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A Learning the Graph
In the main paper, we assumed that the graph is known, but in practice such a user-user graph may not be
available. In such a case, we explore a heuristic to learn the graph on the fly. The computational gains described
in the main paper make it possible to simultaneously learn the user-preferences and infer the graph between users
in an efficient manner. Our approach for learning the graph is related to methods proposed for multitask and
multilabel learning in the batch setting [8, 7] and multitask learning in the online setting [14]. However, prior
works that learn the graph in related settings only tackle problem with tens or hundreds of tasks/labels while we
learn the graph and preferences across thousands of users.

Let Vt ∈ Rn×n be the inverse covariance matrix corresponding to the graph inferred between users at round t. Since
zeroes in the inverse covariance matrix correspond to conditional independences between the corresponding nodes
(users) [13], we use L1 regularization on Vt for encouraging sparsity in the inferred graph. We use an additional
regularization term ∆(Vt||Vt−1) to encourage the graph to change smoothly across rounds. This encourages Vt to
be close to Vt−1 according to a distance metric ∆. Following [14], we choose ∆ to be the log-determinant Bregman
divergence given by ∆(X||Y ) = Tr(XY −1)− log |XY −1| − dn. If Wt ∈ Rd×n = [w1w2 . . .wn] corresponds to the
matrix of user preference estimates, the combined objective can be written as:

[wt, Vt] = argmin
w,V

||rt − Φtw||22 + Tr
(
V (λWTW + V −1

t−1)
)

+ λ2||V ||1 − (dn+ 1) ln |V | (1)

The first term in (1) is the data fitting term. The second term imposes the smoothness constraint across the
graph and ensures that the changes in Vt are smooth. The third term ensures that the learnt precision matrix is
sparse, whereas the last term penalizes the complexity of the precision matrix. This function is independently
convex in both w and V (but not jointly convex), and we alternate between solving for wt and Vt in each round.
With a fixed Vt, the w sub-problem is the same as the MAP estimation in the main paper and can be done
efficiently. For a fixed wt, the V sub-problem is given by

Vt = argmin
V

Tr
(
(V [λWT

t W t + V −1
t−1)

)
+ λ2||V ||1 − (dn+ 1) ln |V | (2)

Here W t refers to the mean subtracted (for each dimension) matrix of user preferences. This problem can be
written as a graphical lasso problem [6], minX Tr(SX) +λ2||X||1− log |X|, where the empirical covariance matrix
S is equal to λWT

t W t + V −1
t−1. We use the highly-scalable second order methods described in [9, 10] to solve (2).

Thus, both sub-problems in the alternating minimization framework at each round can be solved efficiently.

For our preliminary experiments in this direction, we use the most scalable epoch-greedy algorithm for learning
the graph on the fly and denote this version as L-EG. We also consider another variant, U-EG in which we start
from the Laplacian matrix L corresponding to the given graph and allow it to change by re-estimating the graph
according to (2). Since U-EG has the flexibility to infer a better graph than the one given, such a variant is
important for cases where the prior is meaningful but somewhat misspecified (the given graph accurately reflects
some but not all of the user similarities). Similar to [14], we start off with an empty graph and start learning
the graph only after the preference vectors have become stable, which happens in this case after each user has
received 10 recommendations. We update the graph every 1K rounds. For both datasets, we allow the learnt
graph to contain at most 100K edges and tune λ2 to achieve a sparsity level equal to 0.05 in both cases.

To avoid clutter, we plot all the variants of the EG algorithm, L-EG and U-EG, and use EG-IND, G-EG, EG-SIN
as baselines. We also plot CLUB as a baseline. For the Last.fm dataset (Figure 1(b)(a)), U-EG performs slightly
better than G-EG, which already performed well. The regret for L-EG is lower compared to LINUCB-IND
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(a) Last.fm (b) Delicious

