
Low-Rank Approximation of Weighted Tree Automata

Guillaume Rabusseau Borja Balle Shay B. Cohen
Aix-Marseille University Lancaster University University of Edinburgh

Abstract

We describe a technique to minimize
weighted tree automata (WTA), a power-
ful formalism that subsumes probabilistic
context-free grammars (PCFGs) and latent-
variable PCFGs. Our method relies on a
singular value decomposition of the under-
lying Hankel matrix defined by the WTA.
Our main theoretical result is an efficient al-
gorithm for computing the SVD of an infi-
nite Hankel matrix implicitly represented as
a WTA. We evaluate our method on real-
world data originating in newswire treebank.
We show that our approach achieves lower
perplexity than previous methods for PCFG
minimization, and also is much more stable
due to the absence of local optima.

1 Introduction

Probabilistic context-free grammars (PCFG) provide
a powerful statistical formalism for modeling impor-
tant phenomena occurring in natural language. In
fact, learning and parsing algorithms for PCFG are
now standard tools in natural language processing
pipelines. Most of these algorithms can be naturally
extended to the superclass of weighted context-free
grammars (WCFG), and closely related models like
weighted tree automata (WTA) and latent probabilis-
tic context-free grammars (LPCFG). The complexity
of these algorithms depends on the size of the gram-
mar/automaton, typically controlled by the number
of rules/states. Being able to control this complexity
is essential in operations like parsing, which is typi-
cally executed every time the model is used to make
a prediction. In this paper we present an algorithm
that given a WTA with n states and a target num-
ber of states n̂ < n, returns a WTA with n̂ states

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

that is a good approximation of the original automa-
ton. This can be interpreted as a low-rank approxi-
mation method for WTA through the direct connec-
tion between number of states of a WTA and the
rank of its associated Hankel matrix. This opens the
door to reducing the complexity of algorithms working
with WTA at the price of incurring a small, controlled
amount of error in the output of such algorithms. For
example, the complexity for parsing a tree t using a
WTA is cubic in the number of states (Maletti and
Satta, 2009), thus reducing the number of states can
lead to a significant speed-up for inference time with
a minimized model.

Our techniques are inspired by recent developments
in spectral learning algorithms for different classes of
models on sequences (Hsu et al., 2012; Bailly et al.,
2009; Boots et al., 2011; Balle et al., 2014) and trees
(Bailly et al., 2010; Cohen et al., 2014), and subse-
quent investigations into low-rank spectral learning for
predictive state representations (Kulesza et al., 2014,
2015) and approximate minimization of weighted au-
tomata (Balle et al., 2015). In spectral learning al-
gorithms, data is used to reconstruct a finite block
of a Hankel matrix and an SVD of such matrix then
reveals a low-dimensional space where a linear regres-
sion recovers the parameters of the model. In contrast,
our approach computes the SVD of the infinite Han-
kel matrix associated with a WTA, and then uses it to
obtain a low-rank approximation to the initial WTA.
Our main result is an efficient algorithm for computing
this singular value decomposition by operating directly
on the WTA representation of the Hankel matrix; that
is, without the need to explicitly represent this infinite
matrix at any point. Section 2 presents the main ideas
underlying our approach and an efficient algorithmic
implementation of these ideas is discussed in Section 3.
Proofs of all results stated in the paper can be found
in the supplementary materials.

The idea of speeding up parsing with (L)PCFG by ap-
proximating the original model with a smaller one was
recently studied in (Cohen and Collins, 2012; Cohen
et al., 2013a), where a tensor decomposition technique
was used in order to obtain the minimized model. We

839

Low-Rank Approximation of Weighted Tree Automata

compare that approach to ours in the experiments pre-
sented in Section 4, where both techniques are used to
compute approximations to a grammar learned from a
corpus of real linguistic data. It was observed in (Co-
hen and Collins, 2012; Cohen et al., 2013a) that a side-
effect of reducing the size of a grammar learned from
data was a slight improvement in parsing performance.
The number of parameters in the approximate models
is smaller, and as such, generalization improves. We
show in our experimental section that our minimiza-
tion algorithms have the same effect in certain pars-
ing scenarios. In addition, our approach yields mod-
els which give lower perplexity on an unseen set of
sentences, and provides a better approximation to the
original model in terms of `2 distance. It is important
to remark that in contrast with the tensor decomposi-
tions in (Cohen and Collins, 2012; Cohen et al., 2013a)
which are susceptible to local optima problems, our ap-
proach resembles a power-method approach to SVD,
which yields efficient globally convergent algorithms.
Overall, we observe in our experiments that this ren-
ders a more stable minimization method than the one
using tensor decompositions.

