are simultaneously
optimized with an appropriately designed regularization term which, e.g., makes the pa-
rameters close to each other or imposes similar sparsity patterns on them.

In this paper, we propose a method based on this approach for solving multitask variance
maximization. In the proposed method, we directly search the space of subspaces instead of
searching the space of orthogonal skinny matrices. More specifically, we solve the following
optimization problem:

(Ŝ1, . . . , ŜT ) = argmax
(U1,...,UT )

∈Gr(d,k)⊗T

1

2

∑
t∈[T ]

Tr(U⊤
t ĈtUt) +

λ

4

∑
s,t∈[T ]: s ̸=t

Tr(UsU
⊤
s UtU

⊤
t )


︸ ︷︷ ︸

J(U1,...,UT )

, (4)

where λ > 0 is a regularization parameter, [T ] = {1, . . . , T}, and Gr(d, k)⊗T denotes the
product manifold consisting of T Grassmann manifolds. Each of those manifolds consists of
all the k-dimensional linear subspaces of the d-dimensional Euclidean space Rd2, and Ŝt is
the estimate of the optimal subspace for task t. We call this method Regularized MultiTask
Principal Component Analysis (RMT-PCA). As we will see later, the objective function
does not depend on the choice of the orthogonal basis matrices Ut, t = 1, . . . , T , and thus
the optimization problem is well-defined on Gr(d, k)⊗T .

Intuitively, we try to maximize the PCA objective function Tr(U⊤
t ĈUt) for every

task t simultaneously while maximizing the similarity between the subspaces Span(Us)
and Span(Ut) quantified by Tr(UsU

⊤
s UtU

⊤
t ) for every task pair (s, t) at the same time.

Fig. 1 illustrates the idea of our multitask PCA approach. In this example, three datasets
of three-dimensional examples are observed. Those three datasets share similar (but differ-
ent) behaviors as their two-dimensional principal subspaces are close to be parallel. Hence,
the overall objective is to find similar subspaces (i.e. having similar angles) expressing most
of the variance of each dataset. This example shows the flexibility of our approach as it is
immune to the choice of bases representing the subspaces.

Maximizing the term Tr(UsU
⊤
s UtU

⊤
t ) in the regularization can be interpreted as min-

imizing the projection F-norm distance which is defined and denoted for any subspaces S
and S′ by δpF(S, S

′) = ∥UU⊤ − U ′U ′⊤∥F, where ∥M∥F =
√

Tr(M⊤M), and U and U ′

are d-by-k orthogonal basis matrices of S and S′ respectively. This follows from the equality
δ2pF(S, S

′) = 2d−2Tr(UU⊤U ′U ′⊤). δpF(S, S
′), and thus the regularization term in Eq. (4),

2. Note that a point X on this manifold can be represented by any orthonormal basis of Rk×d. The chosen
orthonormal basis is called a representative of its subspace Span(X).
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Figure 1: Illustration of the multitask setup for the PCA problem. Few observations are
available for every task of PCA, and we aim at extracting similar subspaces (hence
being oriented according to similar angles). In this example, each subspace St is
represented by a basis of two vectors ut, vt and the angles between the canonical
basis and the subspaces are ϕt, θt, ψt.

are invariant up to the choice of Us and Ut. A nice property of the projection F-norm dis-
tance is that for subspaces with small geodesic distance, it is asymptotically equivalent to
other several important measures including that induced by the intrinsic geometry of the
Grassmann manifold (Edelman et al., 1998; Chevallier et al., 2013).

As already mentioned, the multidimensional PCA loss function is invariant under the
group action U 7→ UO for all orthogonal matrices O of size k×k. Hence optimizing on the
space of orthogonal skinny matrices (i.e. the Stiefel manifold) without taking into account
this invariance would be inefficient as the critical points of the cost function are not isolated
on the Stiefel manifold. Then, such a property should be taken into account for defining
a multitask regularization. It can be easily shown that this is the case for the proposed
regularization of this paper as for any orthogonal matrices O and O′ of size k× k, we have

Tr(U OO⊤︸ ︷︷ ︸
Ik

U⊤U ′O′O′⊤︸ ︷︷ ︸
Ik

U ′⊤) = Tr(UU⊤U ′U ′⊤).