Figure 1: Regret Minimization while learning the graph

indicating that learning the graph helps, but is worse as compared to both CLUB and LINUCB-SIN. On the other
hand, for Delicious (Figure 1(b)(b)), L-EG and U-EG are the best performing methods. L-EG slightly outperforms
EG-IND, underscoring the importance of learning the user-user graph and transferring information between users.
It also outperforms G-EG, which implies that it is able to learn a graph which reflects user similarities better than
the existing social network between users. For both datasets, U-EG is among the top performing methods, which
implies that allowing modifications to a good (in that it reflects user similarities reasonably well) initial graph to
model the obtained data might be a good method to overcome prior misspecification. From a scalability point of
view, for Delicious the running time for L-EG is 0.1083 seconds/iteration (averaged across T ) as compared to
0.04 seconds/iteration for G-EG. This shows that even in the absence of an explicit user-user graph, it is possible
to achieve a low regret in an efficient manner.

B Regret bound for Epoch-Greedy

Theorem 1. Under the additional assumption that ||wt||2 ≤ 1 for all rounds t, the expected regret obtained by
epoch-greedy in the GOB framework is given as:

R(T ) = Õ

(
n1/3

(
Tr(L−1)
λn

) 1
3

T
2
3

)
(3)

Proof. LetH be the class of hypotheses of linear functions (one for each user) coupled with Laplacian regularization.
Let µ(H, q, s) represent the regret or cost of performing s exploitation steps in epoch q. Let the number of
exploitation steps in epoch q be sq.

Lemma 1 (Corollary 3.1 from [11]). If sq = b 1
µ(H,q,1)c and QT is the minimum Q such that Q+

∑Q
q=1 sq ≥ T ,

then the regret obtained by Epoch Greedy is bounded by R(T ) ≤ 2QT .

We now bound the quantity µ(H, q, 1). Let Err(q,H) be the generalization error for H after obtaining q unbiased
samples in the exploration rounds. Clearly,

µ(H, q, s) = s · Err(q,H). (4)

Let `LS be the least squares loss. Let the number of unbiased samples per user be equal to p. The empirical
Rademacher complexity for our hypotheses class H under `LS can be given as R̂np (`LS ◦ H). The generalization
error for H can be bounded as follows:



Lemma 2 (Theorem 1 from [12]). With probability 1− δ,

Err(q,H) ≤ R̂np (`LS ◦ H) +

√
9 ln(2/δ)

2pn (5)

Assume that the target user is chosen uniformly at random. This implies that the expected number of samples
per user is at least p = b qnc. For simplicity, assume q is exactly divisible by n so that p = q

n (this only affects the
bound by a constant factor). Substituting p in (5), we obtain

Err(q,H) ≤ R̂np (`LS ◦ H) +

√
9 ln(2/δ)

2q . (6)

The Rademacher complexity can be bounded using Lemma 3 (see below) as follows:

R̂np (`LS ◦ H) ≤ 1
√
p

√
48 Tr(L−1)

λn
= 1
√
q

√
48 Tr(L−1)

λ
(7)

Substituting this into (6) we obtain

Err(q,H) ≤ 1
√
q

[√
48 Tr(L−1)

λ
+
√

9 ln(2/δ)
2

]
. (8)

We set sq = 1
Err(q,H) . Denoting

[√
48 Tr(L−1)

λ +
√

9 ln(2/δ)
2

]
as C, sq =

√
q

C .

Recall that from Lemma 1, we need to determine QT such that

QT +
QT∑
q=1

sq ≥ T =⇒
QT∑
q=1

(1 + sq) ≥ T

Since sq ≥ 1, this implies that
∑QT
q=1 2sq ≥ T . Substituting the value of sq and observing that for all q, sq+1 ≥ sq,

we obtain the following:

2QT sQT ≥ T =⇒ 2Q
3/2
T

C
≥ T =⇒ QT ≥

(
CT

2

) 2
3

QT =
[√

12 Tr(L−1)
λ

+
√

9 ln(2/δ)
8

] 2
3

T
2
3 (9)

Using the above equation with Lemma 1, we can bound the regret as

R(T ) ≤ 2
[√

12 Tr(L−1)
λ

+
√

9 ln(2/δ)
8

] 2
3

T
2
3 (10)

To simplify this expression, we suppress the term
√

9 ln(2/δ)
8 in the Õ notation, implying that

R(T ) = Õ

(
2
[

12 Tr(L−1)
λ

] 1
3

T
2
3

)
(11)