1.1 Notation

For an integer n, we write [n] = {1, . . . , n}. We
use lower case bold letters (or symbols) for vectors
(e.g. v ∈ Rd1), upper case bold letters for matri-
ces (e.g. M ∈ Rd1×d2) and bold calligraphic letters
for third order tensors (e.g. T ∈ Rd1×d2×d3). Unless
explicitly stated, vectors are by default column vec-
tors. The identity matrix will be written as I. Given
i1 ∈ [d1], i2 ∈ [d2], i3 ∈ [d3] we use v(i1), M(i1, i2),
and T (i1, i2, i3) to denote the corresponding entries.
The ith row (resp. column) of a matrix M will be
noted M(i, :) (resp. M(:, i)). This notation is ex-
tended to slices across the three modes of a tensor in
the straightforward way. If v ∈ Rd1 and v′ ∈ Rd2 , we
use v⊗v′ ∈ Rd1·d2 to denote the Kronecker product be-
tween vectors, and its straightforward extension to ma-
trices and tensors. Given a matrix M ∈ Rd1×d2 we use
vec(M) ∈ Rd1·d2 to denote the column vector obtained
by concatenating the columns of M. Given a tensor
T ∈ Rd1×d2×d3 and matrices Mi ∈ Rdi×d′i for i ∈ [3],
we define a tensor T (M1,M2,M3) ∈ Rd′1×d′2×d′3 whose
entries are given by

T (M1,M2,M3)(i1, i2, i3) =
∑

j1,j2,j3

T (j1, j2, j3)M1(j1, i1)M2(j2, i2)M3(j3, i3) .

This operation corresponds to contracting T with Mi

across the ith mode of the tensor for each i.

2 Approximate Minimization of WTA
and SVD of Hankel Matrices

In this section we present the first contribution of the
paper. Namely, the existence of a canonical form for
weighted tree automata inducing the singular value de-
composition of the infinite Hankel matrix associated
with the automaton. We start by recalling several def-
initions and well-known facts about WTA that will be
used in the rest of the paper. Then we proceed to
establish the existence of the canonical form, which
we call the singular value tree automaton. Finally
we indicate how removing the states in this canonical
form that correspond to the smallest singular values of
the Hankel matrix leads to an effective procedure for
model reduction in WTA.

2.1 Weighted Tree Automata

Let Σ be a finite alphabet. We use Σ? to denote the set
of all finite strings with symbols in Σ with λ denoting
the empty string. We write |x| to denote the length
of a string x ∈ Σ?. The number of occurrences of a
symbol σ ∈ Σ in a string x ∈ Σ? is denoted by |x|σ.

We now introduce notation for describing the trees
generated by a tree automaton; see Figure 1 for some
illustrative examples. The set of all rooted full bi-
nary trees with leafs in Σ is the smallest set TΣ such
that Σ ⊂ TΣ and (t1, t2) ∈ TΣ for any t1, t2 ∈ TΣ.
We shall just write T when the alphabet Σ is clear
from the context. The size of a tree t ∈ T is de-
noted by size(t) and defined recursively by size(σ) = 0
for σ ∈ Σ, and size((t1, t2)) = size(t1) + size(t2) + 1;
that is, the number of internal nodes in the tree. The
depth of a tree t ∈ T is denoted by depth(t) and de-
fined recursively by depth(σ) = 0 for σ ∈ Σ, and
depth((t1, t2)) = max{depth(t1),depth(t2)} + 1; that
is, the distance from the root of the tree to the far-
thest leaf. The yield of a tree t ∈ T is a string 〈t〉 ∈ Σ∗
defined as the left-to-right concatenation of the sym-
bols in the leafs of t, and can be recursively defined by
〈σ〉 = σ, and 〈(t1, t2)〉 = 〈t1〉 · 〈t2〉. The total number
of nodes (internal plus leafs) of a tree t is denoted by
|t| and satisfies |t| = size(t) + |〈t〉|.
Let Σ′ = Σ∪{∗}, where ∗ is a symbol not in Σ. The set
of rooted full binary context trees is the set CΣ = {c ∈
TΣ′ | |〈c〉|∗ = 1}; that is, a context c ∈ CΣ is a tree in
TΣ′ in which the symbol ∗ occurs exactly in one leaf.
Note that because given a context c = (t1, t2) ∈ CΣ
with t1, t2 ∈ TΣ′ the symbol ∗ can only appear in one
of the t1 and t2, we must actually have c = (c′, t) or c =
(t, c′) with c′ ∈ CΣ and t ∈ TΣ. The drop of a context
c ∈ C is the distance between the root and the leaf
labeled with ∗ in c, which can be defined recursively as

840

Guillaume Rabusseau, Borja Balle, Shay B. Cohen

t =

c c

c1 =

* d

c2 =

*

a b

c1[t] =

d

c c

c2[c1] =

a b * d

Figure 1: Examples of trees (t, c1[t] ∈ TΣ) and
contexts (c1, c2, c2[c1] ∈ CΣ) on the alphabet Σ =
{a, b, c, d}. In our notation: c1[t] = ((c, c), d),
size(c1[t]) = 2, depth(c1[t]) = 2, 〈t〉 = cc,
drop(c2[c1]) = 2

drop(∗) = 0, drop((c, t)) = drop((t, c)) = drop(c) + 1.

We usually think as the leaf with the symbol ∗ in a
context as a placeholder where the root of another tree
or another context can be inserted. Accordingly, given
t ∈ T and c ∈ C, we can define c[t] ∈ T as the tree
obtained by replacing the occurrence of ∗ in c with t.
Similarly, given c, c′ ∈ C we can obtain a new context
tree c[c′] by replacing the occurrence of ∗ in c with c′.