It would have been tempting to use a simpler regularization such as the matrix scalar
product Tr(U⊤U ′). However, this regularizer is not invariant under the group action over
the product of Grassmann manifolds and this has some very bad consequences. In cases
where the top k eigenvalues of a covariance matrix are close, it can happen that the value of
those eigenvalues are different (and hence their order changed) for the estimated covariance.
Such a situation in two dimensions is illustrated in Fig. 2. In this case, the subspaces S
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Figure 2: Illustration of the invariance of subspaces to the choice of basis. In this 3-
dimensional example, the two tasks are generated from the same distribution,
but due to sampling, the order of the two main eigenvectors is changed (even
though the subspaces are the same). Hence, if we are interested in comparing
subspaces, our regularizer should be immune to the choice of bases.

and S′ are identical and respectively represented by the basis matrices U =
[
u v

]
and

U ′ =
[
v u

]
, with u,v ∈ Rd such that u⊤u = 1, v⊤v = 1 and u⊤v = 0. Then, it

naturally follows that: Tr(U⊤U ′) = 0 and Tr(UU⊤U ′U ′⊤) = 2.
When dealing with covariance matrices estimated from few samples, it can happen that

the order of the principal eigenvectors is changed compared to the principal eigenvectors
of the population covariance. Compared to the naive regularization, our regularization is
robust to such a practical problem.

2.4. Optimization on Product of Grassmann Manifolds

The Grassmann manifold is a powerful mathematical tool for modeling low-rank transforma-
tions, and as noted in Edelman et al. (1998), it is usually involved for solving eigenproblems.
As it directly models fixed dimensionality subspaces, it is independent of the bases chosen to
represent the subspaces. Hence, as described in Absil et al. (2009, Sec. 3.4.4), a Grassmann
manifold is a quotient manifold and the group structure enables us to encode the invariance
properties. In few words, if two representations have the same span, they are said to be
equivalent. For a comprehensive tour on this topic, the reader should refer to Absil et al.
(2009); Edelman et al. (1998).

In this work, instead of modeling our dimensionality reduction problem as an optimiza-
tion problem under a set of orthonormality constraints, we write it as an unconstrained op-
timization on Grassmann manifolds. Hence, our approach consists in finding several lower-
dimensional subspaces by optimizing several transformations (parameterized byU1, . . . ,UT )
that maximize the variance on each dataset meanwhile being similar. As each parameter
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Ut lies in a Grassmann manifold Gr(d, k) (Absil et al., 2009; Edelman et al., 1998), we solve
the optimization problem on the product of these manifolds.

In Ma et al. (2001), the authors proved that the geodesics in the product manifold are
the products of the geodesics in the factor manifolds. This helpful property enables us to
compute the gradients on each of the factor manifolds separately and hence to apply easily
the machinery of the field of optimization on Riemannian manifolds.

Optimization on Riemannian matrix manifolds is a mature field and by now most of the
classical optimization algorithms have been extended to this setting (Absil et al., 2009). In
this setting, descent directions are not straight lines but rather curves on the manifold. For
a function f(U), applying a Riemannian gradient descent can be expressed by the following
steps:

1. At any iteration, at the point U , transform a Euclidean gradient DUf into a Rieman-
nian gradient ∇Uf . In our case, ∇Uf = DUf −UU⊤DUf (Absil et al., 2009).

2. Perform a line search along geodesics at U in the direction H = ∇Uf . In our case, on
the geodesic going from a point U in direction H (with a step-size t), a new iterate is
obtained as U(t) = UV cos(Σt)V ⊤ +W sin(Σt)V ⊤, where WΣV ⊤ is the compact
singular value decomposition of H.

Our cost function being defined in Eq. (4), its Euclidean gradient (w.r.t. a given task t)
can be written as:

DUtJ = ĈtUt + λ
∑

s∈[T ]\{t}

UsU
⊤
s Ut. (5)

In practice, we employ a Riemannian trust-region method described in Absil et al. (2009)
and efficiently implemented in Boumal et al. (2014).

3. Experiments

In this section, we present numerical experiments on synthetic and real-life data in order
to study the effect of the proposed regularization. We run the proposed method with
various regularization parameter values and in various conditions to understand how the
performance of the proposed method shifts as the regularization level changes. In this
experiment, we compare the performance of the proposed method to the performances of
independently applying the PCA to each task (noted as I-PCA and corresponding to the
case of λ = 0) and applying a single PCA over all the datasets (noted as C-PCA and
corresponding to the case of λ = ∞)3.

In our scarce setup, every task has only scarce data, and the goal is to estimate the
optimal subspaces accurately for all the tasks.

3. Note that the method of Wang et al. (2016) being fundamentally a rank-1 method, and as it relies on
several hyper-parameters (the number of dictionary atoms and the sparsity level). For these reasons, we
decided not to include it in our comparisons.
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3.1. Setup

In the scarce setup, we estimate the optimal subspaces with the proposed method using a
small number of training samples under several configurations, and then evaluate the quality
of the obtained estimates using a large number of test samples. The specific numbers of
training and test samples differ from dataset to dataset. We will provide the information
in Sec. 3.2.