To present and interpret the result, we keep only the factors which are dependent on n, λ, L and T . We then
obtain

R(T ) = Õ

(
n1/3

(
Tr(L−1)
λn

) 1
3

T
2
3

)
(12)
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This proves Theorem 1. We now prove Lemma 3, which was used to bound the Rademacher complexity.
Lemma 3. The empirical Rademacher complexity for H under `LS on observing p unbiased samples for each of
the n users can be given as:

R̂np (`LS ◦ H) ≤ 1
√
p

√
48 Tr(L−1)

λn
(13)

Proof. The Rademacher complexity for a class of linear predictors with graph regularization for a 0/1 loss function
`0,1 can be bounded using Theorem 2 of [12]. Specifically,

R̂np (`0,1 ◦ H) ≤ 2M
√
p

√
Tr((λL)−1)

n
(14)

where M is the upper bound on the value of ||L
1
2 W∗||2√
n

and W ∗ is the d× n matrix corresponding to the true user
preferences.

(15)

We now upper bound ||L
1
2 W∗||2√
n

.

||L 1
2W ∗||2 ≤ ||L

1
2 ||2||W ∗||2

||W ∗||2 ≤ ||W ∗||F =

√√√√ n∑
i=1
||w∗i ||22

||W ∗||2 ≤
√
n (Using assumption 1: For all i, ||w∗i ||2 ≤ 1)

||L 1
2 || ≤ νmax(L 1

2 ) =
√
νmax(L) ≤

√
3

(The maximum eigenvalue of any normalized Laplacian LG is 2 [4] and recall that L = LG + In)

=⇒ ||L 1
2W ∗||2√
n

≤
√

3 =⇒ M =
√

3 (16)

Since we perform regression using a least squares loss function instead of classification, the Rademacher complexity
in our case can be bounded using Theorem 12 from [3]. Specifically, if ρ is the Lipschitz constant of the least
squares problem,

R̂np (`LS ◦ H) ≤ 2ρ · Rnp (`0,1 ◦ H) (17)

Since the estimates wi,t are bounded from above by 1 (additional assumption in the theorem), ρ = 1. From
Equations 15, 17 and the bound on M , we obtain that

R̂np (`LS ◦ H) ≤ 4
√
p

√
3 Tr(L−1)

λn
(18)

which proves the lemma.

C Regret bound for Thompson Sampling

Theorem 2. Under the following additional technical assumptions: (a) log(K) < (dn− 1) ln(2) (b) λ < dn (c)
log
(

3+T/λdn
δ

)
≤ log(KT ) log(T/δ), with probability 1− δ, the regret obtained by Thompson Sampling in the GOB

framework is given as:

R(T ) = Õ

(
dn√
λ

√
T

√
log
(

Tr(L−1)
n

)
+ log

(
3 + T

λdnσ2

))
(19)



Proof. We can interpret graph-based TS as being equivalent to solving a single dn-dimensional contextual bandit
problem, but with a modified prior covariance ((L⊗ Id)−1 instead of Idn). Our argument closely follows the proof
structure in [2], but is modified to include the prior covariance. For ease of exposition, assume that the target
user at each round is implicit. We use j to index the available items. Let the index of the optimal item at round
t be j∗t , whereas the index of the item chosen by our algorithm is denoted jt.

Let r̂t(j) be the estimated rating of item j at round t. Then, for all j,

r̂t(j) ∼ N (〈wt, φj〉, st(j)) (20)

Here, st(j) is the standard deviation in the estimated rating for item j at round t. Recall that Σt−1 is the
covariance matrix at round t. st(j) is given as:

st(j) =
√
φTj Σ−1

t−1φj (21)

We drop the argument in st(jt) to denote the standard deviation and estimated rating for the selected item jt i.e.
st = st(jt) and r̂t = r̂t(jt).