A weighted tree automaton (WTA) over Σ is a tuple
A = 〈α,T , {ωσ}σ∈Σ〉, where α ∈ Rn is the vector of
initial weights, T ∈ Rn×n×n is the tensor of transition
weights, and ωσ ∈ Rn is the vector of terminal weights
associated with σ ∈ Σ. The dimension n is the number
of states of the automaton, which we shall sometimes
denote by |A|. A WTA A = 〈α,T , {ωσ}〉 computes
a function fA : TΣ → R assigning to each tree t ∈
T the number computed as fA(t) = α>ωA(t), where
ωA(t) ∈ Rn is obtained recursively as ωA(σ) = ωσ,
and ωA((t1, t2)) = T (I,ωA(t1),ωA(t2)) — note the
matching of dimensions in this last expression since
contracting a third order tensor with a matrix in the
first mode and vectors in the second and third mode
yields a vector. In many cases we shall just write ω(t)
when the automaton A is clear from the context.

Although WTA are traditionally studied as recognizers
for (weighted) regular tree languages, the computation
performed by a WTA is closely related to several mod-
els typically used in machine learning, including PCFG
and recursive tensor neural networks. The connection
with PCFG can be obtained by noting that mapping
each non-terminal symbol in a PCFG to a different
state of a WTA one can obtain an automaton A with
the property that if t is a tree with yield 〈t〉 = w, then
the value of fA(t) equals the sum of the probabilities of
all derivation trees for w in the original grammar hav-
ing the same topology as t (see also Section 4.1). Thus,

WTA can compute the same weighted context-free lan-
guages as WCFG. The connection with the recursive
tensor neural networks (RTNN) introduced in (Socher
et al., 2013) follows from observing that the computa-
tion of a WTA has the same bottom-up computational
structure as a RTNN without the non-linearities. The
values of the n components of a leaf vector ωσ corre-
spond to the values of n features representing symbol
σ ∈ Σ. The computation performed by a WTA pro-
cesses a tree from the bottom up: whenever a tree of
the form t = (t1, t2) is encountered, it first processes
the subtrees t1 and t2 to obtain the feature vectors
ω(t1) and ω(t2), and then computes a new feature
vector for t as ωA(t) = T (I,ωA(t1),ωA(t2)). At the
top level the computation ends by producing the scalar
fA(t) = α>ω(t) corresponding to the inner product of
the feature representation of t with the vector α.

While WTA are usually defined over arbitrary ranked
trees, only considering binary trees does not lead to
any loss of generality since WTA on ranked trees are
equivalent to WTA on binary trees (see Bailly et al.
(2010) for references). Additionally, one could consider
binary trees where each internal node is decorated with
labeled from a finite set, which leads to the definition
of WTA with multiple transition tensors. Our results
can be extended to this case without much effort, but
we state them just for WTA with only one transition
tensor to keep the notation manageable.

An important observation is that there exist more
than one WTA computing the same function —
in fact, there exist infinitely many. An important
construction along these lines is the conjugate of a
WTA A with n states by an invertible matrix Q ∈
Rn×n. If A = 〈α,T , {ωσ}〉, its conjugate by Q is
AQ = 〈Q>α,T (Q−>,Q,Q), {Q−1ωσ}〉, where Q−>
denotes the inverse of Q>. To show that fA = fAQ

one applies an induction argument on depth(t) to show
that for every t ∈ T one has ωAQ(t) = Q−1ωA(t). The
claim is obvious for trees of zero depth σ ∈ Σ, and for
t = (t1, t2) one has

ωAQ((t1, t2)) = (T (Q−>,Q,Q))(I,ωAQ(t1),ωAQ(t2))
= (T (Q−>,Q,Q))(I,Q−1ωA(t1),Q−1ωA(t2))
= T (Q−>,ωA(t1),ωA(t2))
= Q−1T (I,ωA(t1),ωA(t2)) ,

where we just used some simple rules of tensor algebra.

An arbitrary function f : T → R is called rational if
there exists a WTA A such that f = fA. The number
of states of the smallest such WTA is the rank of f —
we shall set rank(f) =∞ if f is not rational. A WTA
A with fA = f and |A| = rank(f) is called minimal.
Given any f : T → R we define its Hankel matrix as
the infinite matrix Hf ∈ RC×T with rows indexed by

841

Low-Rank Approximation of Weighted Tree Automata

contexts, columns indexed by trees, and whose entries
are given by Hf (c, t) = f(c[t]). Note that given a tree
t′ ∈ T there are exactly |t′| different ways of splitting
t′ = c[t] with c ∈ C and t ∈ T. This implies that
Hf is a highly redundant representation for f , and it
turns out that this redundancy is the key to proving
the following fundamental result about rational tree
functions.
Theorem 1 ((Bozapalidis and Louscou-Bozapalidou,
1983)). For any f : T → R we have rank(f) =
rank(Hf).

