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Abstract
Causal learning methods are often evaluated in terms of their ability to discover a true underly-
ing directed acyclic graph (DAG) structure. However, in general the true structure is unknown
and may not be a DAG structure. We therefore consider evaluating causal learning methods in
terms of predicting the effects of interventions on unseen test data. Given this task, we show
that there exist a variety of approaches to modeling causality, generalizing DAG-based meth-
ods. Our experiments on synthetic and biological data indicate that some non-DAG models
perform as well or better than DAG-based methods at causal prediction tasks.

Keywords: Bayesian Networks, Graphical models, Structure Learning, Causality, Interven-
tions, Cell signalling networks, Bioinformatics.

1. Introduction
It is common to make causal models using directed acyclic graphs (DAGs). However, one prob-
lem with this approach is that it is very hard to assess whether the graph structure is correct or
not. Even if we could observe “nature’s graph”, it probably would not be a DAG, and would
contain many more variables than the ones we happened to have measured. Realistic mechanis-
tic (causal) models of scientific phenomena are usually much more complex, involving coupled
systems of stochastic partial differential equations, feedback, time-varying dynamics, and other
complicating factors.

In this paper, we adopt a “black box” view of causal models. That is, we define causality
in functional terms, rather than by committing to a particular representation. Our framework
is as follows. Suppose we can measure d random variables, Xi, for i= 1:d. For example,
these might represent the phosphorylation levels of different proteins. Also, suppose we can
perform k different actions (interventions), A j, for j=1:k. For example, these might represent
the application of different chemicals to the system. For simplicity, we will think of the actions
as binary, A j ∈ {0,1}, where a value of 1 indicates that we performed action A j. We define
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a causal model as one that can predict the effects of actions on the system, i.e., a conditional
density model of the form p(x|a). These actions may or may not have been seen before, a point
we discuss in more detail below. Note that our definition of causal model is even more general
than the one given in Dawid (2009), who defines a causal model as (roughly speaking) any
model that makes conditional independence statements about the X and A variables; as Dawid
points out, such assumptions may or may not be representable by a DAG.

To see that our definition is reasonable, note that it includes the standard approach to causal-
ity (at least of the non-counterfactual variety) as a special case. In the standard approach (see
e.g., (Spirtes et al., 2000; Pearl, 2000; Lauritzen, 2000; Dawid, 2002)), we assume that there is
one action variable for every measured variable. We further assume that p(x|a) can be modeled
by a DAG, as follows:

p(X1, . . . ,Xd |A1 = 0, . . . ,Ad = 0,G, f ) =
d

∏
j=1

f j(X j,Xπ j) (1)

where G is the DAG structure, π j are the parents of j in G, and f j(X j,Xπ j) = p(X j|Xπ j ,A j = 0)
is the conditional probability distribution (CPD) for node j, assuming that node j is not being
intervened on (and hence A j = 0). If node j is being intervened on, we modify the above
equation to

p(X1, . . . ,Xd |A j = 1,A− j = 0,G, f ,g) = g j(X j,Xπ j)∏
k ̸= j

fk(Xk,Xπk) (2)

where g j(X j,Xπ j) = p(X j|Xπ j ,A j = 1) is the CPD for node j given that node j is being inter-
vened on. In the standard model, we assume that the intervention sets the variable to a specific
state, i.e., g j(X j,Xπ j) = I(X j = S j), for some chosen target state S j. This essentially cuts off
the influence of the parents on the intervened-upon node. We call this the perfect intervention
assumption. A real-world example of this might be a gene knockout, where we force X j to turn
off (so S j = 0). The crucial assumption is that actions have local effects, and that the other f j
terms are unaffected.

If we do not know which variables an action affects, we can learn this; we call this the
uncertain intervention model (Eaton and Murphy, 2007). In particular, this allows us to handle
actions which affect multiple nodes. These are sometimes called “fat hand” actions; the term
arises from thinking of an intervention as someone “sticking their hand” into the system, and
trying to change one component, but accidently causing side effects. Of course, the notion of
“fat hands” goes against the idea of local interventions. In the limiting case in which an action
affects all the nodes, it is completely global. This could be used to model the effects of a lethal
chemical that killed a cell, and hence turned all genes “off”.