Let ∆t measure the immediate regret at round t incurred by selecting item jt instead of the optimal item j∗t . The
immediate regret is given by:

∆t = 〈w∗, φj∗t 〉 − 〈w
∗, φjt〉 (22)

Define Eµ(t) as the event such that for all j,

Eµ(t) : |〈wt, φj〉 − 〈w
∗, φj〉| ≤ ltst(j) (23)

Here lt =
√
dn log

(
3+t/λdn

δ

)
+
√

3λ. If the event Eµ(t) holds, it implies that the expected rating at round t is
close to the true rating with high probability.

Recall that |Ct| = K and that w̃t is a sample drawn from the posterior distribution at round t. Define
ρt =

√
9dn log

(
t
δ

)
and gt = min{

√
4dn ln(t),

√
4 log(tK)}ρt + lt. Define Eθ(t) as the event such that for all j,

Eθ(t) : |〈w̃t, φj〉 − 〈wt, φj〉| ≤ min{
√

4dn ln(t),
√

4 log(tK)}ρtst(j) (24)

If the event Eθ(t) holds, it implies that the estimated rating using the sample w̃t is close to the expected rating
at round t.

(25)

In lemma 6, we prove that the event Eµ(t) holds with high probability. Formally, for δ ∈ (0, 1),

Pr(Eµ(t)) ≥ 1− δ (26)

To show that the event Eθ(t) holds with high probability, we use the following lemma from [2].

Lemma 4 (Lemma 2 of [2]).

Pr(Eθ(t))|Ft−1) ≥ 1− 1
t2

(27)

Next, we use the following lemma to bound the immediate regret at round t.
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Lemma 5 (Lemma 4 in [2]). Let γ = 1
4e
√
π
. If the events Eµ(t) and Eθ(t) are true, then for any filtration Ft−1,

the following inequality holds:

E[∆t|Ft−1] ≤ 3gt
γ

E[st|Ft−1] + 2gt
γt2

(28)

Define I(E) to be the indicator function for an event E . Let regret(t) = ∆t · I(Eµ(t)). We use Lemma 7 (proof is
given later) which states that with probability at least 1− δ

2 ,

T∑
t=1

regret(t) ≤
T∑
t=1

3gt
γ
st +

T∑
t=1

2gt
γt2

+

√√√√2
T∑
t=1

36g2
t

γ2 ln(2/δ) (29)

From Lemma 6, we know that event Eµ(t) holds for all t with probability at least 1− δ
2 . This implies that, with

probability 1− δ
2 , for all t

regret(t) = ∆t (30)

From Equations 29 and 30, we have that with probability 1− δ,

R(T ) =
T∑
t=1

∆t ≤
T∑
t=1

3gt
γ
st +

T∑
t=1

2gt
γt2

+

√√√√2
T∑
t=1

36g2
t

γ2 ln(2/δ)

Note that gt increases with t i.e. for all t, gt ≤ gT

R(T ) ≤ 3gT
γ

T∑
t=1

st + 2gT
γ

T∑
t=1

1
t2

+ 6gT
γ

√
2T ln(2/δ) (31)

Using Lemma 8 (proof given later), we have the following bound on
∑T
t=1 st, the variance of the selected items:

T∑
t=1

st ≤
√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 + T

λdnσ2

)
(32)

where C = 1
λ log(1+ 1

λσ2 ) .

(33)

Substituting this into Equation 31, we get

R(T ) ≤ 3gT
γ

√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 + T

λdnσ2

)
+ 2gT

γ

T∑
t=1

1
t2

+ 6gT
γ

√
2T ln(2/δ)

Using the fact that
∑T
t=1

1
t2 <

π2

6

R(T ) ≤ 3gT
γ

√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 + T

λdnσ2

)
+ π2gT

3γ + 6gT
γ

√
2T ln(2/δ) (34)



We now upper bound gT . By our assumption on K, log(K) < (dn − 1) ln(2). Hence for all t ≥ 2,
min{

√
4dn ln(t),

√
4 log(tK)} =

√
4 log(tK). Hence,

gT = 6
√
dn log(KT ) log(T/δ) + lT

= 6
√
dn log(KT ) log(T/δ) +

√
dn log

(
3 + T/λdn

δ

)
+
√

3λ

By our assumption on λ, λ < dn. Hence,

gT ≤ 8
√
dn log(KT ) log(T/δ) +

√
dn log

(
3 + T/λdn

δ

)