2.2 Rank Factorizations of Hankel Matrices

The theorem above can be rephrased as saying that the
rank of Hf is finite if and only if f is rational. When
the rank of Hf is indeed finite — say rank(Hf) = n
— one can find two rank n matrices P ∈ RC×n, S ∈
Rn×T such that Hf = PS. In this case we say that P
and S give a rank factorization of Hf . We shall now
refine Theorem 1 by showing that when f is rational,
the set of all possible rank factorizations of Hf is in
direct correspondence with the set of minimal WTA
computing f .

The first step is to show that any minimal WTA
A = 〈α,T , {ωσ}〉 computing f induces a rank fac-
torization Hf = PASA. We build SA ∈ Rn×T
by setting the column corresponding to a tree t to
SA(:, t) = ωA(t). In order to define PA we need to
introduce a new mapping ΞA : C → Rn×n assign-
ing a matrix to every context as follows: ΞA(∗) = I,
ΞA((c, t)) = T (I,ΞA(c),ωA(t)), and ΞA((t, c)) =
T (I,ωA(t),ΞA(c)). If we now define αA : C → Rn
as αA(c)> = α>ΞA(c), we can set the row of PA cor-
responding to c to be PA(c, :) = αA(c)>. With these
definitions one can easily show by induction on drop(c)
that ΞA(c)ωA(t) = ωA(c[t]) for any c ∈ C and t ∈ T.
Then it is immediate to check that Hf = PASA:
n∑

i=1
PA(c, i)SA(i, t) = αA(c)>ωA(t) = α>ΞA(c)ωA(t)

= α>ωA(c[t]) = fA(c[t])
= Hf (c, t) . (1)

As before, we shall sometimes just write Ξ(c) and α(c)
when A is clear from the context. We can now state
the main result of this section, which generalizes sim-
ilar results in (Balle et al., 2015, 2014) for weighted
automata on strings.
Theorem 2. Let f : T→ R be rational. If Hf = PS
is a rank factorization, then there exists a minimal
WTA A computing f such that PA = P and SA = S.

Proof. See supplementary material.

2.3 Approximate Minimization with the
Singular Value Tree Automaton

Equation (1) can be interpreted as saying that given
a fixed factorization Hf = PASA, the value fA(c[t])
is given by the inner product

∑
iαA(c)iωA(t)i. Thus,

αA(c)i and ωA(t)i quantify the influence of state i in
the computation of fA(c[t]), and by extension one can
use ‖PA(:, i)‖ and ‖SA(i, :)‖ to measure the overall
influence of state i in fA. Since our goal is to ap-
proximate a given WTA by a smaller WTA obtained
by removing some states in the original one, we shall
proceed by removing those states with overall less in-
fluence on the computation of f . But because there are
infinitely many WTA computing f , we need to first fix
a particular representation for f before we can remove
the less influential states. In particular, we seek a rep-
resentation where each state is decoupled as much as
possible from each other state, and where there is a
clear ranking of states in terms of overall influence. It
turns out all this can be achieved by a canonical form
for WTA we call the singular value tree automaton,
which provides an implicit representation for the SVD
of Hf . We now show conditions for the existence of
such canonical form, and in the next section we de-
velop an algorithm for computing it efficiently.

Suppose f : T → R is a rank n rational function
such that its Hankel matrix admits a reduced singular
value decomposition Hf = UDV>. Then we have
that P = UD1/2 and S = D1/2V> is a rank de-
composition for Hf , and by Theorem 2 there exists
some minimal WTA A with fA = f , PA = UD1/2

and SA = D1/2V>. We call such an A a singular
value tree automaton (SVTA) for f . However, these
are not defined for every rational function f , because
the fact that columns of U and V must be unitary
vectors (i.e. U>U = V>V = I) imposes some restric-
tions on which infinite Hankel matrices Hf admit an
SVD — this phenomenon is related to the distinction
between compact and non-compact operators in func-
tional analysis. Our next theorem gives a sufficient
condition for the existence of an SVD of Hf .

We say that a function f : T → R is strongly conver-
gent if the series

∑
t∈T |t||f(t)| converges. To see the

intuitive meaning of this condition, assume that f is a
probability distribution over trees in T. In this case,
strong convergence is equivalent to saying that the ex-
pected size of trees generated from the distribution f
is finite. It turns out strong convergence of f is a suf-
ficient condition to guarantee the existence of an SVD
for Hf .

Theorem 3. If f : TΣ → R is rational and strongly
convergent, then Hf admits a singular value decompo-
sition.

842

Guillaume Rabusseau, Borja Balle, Shay B. Cohen

Proof. See supplementary material.

Together, Theorems 2 and 3 imply that every rational
strongly convergent f : T → R can be represented by
an SVTA A. If rank(f) = n, then A has n states and
for every i ∈ [n] the ith state contributes to Hf by gen-
erating the ith left and right singular vectors weighted
by √si, where si = D(i, i) is the ith singular value.
Thus, if we desire to obtain a good approximation f̂
to f with n̂ states, we can take the WTA Â obtained
by removing the last n − n̂ states from A, which cor-
responds to removing from f the contribution of the
smallest singular values of Hf . We call such Â an
SVTA truncation. Given an SVTA A = 〈α,T , {ωσ}〉
and Π = [I | 0] ∈ Rn̂×n, the SVTA truncation to n̂
states can be written as

Â = 〈Πα,T (Π>,Π>,Π>), {Πωσ}〉 .