If we model p(x|a) by a DAG, and make the perfect intervention assumption, then we can
make predictions about the effects of actions we have never seen before. To see this, suppose we
have collected N samples from the non interventional regime,𝒟= {xn}N

n=1, where xn∼ p(x|a=
0) (this is called observational data). We can use this data to learn the non-interventional CPDs
f j. Then we make a prediction about what would happen if we perform a novel action, say
turning A j on, by simply replacing f j with g j, which we assume is a delta function, I(X j = S j).
Of course, if the data is only observational, we will not, in general, be able to uniquely infer the
DAG, due to problems with Markov equivalence. However, if some of the data is sampled under
perfect interventions, then we can uniquely recover the DAG (Eberhardt et al., 2005, 2006).

The key question is: is the assumption of DAGs and perfect interventions justified in any
given problem? What other models might we use? It seems that the only way to choose between
methods in an objective way, without reference to the underlying mathematical representation,
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is to collect some real-world data from a system which we have perturbed in various ways,
partition the data into a training and test set, and then evaluate each model on its ability to
predict the effects of interventions. This is what we do in this paper.

An important issue arises when we adopt this functional view of causality, which has to do
with generalizing across actions. In the simplest case, we sample training data from regimes
p(x|a1), . . . , p(x|ar), for r different action combinations, and then sample test data from the
same regimes. We will see an example of this in Section 3.1, where we discuss the intracellular
flow cytometry dataset analyzed in Sachs et al. (2005). In this setup, we sample data from the
system when applying one chemical at a time, and then ask the model to predict the protein
phosphorylation levels when the same chemical is applied.

A more interesting task is to assume that the test data is drawn from a different sampling
regime than the training data. This clearly requires that one make assumptions about how the
actions affect the variables. We will see an example of this in Section 3.2, where we discuss
another flow cytometry dataset, used in the Dream 2008 competition. In this setup, we sample
data from the system when applying one inhibitory chemical and one excitatory chemical at a
time, but then ask the model to predict the protein phosphorylation levels when a novel pair of
chemicals is applied. For example, we train on data sampled from p(x|a1 = 1,a2 = 1,a3 = 0)
and p(x|a1 = 0,a2 = 1,a3 = 1), and test on data sampled from p(x|a1 = 1,a2 = 0,a3 = 1). That
is, we have seen A1 and A2 in combination, and A2 and A3 in combination, and now want to
predict the effects of the A1,A3 combination. Another variation would be to train on data from
p(x|a1 = 1,a2 = 0) and p(x|a1 = 0,a2 = 1), and test on data sampled from p(x|a1 = 1,a2 =
1). This is similar to predicting the effects of a double gene knockout given data on single
knockouts.

The most challenging task is when the testing regime contains actions that were never tried
before in the training regime, neither alone nor in combination with other actions. For example,
suppose we train on data sampled from p(x|a1 = 1,a2 = 0) and test on data sampled from
p(x|a1 = 0,a2 = 1). In general, these distributions may have nothing to do with each other.
Generalizing to a new regime is like predicting the label of a novel word in a statistical language
model. In general, this is impossible, unless we break the word down into its component pieces
and/or describe it in terms of features (e.g., does it end in “ing”, does it begin with a capital
letter, what is the language of origin, what is the context that it was used in, etc). If we represent
actions as “atomic”, all we can do is either make the DAG plus perfect intervention assumption,
or assume that the action has no affect, and “back-off” to the observational regime. We will
compare these approaches below.

2. Methods
In this section, we discuss some methods for learning conditional density models to represent
p(x|a), some based on graphs, others not. We will compare these methods experimentally in
the next section. Code for reproducing these experiments is available at www.cs.ubc.ca/
~murphyk/causality.

2.1 Approaches to Modeling Interventions

We consider several classes of methods for creating models of the form p(x|a):

(i). Ignore: In this case, we simply ignore A and build a generative model of P(X). This has
the advantage that we gain statistical strength by pooling data across the actions, but has
the disadvantage that we make the same prediction for all actions.
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(ii). Independent: In this case, we fit a separate model P(X |A) for each unique joint con-
figuration of A. This is advantageous over the ignore model in that it makes different
predictions for different actions, but the disadvantage of this model is that it does not
leverage information gained between different action combinations, and can not make a
prediction for an unseen configuration of A.

(iii). Conditional: In this case, we build a model of P(X |A), where we use some parametric
model relating the A’s and X’s. We give the details below. This will allow us to borrow
strength across action regimes, and to handle novel actions.