Using our assumption that log
(

3+T/λdn
δ

)
≤ log(KT ) log(T/δ),

gT ≤ 9
√
dn log(KT ) log(T/δ)

(35)

Substituting the value of gT into Equation 34, we obtain the following:

R(T ) ≤ 27dn
γ

√
T

√
C log

(
Tr(L−1)

n

)
+ log

(
3 + T

λdnσ2

)
+

3π2
√
dn ln(T/δ) ln(KT )

γ
+

54
√
dn ln(T/δ) ln(KT )

√
2T ln(2/δ)

γ

For ease of exposition, we keep the just leading terms on d, n and T . This gives the following bound on R(T ).

R(T ) = Õ

(
27dn
γ

√
T

√
C log

(
Tr(L−1)

n

)
+ log

(
3 + T

λdnσ2

))

Rewriting the bound to keep only the terms dependent on d, n, λ, T and L. We thus obtain the following
equation.

R(T ) = Õ

(
dn√
λ

√
T

√
log
(

Tr(L−1)
n

)
+ log

(
3 + T

λdnσ2

))
(36)

This proves the theorem.

We now prove the the auxiliary lemmas used in the above proof.

In the following lemma, we prove that Eµ(t) holds with high probability, i.e., the expected rating at round t is
close to the true rating with high probability.
Lemma 6.

The following statement is true for all δ ∈ (0, 1):

Pr(Eµ(t)) ≥ 1− δ (37)

Proof.
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Recall that rt = 〈w∗, φjt〉+ ηt (Assumption 2) and that Σtwt = bt
σ2 . Define St−1 =

∑t−1
l=1 ηlφjl .

St−1 =
t−1∑
l=1

(rl − 〈w∗, φjl〉)φjl =
t−1∑
l=1

(
rlφjl − φjlφ

T
jl

w∗
)

St−1 = bt−1 −
t−1∑
l=1

(
φjlφ

T
jl

)
w∗ = bt−1 − σ2(Σt−1 − Σ0)w∗ = σ2(Σt−1wt − Σt−1w∗ + Σ0w∗)

ŵt −w∗ = Σ−1
t−1

(
St−1

σ2 − Σ0w∗
)

The following holds for all j:

|〈wt, φj〉 − 〈w
∗, φj〉| = |〈φj,wt −w∗〉|

≤
∣∣∣∣φTj Σ−1

t−1

(
St−1

σ2 − Σ0w∗
) ∣∣∣∣

≤ ||φj ||Σ−1
t−1

(∣∣∣∣∣∣∣∣St−1

σ2 − Σ0w∗
∣∣∣∣∣∣∣∣

Σ−1
t−1

)
(Since Σ−1

t−1 is positive definite)

By triangle inequality,

|〈wt, φj〉 − 〈w
∗, φj〉| ≤ ||φj ||Σ−1

t−1

(∣∣∣∣∣∣∣∣St−1

σ2

∣∣∣∣∣∣∣∣
Σ−1
t−1

+ ||Σ0w∗||Σ−1
t−1

)
(38)

We now bound the term ||Σ0w∗||Σ−1
t−1

||Σ0w∗||Σ−1
t−1
≤ ||Σ0w∗||Σ−1

0
=
√

w∗TΣT0 Σ−1
0 Σ0w∗ (Since φjtφ

T
jt

is positive definite for all t)

=
√

w∗TΣ0w∗ (Since Σ0 is symmetric)

≤
√
νmax(Σ0)||w∗||2

≤
√
νmax(λL⊗ Id) (||w∗||2 ≤ 1)

=
√
νmax(λL) (νmax(A⊗B) = νmax(A) · νmax(B))

≤
√
λ · νmax(L)

||Σ0w∗||Σ−1
t−1
≤
√

3λ
(The maximum eigenvalue of any normalized Laplacian is 2 [4] and recall that L = LG + In)

For bounding ||φj ||Σ−1
t−1

, note that

||φj ||Σ−1
t−1

=
√
φTj Σ−1

t−1φj = st(j)

Using the above relations, Equation 38 can thus be rewritten as:

|〈wt, φj〉 − 〈w
∗, φj〉| ≤ st(j)

(
1
σ
||St−1||Σ−1

t−1
+
√

3λ
)

(39)

To bound ||St−1||Σ−1
t−1

, we use Theorem 1 from [1] which we restate in our context. Note that using this theorem
with the prior covariance equal to Idn gives Lemma 8 of [2].