Intuitively, the states associated with the smaller sin-
gular values are the ones with the less influence on
the Hankel matrix, thus they should also be the states
having the less effect on the computation of the SVTA.
The following theorem support this intuition by show-
ing a fundamental relation between the singular values
of the Hankel matrix of a rational function f and the
parameters of the SVTA computing it.
Theorem 4. Let A = 〈α,T , {ωσ}σ∈Σ〉 be a SVTA
with n states realizing a function f and let s1 ≥ s2 ≥
· · · ≥ sn be the singular values of the Hankel matrix
Hf .

Then, for any t ∈ T, c ∈ C and i, j, k ∈ [n] the follow-
ing hold:

• |ω(t)i| ≤
√
si ,

• |α(c)i| ≤
√
si , and

• |T (i, j, k)| ≤ min{
√
si√

sj
√
sk
,
√
sj√

si
√
sk
,
√
sk√

si
√
sj
}.

Proof. See supplementary material.

Two important properties of SVTAs follow from this
proposition. First, the fact that |ω(t)i| ≤

√
si im-

plies that the weights associated with states corre-
sponding to small singular values are small. Second,
this proposition gives us some intuition on how the
states of an SVTA interact with each other. To see
this, let M = T (α, I, I) and remark that for a tree
t = (t1, t2) ∈ T we have f(t) = ω(t1)>Mω(t2). Using
the previous theorem one can show that

|M(i, j)| ≤ n
√

min{si, sj}
max{si, sj}

,

which tells us that two states corresponding to singu-
lar values far away from each other have very little
interaction in the computations of the automata.

3 Computing the Singular Value
WTA

Previous section shows that in order to compute an ap-
proximation to a strongly convergent rational function
f : T → R one can proceed by truncating its SVTA.
However, the only obvious way to obtain such SVTA
is by computing the SVD of the infinite matrix Hf .
In this section we show that if we are given an arbi-
trary minimal WTA A for f , then we can transform
A into the corresponding SVTA efficiently.1 In other
words, given a representation of Hf as a WTA, we can
compute its SVD without the need to operate on in-
finite matrices. The key observation is to reduce the
computation of the SVD of Hf to the computation of
spectral properties of the Gram matrices GC = P>P
and GT = SS> associated with the rank factorization
Hf = PS induced by some minimal WTA comput-
ing f . In the case of weighted automata on strings,
(Balle et al., 2015) recently showed a polynomial time
algorithm for computing the Gram matrices of a string
Hankel matrix by solving a system of linear equations.
Unfortunately, extending their approach to the tree
case requires obtaining a closed-form solution to a sys-
tem of quadratic equations, which in general does not
exist. Thus, we shall resort to a different algorithmic
technique and show that GC and GT can be obtained
as fixed points of a certain non-linear operator. This
yields the iterative algorithm presented in Algorithm 2
which converges exponentially fast as shown in Theo-
rem 6. The overall procedure to transform a WTA into
the corresponding SVTA is presented in Algorithm 1.

We start with a simple linear algebra result showing
exactly how to relate the eigendecompositions of GC

and GT with the SVD of Hf .
Lemma 1. Let f : T→ R be a rational function such
that its Hankel matrix Hf admits an SVD. Suppose
Hf = PS is a rank factorization. Then the following
hold:

1. GC = P>P and GT = SS> are finite symmet-
ric positive definite matrices with eigendecompo-
sitions GC = VCDCV>C and GT = VTDTV>T .

2. If M = D1/2
C V>C VTD1/2

T has SVD M = ŨDṼ>,
then Hf = UDV> is an SVD, where U =
PVCD−1/2

C Ũ, and V> = Ṽ>D−1/2
T V>TS.

1If the WTA given to the algorithm is not minimal, a
pre-processing step can be used to minimize the input using
the algorithm from (Kiefer et al., 2015).

843

Low-Rank Approximation of Weighted Tree Automata

Proof. The proof follows along the same lines as that
of (Balle et al., 2015, Lemma 7).

Putting together Lemma 1 and the proof of Theo-
rem 2 we see that given a minimal WTA computing
a strongly convergent rational function, Algorithm 1
below will compute the corresponding SVTA. Note
the algorithm depends on a procedure for computing
the Gram matrices GT and GC. In the remaining
of this section we present one of our main results: a
linearly convergent iterative algorithm for computing
these matrices.