2.2 Approaches based on DAGs

In the ignore case, we find the exact MAP DAG using the dynamic programming algorithm
proposed in (Silander and Myllmaki, 2006) applied to all the data pooled together. We can
use the same algorithm to fit independent DAGs for each action, by partitioning the data. In
the conditional case, there are two ways to proceed. In the first case, which we call perfect,
we assume that the interventions are perfect, and that the targets of intervention are known. In
this case, it is simple to modify the standard BDeu score to handle the interventional data, as
described in Cooper and Yoo (1999). These modified scores can then be used inside the same
dynamic programming algorithm. In the second case, which we call uncertain, we learn the
structure of an augmented DAG containing A and X nodes, subject to the constraint that there
are no A→A edges or X→A edges. It is simple to modify the DP algorithm to handle this; see
(Eaton and Murphy, 2007) for details.

2.3 Approaches based on undirected graphs

DAG structure learning is computationally expensive due to the need to search in a discrete
space of graphs. In particular, the exact dynamic programming algorithm mentioned above
takes time which is exponential in the number of nodes. Recently, computationally efficient
methods for learning undirected graphical model (UGM) structures, based on L1 regularization
and convex optimization, have become popular, both for Gaussian graphical models (Mein-
shausen and Buhlmann, 2006; Friedman et al., 2007; Banerjee et al., 2008), and for Ising mo-
dels (Wainwright et al., 2006; Lee et al., 2006). In the case of general discrete-state models,
such as the ternary T-cell data, it is necessary to use a group L1 penalty, to ensure that all the
parameters associated with each edge get “knocked out” together. Although still convex, this
objective is much harder to optimize (see e.g., (Schmidt et al., 2008) and (Duchi et al., 2008) for
some suitable algorithms). However, for the small problems considered in this paper, we found
that using L2 regularization on a fully connected graph did just as well as L1 regularization, and
was much faster. The strength of the L2 regularizer is chosen by cross validation.

To apply this technique in the ignore scenario, we construct a Markov random field, where
we create factors for each Xi node and each Xi−X j edge. For the independent scenario, one
such Markov random field is learned for each action combination in the training set. In the
interventional scenario, we construct a conditional random field, in which we additionally create
factors for each Xi−A j edge, and for each Xi,X j,Ak triple (this is similar to a chain graph; see
(Lauritzen and Richardson, 2002) for a discussion.) Since it does not contain directed edges, it
is harder to interpret from a causal perspective. Nevertheless, in Section 3.1, we show that the
resulting model performs very well at the task of predicting the effects of interventions.
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2.4 Other methods

There are of course many other methods for (conditional) density estimation. As a simple
example of a non graph based approach, we considered mixtures of K multinomials. In the
ignore case, we pool the data and fit a single model. In the independent case, we fit a separate
model for each action combination. In the conditional case, we fit a mixture of independent
logistic regressions:

p(x|a) = ∑
k

p(z = k)
d

∏
j=1

p(x j|z = k,a) (3)

where p(z = k) is a multinomial, and p(xk|a,z = k) is multinomial logistic regression. This is
similar to a mixture of experts model (Jordan and Jacobs, 1994).

2.5 Summary of methods

In summary, we have discussed 10 methods, as follows: 3 models (Mixture Model, UGM or
DAG), times 3 types (ignore, independent, conditional), plus perfect intervention DAGs. We
did not try independently trained DAGs, because it was substantially slower than other methods
(using exact structure learning), so we only consider 9 methods in total.

3. Experimental results
In the introduction, we argued that, in the absence of a ground truth graph structure (which in
general will never be available), the only way to assess the accuracy of a causal model is to see
how well it can predict the effects of interventions on unseen test data. In particular, we assume
we are given a training set of (a,x) pairs, we fit some kind of conditional density model p(x|a),
and then assess its predictive performance on a different test set of (a,x) pairs.

3.1 T-cell data

Flow cytometry is a method for measuring the “status” of a large number of proteins (or other
molecules) in a high throughput way. In an influential paper in Science in 2005, Sachs et
al. used flow cytometry to collect a dataset of 5400 samples of 11 proteins which participate
in a particular pathway in T-cells. They measured the protein phosphorylation levels under
various experimental conditions. Specifically, they applied 6 different chemicals separately,
and measured the status of the proteins; these chemicals were chosen because they target the
state of individual proteins. They also measured the status in the unperturbed state (no added
chemicals).1 Sachs et al. then discretized the data into 3 states, representing low, medium and
high activation (see Figure 1), and learned a DAG model using simulated annealing and the
scoring function described in (Cooper and Yoo, 1999). The resulting DAG was quite accurate,
in that it contained most of the known edges in the biological network, and few false positives.
However, it is known that the “true” graph structure contains feedback loops, which cannot
be modeled by a DAG. In addition, there are many variables in the “true” model that are not
measured in the data. Hence assessing performance by looking at the graph structure is not
ideal. Instead, we will measure predictive accuracy of the learned models.