Theorem 3 (Theorem 1 of [1]). For any δ > 0, t ≥ 1, with probability at least 1− δ,

||St−1||2Σ−1
t−1
≤ 2σ2 log

(
det(Σt)1/2 det(Σ0)−1/2

δ

)
||St−1||2Σ−1

t−1
≤ 2σ2

(
log
(

det(Σt)1/2
)

+ log
(

det(Σ−1
0 )1/2

)
− log(δ)

)

Rewriting the above equation,

||St−1||2Σ−1
t−1
≤ σ2

(
log (det(Σt)) + log

(
det(Σ−1

0 )
)
− 2 log(δ)

)

We now use the trace-determinant inequality. For any n× n matrix A, det(A) ≤
(
Tr(A)
n

)n
which implies that

log(det(A)) ≤ n log
(
Tr(A)
n

)
. Using this for both Σt and Σ−1

0 , we obtain:

||St−1||Σ−1
t−1
≤ dnσ2

(
log
((

Tr(Σt)
dn

))
+ log

((
Tr(Σ−1

0 )
dn

))
− 2
dn

log(δ)
)

(40)

Next, we use the fact that

Σt = Σ0 +
t∑
l=1

φjlφ
T
jl

=⇒ Tr(Σt) ≤ Tr(Σ0) + t (Since ||φjl ||2 ≤ 1)

Note that Tr(A⊗B) = Tr(A) · Tr(B). Since Σ0 = λL⊗ Id, it implies that Tr(Σ0) = λd · Tr(L). Also note that
Tr(Σ−1

0 ) = Tr((λL)−1 ⊗ Id) = d
λ Tr(L−1). Using these relations in Equation 40,

||St−1||2Σ−1
t−1
≤ dnσ2

(
log
(
λdTr(L) + t

dn

)
+ log

(
Tr(L−1)
λn

)
− 2
dn

log(δ)
)

≤ dnσ2
(

log
(

Tr(L) Tr(L−1)
n2 + tTr(L−1)

λdn2

)
− log(δ 2

dn )
)

(log(a) + log(b) = log(ab))

= dnσ2 log
(

Tr(L) Tr(L−1)
n2δ

+ tTr(L−1)
λdn2δ

)
(Redefining δ as δ 2

dn )

If L = In, Tr(L) = Tr(L−1) = n, we recover the bound in [2] i.e.

||St−1||2Σ−1
t−1
≤ dnσ2 log

(
1 + t/λdn

δ

)
(41)

The upper bound for Tr(L) is 3n, whereas the upper bound on Tr(L−1) is n. We thus obtain the following
relation.

||St−1||2Σ−1
t−1
≤ dnσ2 log

(
3
δ

+ t

λdnδ

)
||St−1||Σ−1

t−1
≤ σ

√
dn log

(
3 + t/λdn

δ

)
(42)
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Combining Equations 39 and 42, we have with probability 1− δ,

|〈wt, φj〉 − 〈w
∗, φj〉| ≤ st(k)

(√
dn log

(
3 + t/λdn

δ

)
+
√

3λ
)

|〈wt, φj〉 − 〈w
∗, φj〉| ≤ st(k)lt

where lt =
√
dn log

(
3+t/λdn

δ

)
+
√

3λ. This completes the proof.

(43)

Lemma 7. With probability 1− δ,

T∑
t=1

regret(t) ≤
T∑
t=1

3gt
γ
st +

T∑
t=1

2gt
γt2

+

√√√√2
T∑
t=1

36g2
t

γ2 ln 2
δ

(44)

Proof.