In the evaluation phase, we measure how much ratio of the variance is preserved when
the test sample points are projected onto the estimated subspaces. We refer to this ratio
as the retained variance ratio (RVR). We calculate the RVR for every subject t by

rt =
Tr(Û⊤

t Ĉ ′
tÛt)

Tr(Ĉ ′
t)

, (6)

where Ût denotes an arbitrary basis matrix of the estimated subspace, Ĉ ′
t is the sample

covariance matrix calculated using test samples. Then, we average r1, . . . , rT to obtain the
overall score: r = 1

T

∑T
t=1 rt. In regularization parameter selection by cross-validation, we

also use this score but calculated with hold-out samples in place of the test samples.
For statistically reliable evaluation, we run several trials of this experiment with different

data realizations4. The specific numbers of trials will be provided in Sec. 3.2.

3.2. Data

We tested the method on the following synthetic data and BCI data.

Synthetic Data Sample points for each task t are drawn from the 6-dimensional Gaussian
distribution with mean zero and covariance matrix Ct generated in the following way. First,
we prepare the ‘core’ covariance matrix C0 as C0 = O0Σ0O

⊤
0 , whereO0 ∈ Rd×d is a random

orthogonal matrix, and Σ0 is the diagonal matrix whose diagonal elements are 1, 1, 2, 2, 3, 3.
Second, for each task t, we slightly ‘tilt’ C0 in order to obtain the task specific covarianceCt:
Ct = OtC0O

⊤
t , where Ot ∈ Rd×d is an orthogonal matrix nearly equal to Id. We generate

Ot as the projected point of Id+N onto the space of orthogonal matrices5, where N is the
noise matrix whose elements are i.i.d. samples drawn from the Gaussian distribution with
mean zero and variance 0.3.

We conduct the experiment for k = 1, . . . , 5 on this dataset. In the scarce setup, the
training sample size is 10 for every task. The test sample size is 10000.

BCI Data This dataset consists of electroencephalogram (EEG) signals made available
in the context of the BCI competition IV dataset IIa (Naeem et al., 2006). This data set
is made of EEG signals (recorded from 22 electrodes) from 9 subjects who performed left-
hand, right-hand, foot and tongue imaginary movements. As in Yger et al. (2015), we focus
on the hand signals (72 trials for each class). This classical paradigm of motor imagination
is used for building BCI so that a patient can send commands to a computer by performing
imaginary actions.

4. By “data realization”, we indicate data instances generated with a pseudo random generator in the case
of the synthetic dataset, and re-sampled data points from the dataset in the case of the BCI data.

5. The projection on the space of orthogonal matrices is defined by X 7→ argminO∈Rd×d:OO⊤=Id
∥X−O∥F.
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Then the challenge remains for the computer to accurately detect the correct signal
pattern. Nowadays, covariance matrices of EEG signals are commonly used as features for
training BCIs (Yger, 2013). In this area, it is time consuming to gather data for a given
subject but the data of several subjects are available.

Hence, in this context, our first task will be to investigate the performance of the pro-
posed method in principal subspace extraction of the signals of all the subjects given only
the covariance matrix of 1 epoch per subject (Sec. 3.3.1).

Furthermore, we tackle the second task, regularization parameter selection by 2-fold
cross-validation, under the setup where two covariance matrices are available (Sec. 3.3.2).

We conduct these experiments for k = 1, 4, 7, 10. We sequentially pick one/two epoch(s)
(as described above) for each task for subspace estimation, and then the rest of the epochs
are used for evaluation of the estimates. We run 72 iterations in the experiment in Sec. 3.3.1
and 36 iterations in the experiment in Sec. 3.3.2.

3.3. Results

We show the results of the experiments below.

3.3.1. Performance Transition over Regularization-Level Change

First, we investigate the performance transition of the proposed method when the regular-
ization level is varied.

The results on the synthetic data in the scarce setup are summarized in Fig. 3. Fig. 3
shows that the best λ value is somewhere in the middle between 0 and Inf (which denotes
infinity) for all of k = 1, . . . , 5, meaning that the proposed method with an appropriate λ
value outperforms I-PCA and C-PCA. We can also see the tendency that the performance
improves more when we have more tasks.

The results on the BCI data in the scarce setup are shown in Fig. 4. Similarly to the case
of the synthetic data, the performance was improved for all k with appropriate λ values.

The BCI data have most of their variance in a few principal components; the test RVR
score for k = 4 was more than 96% in all the trials of our experiments, which means that
the largest possible RVR gain is less than 4%. Hence, there is less room for improvement for
larger k. Nevertheless, the proposed method significantly improved the performance even
in such challenging cases.