We used the same discretized version of the data as in the original Sachs paper. There are
600 samples in each interventional regime, and 1800 samples in the observational regime, for
a total of 5400 samples. There is no pre-specified train/test split in the T-cell data, so we have

1. This original version of the data is available as part of the 2008 Causality Challenge. See the CYTO dataset at
http://www.causality.inf.ethz.ch/repository.php.
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Figure 1: T-cell data. 3-state training data from (Sachs et al., 2005). Columns are the 11
measured proteins, rows are the 9 experimental conditions, 3 of which are “general
stimulation” rather than specific interventions. The name of the chemical that was
added in each case is shown on the right. The intended primary target is indicated by
an E (for excitation) or I (for inhibition). There are 600 measurements per condition.
This figure is best viewed in colour.
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Figure 2: 10-fold cross-validated negative log likelihood on the T-cell data (lower is better).
The methods are divided based on their approach to modeling interventions (Ig-
nore the interventions, fit Independent models for each intervention, fit a Conditional
model that conditions on the interventions, or assume Perfect interventions). Within
each group, we sub-divide the methods into MM (mixture of multinomials), UGM
(undirected graphical model), and DAG (directed acyclic graphical model).
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Figure 3: Average (per-case) negative log-likelihood on the T-cell test data as a function of the
amount of training data for one particular action regime, given the data from all other
action regimes. Results when choosing other actions for the “sparse training regime”
are similar. “DAG Cond” is a DAG with uncertain interventions. “UGM Ind” is a
UGM fit independently for each action.
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Figure 4: Negative log-likelihood on the T-cell data for different methods when predicting a
novel action, using data from all the other actions as training. The boxplot shows
the variation when different actions are chosen as the prediction targets. We plot
performance relative to the mean over all methods for each chosen action, since some
actions are easier to predict than others.
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to make our own. A natural approach is to use cross validation, but a subtlety arises: the issue
is whether the test set folds contain novel action combinations or not. If the test data contains
an action setting that has never been seen before, in general we cannot hope to predict the
outcome, since, for example, the distribution p(x|a1 = 0,a2 = 1) need have nothing in common
with p(x|a1 = 1,a2 = 0).

Initially we sidestep this problem and follow the approach taken by Ellis and Wong (2008),
whereby we assess predictive performance using 10-fold cross validation, where the folds are
chosen such that each action occurs in the training and test set. Hence each training set has 540
samples and each validation set has 60 samples.

The results of evaluating various models in this way are shown in Figure 2. We see that
the methods which ignore the actions, and pool the data into a single model, do poorly. This is
not surprising in view of Figure 1, which indicates that the actions do have a substantial affect
on the values of the measured variables. We also see that the approach that learns the targets
of intervention (the conditional DAG) is significantly better than learning a DAG assuming
that the interventions are perfect (see last two columns of Figure 2). Indeed, as discussed in
Eaton and Murphy (2007), the structure learned by the uncertain DAG model indicates that
each intervention affects not only its suspected target, but several of its neighbors as well. The
better prediction performance of this model indicates that the perfect intervention assumption
may not be appropriate for this data set. However, we also see that all the independent and
conditional models not based on DAGs do as well or better than the DAG methods.

It was somewhat surprising how well the independent models did. This is presumably be-
cause we have so much data in each action regime, that it is easy to learn separate models.
To investigate this, we considered a variant of the above problem in which we trained on all
600 samples for all but one of the actions, and for this remaining action we trained on a smaller
number of samples (and tested only on this remaining action). This allows us to assess how well
we can borrow statistical strength from the data-rich regimes to a data-poor regime. Figure 3
shows the results for several of the models on one of the actions (the others yielded largely si-
milar results). We see that the conditional models need much less training data when faced with
a novel action regime than independent models, because they can borrow statistical strength
from the other regimes. Independent models need much more data to perform well. Note that
even with a large number of samples, the perfect DAG model is not much better than fitting a
separate model to each regime.