Algorithm 1 ComputeSVTA
Input: A strongly convergent minimal WTA A
Output: The corresponding SVTA

GC,GT ← GramMatrices(A)
Let GT = VTDTV>T and GC = VCDCV>C be the
eigendecompositions of GT and GC

Let M = D1/2
C V>C VTD1/2

T and let M = UDV> be
the singular value decomposition of M
Let Q = VCD−1/2

C UD1/2

return AQ

Let A = 〈α,T , {ωσ}〉 be a strongly convergent WTA
of dimension n computing a function f . We now show
how the Gram matrix GT can be approximated using
a simple iterative scheme. Let A⊗ = 〈α⊗,T ⊗, {ω⊗σ }〉
where α⊗ = α ⊗ α, T ⊗ = T ⊗ T ∈ Rn2×n2×n2 and
ω⊗σ = ωσ ⊗ ωσ for all σ ∈ Σ. It is shown in (Berstel
and Reutenauer, 1982) that A⊗ computes the func-
tion fA⊗(t) = f(t)2. Note we have GT = SS> =∑
t∈T ω(t)ω(t)>, hence s , vec(GT) =

∑
t∈T ω

⊗(t)
since ω⊗(t) = vec(ω(t)ω(t)>). Thus, computing the
Gram matrix GT boils down to computing the vector
s. The following theorem shows that this can be done
by repeated applications of a non-linear operator until
convergence to a fixed point.
Theorem 5. Let F : Rn2 → Rn2 be the mapping de-
fined by F (v) = T ⊗(I,v,v) +

∑
σ∈Σ ω

⊗
σ . Then the

following hold:

(i) s is a fixed-point of F ; i.e. F (s) = s.

(ii) 0 is in the basin of attraction of s; i.e.
limk→∞ F k(0) = s.

(iii) The iteration defined by s0 = 0 and sk+1 = F (sk)
converges linearly to s; i.e. there exists 0 < ρ < 1
such that ‖sk − s‖2 ≤ O(ρk).

Proof. See supplementary material.

Though we could derive a similar iterative algorithm
for computing GC, it turns out that knowledge of s =

vec(GT) provides an alternative, more efficient proce-
dure for obtaining GC. Like before, we have GC =
P>P =

∑
c∈Cα(c)α(c)> and α⊗(c) = α(c) ⊗ α(c)

for all c ∈ C, hence q , vec(GC) =
∑
c∈Cα

⊗(c). By
defining the matrix E = T ⊗(I, s, I)+T ⊗(I, I, s) which
only depends on T and s, we can use the expression
α⊗
>(c) = α⊗

>ΞA⊗(c) to see that:

q> =
∑

c∈C
(α⊗)>ΞA⊗(c) = (α⊗)>

∑

k≥0
Ek

= (α⊗)>(I−E)−1 ,

where we used the facts Ek =
∑
c∈C:drop(c)=k ΞA⊗(c)

and ρ(E) < 1 shown in the proof of Theorem 5.

Algorithm 2 summarizes the overall approximation
procedure for the Gram matrices, which can be done
to an arbitrary precision. There, reshape(·, n × n) is
an operation that takes an n2-dimensional vector and
returns the n × n matrix whose first column contains
the first n entries in the vector and so on. Theoretical
guarantees on the convergence rate of this algorithm
are given in the following theorem.
Theorem 6. There exists 0 < ρ < 1 such that after k
iterations in Algorithm 2, the approximations ĜC and
ĜT satisfy ‖GC− ĜC‖F ≤ O(ρk) and ‖GT− ĜT‖F ≤
O(ρk).

Proof. See supplementary material.

Algorithm 2 GramMatrices
Input: A strongly convergent minimal WTA A =
〈α,T , {ωσ}〉

Output: Gram matrices ĜC '
∑
c∈CαA(c)αA(c)>

and ĜT '
∑
t∈T ωA(t)ωA(t)>

Let T ⊗ = T ⊗T ∈ Rn2×n2×n2 , and let ω⊗σ = ωσ ⊗
ωσ ∈ Rn2 for all σ ∈ Σ.
Let I be the n2×n2 identity matrix and let s = 0 ∈
Rn2

repeat
s← T ⊗(I, s, s) +

∑
σ∈Σ ω

⊗
σ

until convergence
q = (α⊗α)>

(
I− T ⊗(I, I, s)− T ⊗(I, s, I)

)−1

ĜT = reshape(s, n× n)
ĜC = reshape(q, n× n)
return ĜC, ĜT

4 Experiments

In this section, we assess the performance of our
method on a model arising from real-world data, by
using a PCFG learned from a text corpus as our ini-
tial model. Before presenting our experimental setup

844

Guillaume Rabusseau, Borja Balle, Shay B. Cohen

and results, we recall the standard mapping between
WCFG and WTA.

4.1 Converting WCFG to WTA

A weighted context-free grammar (WCFG) in Chom-
sky normal form is a tuple G = 〈N ,Σ,R,weight〉
where N is the finite set of nonterminal symbols, Σ
is the finite set of words, with Σ∩N = ∅, R is a set of
rules having the form (a → bc), (a → x) or (→ a) for
a, b, c ∈ N , x ∈ Σ, and weight : R → R is the weight
function which is extended to the set of all possible
rules by letting weight(δ) = 0 for all rules δ 6∈ R.

A WCFG G assigns a weight to each derivation tree τ
of the grammar given by weight(τ) =

∏
δ∈R w(δ)]δ(τ)

(where]δ(τ) is the number of times the rule δ appears
in τ), and it computes a function fG : Σ+ → R defined
by fG(w) =

∑
τ∈T (w) weight(τ) for any w ∈ Σ+, where

T (w) is the set of trees deriving the word w.