These results show that the proposed method is useful as long as the regularization level
is in a moderate range.

3.3.2. Regularization Parameter Selection by Cross-Validation

In Sec. 3.3.1, the experiments in the scarce setup showed that there exists a regularization
parameter such that our method achieves better results than those of the baseline methods.
In order to select such a parameter, we apply a cross-validation method and provide some
experimental results on BCI data. On the BCI data, the proposed method outperformed
the other two methods for all of k = 1, 4, 7, 10 on average (see Tab. 1). The box plots in
Fig. 5 detail the results, showing that RMT-PCA scored larger RVRs compared to I-PCA
and C-PCA in most of the trials in every setting.
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Figure 3: The transition of the RVR score over the level of regularization on synthetic data.
Each plot corresponds to a different dimensionality k, and each curve corresponds
to a different number of tasks T . ‘Inf’ denotes infinity. The error bars show the
mean scores and their standard errors over 100 trials of the experiment.
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Figure 4: Transition of the RVR score of the proposed method divided by the score of I-
PCA over the the level of regularization on BCI data (‘Inf’ denotes infinity). Each
plot corresponds to a different class, and each curve corresponds to a different
dimensionality k. The black dotted lines indicate ratio of 1. The error bars show
the mean scores and their standard errors over 72 trials.
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Figure 5: The RVR of the proposed method using a cross-validated regularization parameter
substracted by the RVRs of its competitors (I-PCA and C-PCA) on BCI data.
The samples between the 25% and the 75% quantiles are summarized as a blue
box and the rest are shown as red + symbols in each plot.

From these experiments, it is demonstrated that the proposed method with a regular-
ization parameter automatically selected by cross-validation performs significantly better
than I-PCA and C-PCA.

4. Conclusion

In this paper, we introduced a novel regularization term for orthogonal skinny matrices.
Based on this regularization term, we provided a novel and elegant formulation of the
multitask PCA problem. Using tools from the field of optimization on manifolds, we solved
this problem, applied our method to synthetic and real-world data, and demonstrated its
usefulness.
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Table 1: Averages and standard errors of the RVRs on BCI data. The best and comparable
to the best scores by the paired t-test (5% significance level) are shown in bold
face.

CV-MTL Independent Common
(Class 1) k = 1 0.7997(0.0001) 0.7985(0.0002) 0.7987(0.0001)

k = 4 0.9670(0.0001) 0.9666(0.0001) 0.9662(0.0001)
k = 7 0.9877(0.0000) 0.9876(0.0000) 0.9866(0.0000)
k = 10 0.9945(0.0000) 0.9945(0.0000) 0.9941(0.0000)

(Class 2) k = 1 0.7857(0.0001) 0.7844(0.0003) 0.7844(0.0001)
k = 4 0.9655(0.0001) 0.9651(0.0001) 0.9646(0.0000)
k = 7 0.9872(0.0000) 0.9871(0.0000) 0.9859(0.0000)
k = 10 0.9943(0.0000) 0.9943(0.0000) 0.9938(0.0000)

We only considered multitask learning in the scarce setting, but the proposed regu-
larization can be applied to transfer learning and adaptation problems, whose goals are to
improve the performance for a single target task utilizing the information from other similar
tasks. Real-world examples where multitask principal component analysis plays important
roles include analysis of multi-country government bond returns (Pérignon et al., 2007)
and preprocessing for learning biometric verification systems (Delac and Grgic, 2004). The
particular usefulness of principal component analysis in face image processing with scarce
samples is argued in Jafri and Arabnia (2009).

In future work, we consider several extensions of our method. We may cast our multi-
task dimensionality reduction to a supervised setup. Such an approach may be particularly
useful for BCI applications. Other subspace methods such as locality preserving projec-
tions (He and Niyogi, 2004), Fisher’s discriminant analysis (Fisher, 1936), and canonical
correlation analysis (Hotelling, 1936) can be extended to multitask scenarios using the pro-
posed regularization by replacing the sample covariance Ĉt in Eq. (4) with appropriate
symmetric matrices. In addition, it would be interesting to use our approach with differ-
ent criteria in the spirit of Harandi et al. (2014); Horev et al. (2015), leading to a multitask
Riemannian dimensionality reduction.

Acknowledgments

IY acknowledges KAKENHI 16J07970 and MS acknowledges KAKENHI 26280054.

References

Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization Algorithms
on Matrix Manifolds. Princeton University Press, 2009.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task fea-
ture learning. Machine Learning, 73(3):243–272, 2008.

314



MTL-PCA
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