The logical extreme of the above experiment is when we get no training samples from
the novel regime. That is, we have 600 training samples from each of the following:
p(x|1,0,0,0,0,0), p(x|0,1,0,0,0,0), ... p(x|0,0,0,0,1,0), and we test on 600 samples from
p(x|0,0,0,0,0,1), where the bit vector on the right hand side of the conditioning bar specifies
the state of the 6 A j action variables. We can then repeat this using leave-one-action out. The
results are shown in Figure 4. (We do not show results for the independently trained models,
since their predictions on novel regimes will be based solely on their prior, which is essentially
arbitrary.) We see that all methods do about the same in terms of predictive accuracy. In par-
ticular, the perfect DAG model, which is designed to predict the effects of novel actions, is
actually slightly worse than conditional DAGs and conditional UGMs in terms of its median
performance.

3.2 DREAM data

One weakness of the CYTO dataset discussed above is that the actions are only performed one
at a time. A more recent dataset has been collected which measures the status of proteins under

184



CAUSAL LEARNING WITHOUT DAGS

Figure 5: Dream 3 phosphoprotein data. See text for details.

Stimulus
︷ ︸︸ ︷

Inhibitor
︷ ︸︸ ︷

INFg TNFa IL1a IL6 IGF1 TGFa LPS MEK P38 P13K IKK mTOR GSK3 JNK12 X1 X17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5578 275
0 0 0 0 0 0 0 1 0 0 0 0 0 0 454 89
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1001 99

.

.

.

.

.

.
0 0 0 0 0 0 1 0 0 0 0 0 1 0 22 33

Figure 6: The dream 3 training data represented as a design matrix. We treat each cell type and
time point separately, and show the response of the 17 phosphoproteins to 58 different
action combinations (58 is 8×8 minus the 6 test conditions shown in Figure 5.) Each
14-dimensional action vector has 0, 1 or 2 bits turned on at once. For example, the
last row corresponds to stimulus=LPS, inhibitor = GSK3.

Team MSE
PMF 1483
Linear regression 1828
Team 102 3101
Team 106 3309
Team 302 11329

Figure 7: Mean squared error on the DREAM 3 dataset, using the training/test set supplied with
the challenge. Also listed is the performance of the three other teams who competed
in the challenge.

different action combinations.2 This data is part of the DREAM 3 competition, which took place
in November 2008. (DREAM stands for “Dialogue for Reverse Engineering and Assessment
of Methods”.) The data consists of measurements (again obtained by flow cytometry) of 17
phosphoproteins and 20 cytokines at 3 time points in 2 cell types under various combinations

2. This data is available from http://wiki.c2b2.columbia.edu/dream/index.php/The_
Signaling-Response_Prediction_Challenge._Description.
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Figure 8: Negative log-likelihood for novel action combinations on synthetic data generated
from a fully visible SEM. We plot NLL relative to the mean performance over all
methods on each action.

of chemicals (7 stimuli and 7 inhibitors). In the challenge, the response of the proteins under
various stimulus/ inhibitor pairs is made available, and the task is to predict the response to
novel stimulus/ inhibitor combinations. In this paper, we focus on the phosphoprotein data. The
data is illustrated in Figure 5. Another way to view this data is shown in Figure 6.

The DREAM competition defines a train/test split, and evaluates methods in terms of their
mean squared error for predicting the responses of each variable separately to 6 novel action
combinations. In Table 7, we show the scores obtained by the 3 entrants to the competition in
November 2008. The method used by these teams has not yet been disclosed, although the orga-
nizer of the Dream competition (Gustavo Stolovitzky) told us in a personal communication that
they are not based on graphical models. We also show two approaches we tried. The first uses
simple linear regression applied to the 14-dimensional binary action vector a to predict each
response X j (since the methods are evaluated in terms of mean squared-error, this is equivalent
to using a conditional DAG model with linear-Gaussian CPDs) We see that this beats all the
submitted entries by a large margin. However, the significance of this result is hard to assess,
because there is only a single train/test split. We also tried probabilistic matrix factorization,
using K = 3 latent dimensions. This is similar to SVD/PCA but can handle missing data (see
Salakhutdinov and Mnih (2008) for details). This choice was inspired by the fact that the data
matrix in Figure 5 looks similar to a collaborative filtering type problem, where the goal is to
“fill in” holes in a matrix. We see that PMF does even better than linear regression, but again
it is hard to assess the significance of this result. Hence in the next section, we will discuss a
synthetic dataset inspired by the design of the DREAM competition.

3.3 Synthetic Data

Since the DREAM data uses population averaging rather than individual samples, it does not
contain enough information to learn a model of the underlying system. Thus, we sought to
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validate some of the approaches discussed here on a synthetic data set. To this end, we generated
synthetic data sets that simulate the DREAM training/testing regime (i.e., where we train on
pairs of actions and test on novel pairs).