Given a WCFG G, we can build a WTA that assigns
to each binary tree t ∈ TΣ the sum of the weights of
all derivation trees of G having the same topology as t.
Let G = 〈N ,Σ,R, w〉 be a WCFG in normal form with
N = [n]. Let A = 〈α,T , {ωσ}σ∈Σ〉 be the WTA with
n states defined by α(i) = weight(→ i) for all i ∈ [n],
T (i, j, k) = weight(i → jk) for all i, j, k ∈ [n], and
ωσ(i) = weight(i→ σ) for all i ∈ [n], σ ∈ Σ. Then for
all w ∈ Σ+ we have fG(w) =

∑
t∈TΣ:〈t〉=w fA(t) . It

is important to note that in this conversion the num-
ber of states in A corresponds to the number of non-
terminals in G. A similar construction can be used to
convert any WTA to a WCFG where each state in the
WTA is mapped to a non-terminal in the WCFG.

4.2 Experimental Setup and Results

In our experiments, we used the annotated corpus of
German newspaper texts NEGRA (Skut et al., 1997).
We use a standard setup, in which the first 18,602
sentences are used as a training set, the next 1,000
sentences as a development set and the last 1,000 sen-
tences as a test set Stest. All trees are binarized as de-
scribed in (Cohen et al., 2013b). We extract a binary
grammar in Chomsky normal form from the data, and
then estimate its probabilities using maximum likeli-
hood. The resulting PCFG has n = 211 nonterminals.
We compare our method against the ones described in
(Cohen et al., 2013a), who use tensor decomposition
algorithms (Chi and Kolda, 2012) to decompose the
tensors of an underlying PCFG.2

2We use two tensor decomposition algorithms from
the tensor Matlab toolbox: pqnr, which makes use of
projected quasi-Newton and mu, which uses a multi-
plicative update. See http://www.sandia.gov/˜tgkolda/
TensorToolbox/index-2.6.html.

103 104 10510-10
10-9
10-8

10-7
10-6

10-5
10-4
10-3
10-2

`2 distance

mu
qn
SVTA

103 104 105
6

7

8

9

10

11

12

13
Perplexity

mu
qn
SVTA

Figure 2: (top) `2 distance between functions. (bot-
tom) Perplexity on the test set. The x axis denotes
in both cases the number of parameters used by the
approximation.

We used three evaluation measures: `2 distance (be-
tween the functions of type TΣ → R computed by the
original WTA and the one computed by its approxi-
mation), perplexity on a test set, and parsing accuracy
on a test set (comparing the tree topology of parses us-
ing the bracketing F-measure). Because the number of
states on a WTA and the CP-rank of tensor decompo-
sition method are not directly comparable, we plotted
the results using the number of parameters needed to
specify the model on the horizontal axis. This num-
ber is equal to n̂3 for a WTA with n̂ states, and it is
equal to 3Rn when the tensor T is approximated with
a tensor of CP-rank R (note in both cases these are
the number of parameters needed to specify the tensor
occurring in the model).

The `2 distance between the original function f and
its minimization f̂ , ‖f − f̂‖22 =

∑
t∈T(f(t) − f̂(t))2,

can be approximated to an arbitrary precision us-
ing the Gram matrices of the corresponding WTA
(which follows from observing that (f − f̂)2 is ratio-
nal). The perplexity of f̂ is defined by 2−Htest , where
Htest =

∑
t∈Stest

f(t) log2 f̂(t) and both f and f̂ have
been normalized to sum to one over the test set. The
results are plotted in Figure 2, where an horizontal
dotted line represents the performance of the origi-
nal model. We see that our method outperforms the
tensor decomposition methods both in terms of `2 dis-

845

Low-Rank Approximation of Weighted Tree Automata

104 10588

90

92

94

96

98
length ∙ 5

mu
qn
SVTA

SVTA*

104 105

70

75

80

85

length ∙ 15

mu
qn
SVTA

SVTA*

104 105 106
50

55

60

65

70

75

all sentences

mu
qn
SVTA

SVTA*

Figure 3: Parsing accuracy on the test set for different sentence lengths. The x-axis denote the number of
parameters used by the approximation. The y-axis denotes bracketing accuracy.

tance and perplexity. We also remark that our method
obtains very smooth curves, which comes from the fact
that it does not suffer from local optima problems like
the tensor decomposition methods.

For parsing we use minimum Bayes risk decoding,
maximizing the sum of the marginals for the nonter-
minals in the grammar, essentially choosing the best
tree topology given a string (Goodman, 1996). The
results for various length of sentences are shown in
Figure 3, where we see that our method does not per-
form as well as the tensor decomposition methods in
terms of parsing accuracy on long sentences. In this
figure, we also plotted the results for a slight modifi-
cation of our method (SVTA∗) that is able to achieve
competitive performances. The SVTA∗ method gives
more importance to long sentences in the minimization
process. This is done by finding the highest constant
γ > 0 such that the function fγ : t 7→ γsize(t)f(t)
is still strongly convergent. This function is then ap-
proximated by a low-rank WTA computing f̂γ , and we
let f̂ : t 7→ γ−size(t)f̂γ(t) (which is rational). In our ex-
periment, we used γ = 2.4. While the SVTA∗ method
improved the parsing accuracy, it had no significant
repercussion on the `2 and perplexity measures. We
believe that the parsing accuracy of our method could
be further improved. Seeking techniques that com-
bines the benefits of SVTA and previous works is a
promising direction.