Let Zl and Yt be defined as follows:

Zl = regret(l)− 3gl
γ
sl −

2gl
γl2

Yt =
t∑
l=1

Zl (45)

E[Yt − Yt−1|Ft−1] = E[Xt] = E[regret(t)|Ft−1]− 3gt
γ
st −

2gt
γt2

E[regret(t)|Ft−1] ≤ E[∆t|Ft−1] ≤ 3gt
γ
st −

2gt
γt2

(Definition of regret(t) and using lemma 5)

E[Yt − Yt−1|Ft−1] ≤ 0

Hence, Yt is a super-martingale process. We now state and use the Azuma-Hoeffding inequality for Yt

(46)

Inequality 1 (Azuma-Hoeffding). If a super-martingale Yt (with t ≥ 0) and its the corresponding filtration Ft−1,
satisfies |Yt − Yt−1| ≤ ct for some constant ct, for all t = 1, . . . T , then for any a ≥ 0,

Pr(YT − Y0 ≥ a) ≤ exp
(

−a2

2
∑T
t=1 c

2
t

)
(47)

We define Y0 = 0. Note that |Yt − Yt−1| = |Zl| is bounded by 1 + 3gl
γ −

2gl
γl2 . Hence, ct = 6gt

γ . Setting

a =
√

2 ln(2/δ)
∑T
t=1 c

2
t in the above inequality, we obtain that with probability 1− δ

2 ,

YT ≤

√√√√2
T∑
t=1

36g2
t

γ2 ln(2/δ)

T∑
t=1

(
regret(t)− 3gt

γ
st −

2gt
γt2

)
≤

√√√√2
T∑
t=1

36g2
t

γ2 ln(2/δ) (48)

T∑
t=1

regret(t) ≤
T∑
t=1

3gt
γ
st +

T∑
t=1

2gt
γt2

+

√√√√2
T∑
t=1

36g2
t

γ2 ln(2/δ) (49)



Lemma 8.
T∑
t=1

st ≤
√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 + T

λdnσ2

)
(50)

Proof.

Following the proof in [5, 15],

det [Σt] ≥ det
[
Σt−1 + 1

σ2φjtφ
T
jt

]
= det

[
Σ

1
2
t−1

(
I + 1

σ2 Σ−
1
2

t−1φjtφ
T
jt

Σ−
1
2

t−1

)
Σ

1
2
t−1

]
= det [Σt−1] det

[
I + 1

σ2 Σ−
1
2

t−1φjtφ
T
jt

Σ−
1
2

t−1

]
det [Σt] = det [Σt−1]

(
1 + 1

σ2φ
T
jt

Σ−1
t−1φjt

)
= det [Σt−1]

(
1 + s2

t

σ2

)
log (det [Σt]) ≥ log (det [Σt−1]) + log

(
1 + s2

t

σ2

)
log (det [ΣT ]) ≥ log (det [Σ0]) +

T∑
t=1

log
(

1 + s2
t

σ2

)
(51)

If A is an n× n matrix, and B is an d× d matrix, then det[A⊗B] = det[A]d det[B]n. Hence,

det[Σ0] = det[λL⊗ Id] = det[λL]d

det[Σ0] = [λn det(L)]d = λdn[det(L)]d

log (det[Σ0]) = dn log (λ) + d log (det[L]) (52)

From Equations 51 and 52,

log (det [ΣT ]) ≥ (dn log (λ) + d log (det[L])) +
T∑
t=1

log
(

1 + s2
t

σ2

)
(53)

We now bound the trace of Tr(ΣT+1).