We sought to generate a data set that has a clearly defined notion of intervention, but that is
not a DAG. To do this we simulated data from a discrete structural equation model (SEM) (see
Pearl (2000)). In particular, we generated a data set where each variable X j is updated based on

p(X j = 1|xπ j ,θ j) = σ(w0 j +wT
j xπ j) (4)

p(X j =−1|xπ j ,θ j) = 1− p(X j = 1|xπ j ,θ j) (5)

where σ() is the sigmoid function σ(x) , 1/(1 + exp(−x)), and θ j = (w0 j,w j) are the
paramters for each node; here w0 j is the bias term and w j are the regression weights. We genera-
ted each w0 from a standard Normal distribution, and to introduce strong dependencies between
nodes we set each element of each w vector to U1 +5sgn(U2), where U1 and U2 were generated
from a standard Normal distribution. For each node j, we included each other node in its parent
set π j with probability 0.25. To generate samples that approximate the equilibrium distribution
of the model, we started by sampling each node’s value based on its bias w0 alone, then we
performed 1000 updates, where in each update we updated all nodes whose parents were up-
dated in the previous iteration. We assume perfect interventions, which force a variable into a
given state. In the special case where the dependency structure between the nodes is acyclic,
this sampling procedure is exactly equivalent to ancestral sampling in a DAG model (and the
update distributions are the corresponding conditional distributions), and these interventions are
equivalent to perfect interventions in the DAG. However, we do not enforce acyclicity, so the
distribution may have feedback cycles (which are common in biological networks).

We considered 2 variants of this data, one where all variables are visible, and one with hid-
den variables (as is common in most real problems). In the visible SEM data set, we generated
from an 8-node SEM model under all 28 pairs of action combinations. In our experiments, we
trained on 27 of the action pairs and tested on the remaining action pair, for all 28 pairs. In the
hidden SEM data set, we generated from a 16-node SEM model under the 28 pairs of actions
combinations for the first 8 nodes, but we treat the odd-numbered half of the nodes as hidden
(so half of the actions affect a visible node in the model, and half of the actions affect a hidden
node). We think that this is a slightly more realistic synthetic data set than a fully visible DAG
with perfect interventions, due to the presence of hidden nodes and feedback cycles, as well as
interventions that affect both visible and hidden nodes. When the data is visualized, it looks
qualitatively similar to the T-cell data in Figure 1 (results not shown).

The results on the visible data are shown in Figure 8. Since we are only testing on new
action combinations, independent models cannot be applied. As expected, conditional models
do better than ignore models. However, amongst the conditional models there does not appear
to be a clear winner. In particular, DAG models, even perfect DAGs which are told the target of
intervention, do no better than non-DAG models.

The results on the hidden data are not shown, since they are qualitatively similar to the
visible case. Note that in this setting, we cannot use the perfect intervention model, since some
of the interventions affected hidden nodes; hence the target of intervention is not well defined.
We have obtained qualitatively similar results on other kinds of synthetic data.

4. Conclusions
In this paper, we have argued that it is helpful to think of causal models in functional terms,
and to evaluate them in terms of their predictive performance, rather than in terms of graph
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structures that they learn. In particular, we view causal modeling as equivalent to learning a
conditional density model of the form p(x|a).

A criticism of this work could be that we are not really doing causality because we can’t
predict the effects of new actions. However, in general, this is impossible unless we know
something (or assume something) about the new action, since in general p(x|a1 = 1,a2 = 0)
need have nothing to do with p(x|a1 = 0,a2 = 1). Indeed, when we tested the ability of various
methods, including causal DAGs, to predict the effects of a novel action in the T-cell data,
they all performed poorly — not significantly better than methods which ignore the actions
altogether. This is despite the fact that the DAG structure we were using was the globally
optimal DAG, which had previously been shown to be close to the “true” structure, and that we
knew what the targets of the novel action were.

We think a promising direction for future work is to describe actions, and/or the variables
they act on, in terms of feature vectors, rather than treating them as atomic symbols. This
transforms the task of predicting the effects of new actions into a standard structured prediction
problem, that could be addressed with CRFs, M3Ns, etc. Just like predicting the labeling of a
new sentence or image given only its features, if there is some regularity in the action-feature
space, then we can predict the effects of a new action given only the features of the action,
without ever having to perform it.
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