Overall, the results are more promising for language
modeling (ie. perplexity) than parsing. This is in line
with a recent discovery on learning PCFGs (Scicluna
and De La Higuera, 2014) showing that it is hard to
perform simultaneously well on parsing and language
modeling.

5 Conclusion

We described a technique for approximate minimiza-
tion of WTA, yielding a model smaller than the orig-
inal one which retains good approximation proper-
ties. Our main algorithm relies on a singular value
decomposition of an infinite Hankel matrix induced
by the WTA. Our experiments with real-world parsing
data show that the minimized WTA, depending on the
number of singular values used, approximates well the
original WTA on three measures: perplexity, bracket-
ing accuracy and `2 distance of the tree weights. Our
work has connections with spectral learning techniques
for WTA, and exhibits similar properties as those algo-
rithms; e.g. absence of local optima. In future work we
plan to investigate the applications of our approach to
the design and analysis of improved spectral learning
algorithms for WTA. We will also conduct a thorough
theoretical analysis of the error induced by the trunca-
tion of an SVTA. On the practical side we want to in-
vestigate strategies to sparsify the SVTA obtained af-
ter minimization (or to maintain sparsity through the
minimization process) in order to further improve the
time complexity of WTA algorithms. Finally, we think
that investigating the properties of the internal feature
representations used by an SVTA might provide use-
ful joint embeddings for the words, non-terminals, and
productions rules arising from (L)PCFGs.

Acknowledgements

This work has been carried out thanks to the support
of the French GIP ANR under contract ANR GRETA
12-BS02-004-01, the ARCHIMEDE Labex (ANR-11-
LABX-0033), and the A*MIDEX project (ANR-11-
IDEX-0001-02).

846

Guillaume Rabusseau, Borja Balle, Shay B. Cohen

References
Bailly, R., Denis, F., and Ralaivola, L. (2009). Gram-

matical inference as a principal component analysis
problem. In Proceedings of ICML.

Bailly, R., Habrard, A., and Denis, F. (2010). A spec-
tral approach for probabilistic grammatical infer-
ence on trees. In Proceedings of ALT.

Balle, B., Carreras, X., Luque, F., and Quattoni, A.
(2014). Spectral learning of weighted automata: A
forward-backward perspective. Machine Learning.

Balle, B., Panangaden, P., and Precup, D. (2015). A
canonical form for weighted automata and applica-
tions to approximate minimization. In Proceedings
of LICS.

Berstel, J. and Reutenauer, C. (1982). Recognizable
formal power series on trees. Theoretical Computer
Science.

Boots, B., Siddiqi, S., and Gordon, G. (2011). Clos-
ing the learning planning loop with predictive state
representations. International Journal of Robotics
Research.

Bozapalidis, S. and Louscou-Bozapalidou, O. (1983).
The rank of a formal tree power series. Theoretical
Computer Science.

Chi, E. C. and Kolda, T. G. (2012). On tensors, spar-
sity, and nonnegative factorizations. SIAM Journal
on Matrix Analysis and Applications.

Cohen, S. B. and Collins, M. (2012). Tensor decompo-
sition for fast parsing with latent-variable PCFGs.
In Proceedings of NIPS.

Cohen, S. B., Satta, G., and Collins, M. (2013a). Ap-
proximate PCFG parsing using tensor decomposi-
tion. In Proceedings of NAACL.

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P.,
and Ungar, L. (2013b). Experiments with spectral
learning of latent-variable PCFGs. In Proceedings of
NAACL.

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P.,
and Ungar, L. (2014). Spectral learning of latent-
variable PCFGs: Algorithms and sample complex-
ity. Journal of Machine Learning Research.

Goodman, J. (1996). Parsing algorithms and metrics.
In Proceedings of ACL.

Hsu, D., Kakade, S. M., and Zhang, T. (2012). A spec-
tral algorithm for learning hidden Markov models.
Journal of Computer and System Sciences.

Kiefer, S., Marusic, I., and Worrell, J. (2015). Min-
imisation of Multiplicity Tree Automata.

Kulesza, A., Jiang, N., and Singh, S. (2015). Low-
rank spectral learning with weighted loss functions.
In Proceedings of AISTATS.

Kulesza, A., Rao, N. R., and Singh, S. (2014). Low-
Rank Spectral Learning. In Proceedings of AIS-
TATS.

Maletti, A. and Satta, G. (2009). Parsing algorithms
based on tree automata. In Proceedings of IWPT.

Scicluna, J. and De La Higuera, C. (2014). Pcfg in-
duction for unsupervised parsing and language mod-
elling. In Proceedings of EMNLP.

Skut, W., Krenn, B., Brants, T., and Uszkoreit, H.
(1997). An annotation scheme for free word order
languages. In Conference on Applied Natural Lan-
guage Processing.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Man-
ning, C. D., Ng, A. Y., and Potts, C. (2013). Recur-
sive deep models for semantic compositionality over
a sentiment treebank. In Proceedings of EMNLP.

847