Tr(Σt+1) = Tr(Σt) + 1
σ2φjtφ

T
jt

=⇒ Tr(Σt+1) ≤ Tr(Σt) + 1
σ2 (Since ||φjt || ≤ 1)

Tr(ΣT ) ≤ Tr(Σ0) + T
σ2

Since Tr(A⊗B) = Tr(A) · Tr(B)

Tr(ΣT ) ≤ Tr (λ(L⊗ Id)) + T

σ2 =⇒ Tr(ΣT ) ≤ λdTr(L) + T

σ2 (54)

Using the determinant-trace inequality, we have the following relation:(
1
dn

Tr(ΣT )
)dn
≥ (det[ΣT ])

dn log
(

1
dn

Tr(ΣT )
)
≥ log (det[ΣT ]) (55)
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Using Equations 53, 54 and 55, we obtain the following relation.

dn log
(
λdTr(L) + T

σ2

dn

)
≥ (dn log (λ) + d log (det[L])) +

T∑
t=1

log
(

1 + s2
t

σ2

)

T∑
t=1

log
(

1 + s2
t

σ2

)
≤ dn log

(
λdTr(L) + T

σ2

dn

)
− dn log (λ)− d log (det[L])

≤ dn log
(
λdTr(L) + T

σ2

dn

)
− dn log (λ) + d log

(
det[L−1]

)
(det[L−1] = 1/det[L])

≤ dn log
(
λdTr(L) + T

σ2

dn

)
− dn log (λ) + dn log

(
1
n

Tr(L−1)
)

(Using the determinant-trace inequality for log(det[L−1]))

≤ dn log
(
λdTr(L) Tr(L−1) + Tr(L−1)T

σ2

λdn2

)
(log(a) + log(b) = log(ab))

≤ dn log
(

Tr(L) Tr(L−1)
n2 + Tr(L−1)T

λdn2σ2

)
The maximum eigenvalue of any Laplacian is 2. Hence Tr(L) is upper-bounded by 3n.

T∑
t=1

log
(

1 + s2
t

σ2

)
≤ dn log

(
3 Tr(L−1)

n
+ Tr(L−1)T

λdn2σ2

)
(56)

(57)

s2
t = φTj Σ−1

t φj ≤ φ
T
j Σ−1

0 φj (Since we are making positive definite updates at each round t)

≤ ‖φj‖
2νmax(Σ−1

0 )

= ‖φj‖
2 1
νmin(λL⊗ Id)

= ‖φj‖
2 1
νmin(λL) (νmin(A⊗B) = νmin(A)νmin(B))

≤ 1
λ
· 1
νmin(L) (||φj ||2 ≤ 1)

s2
t ≤

1
λ

(Minimum eigenvalue of a normalized Laplacian LG is 0. L = LG + In)

Moreover, for all y ∈ [0, 1/λ], we have log
(
1 + y

σ2

)
≥ λ log

(
1 + 1

λσ2

)
y based on the concavity of log(·). To see

this, consider the following function:

h(y) =
log
(
1 + y

σ2

)
λ log

(
1 + 1

λσ2

) − y (58)

Clearly, h(y) is concave. Also note that, h(0) = h(1/λ) = 0. Hence for all y ∈ [0, 1/λ], the function h(y) ≥ 0.
This implies that log

(
1 + y

σ2

)
≥ λ log

(
1 + 1

λσ2

)
y. We use this result by setting y = s2

t .

log
(

1 + s2
t

σ2

)
≥ λ log

(
1 + 1

λσ2

)
s2
t

s2
t ≤

1
λ log

(
1 + 1

λσ2

) log
(

1 + s2
t

σ2

)
(59)



Hence,

T∑
t=1

s2
t ≤

1
λ log

(
1 + 1

λσ2

) T∑
t=1

log
(

1 + s2
t

σ2

)
(60)

By Cauchy Schwartz,

T∑
t=1

st ≤
√
T

√√√√ T∑
t=1

s2
t (61)

From Equations 60 and 61,

T∑
t=1

st ≤
√
T

√√√√ 1
λ log

(
1 + 1

λσ2

) T∑
t=1

log
(

1 + s2
t

σ2

)
T∑
t=1

st ≤
√
T

√√√√C

T∑
t=1

log
(

1 + s2
t

σ2

)
(62)

where C = 1
λ log(1+ 1

λσ2 ) . Using Equations 56 and 62,

T∑
t=1

st ≤
√
dnT

√
C log

(
3 Tr(L−1)

n
+ Tr(L−1)T

λdn2σ2

)
T∑
t=1

st ≤
√
dnT

√
C log

(
Tr(L−1)

n

)
+ log

(
3 + T

λdnσ2

)
(63)
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