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Abstract

There are various parametric models for ana-
lyzing pairwise comparison data, including the
Bradley-Terry-Luce (BTL) and Thurstone mod-
els, but their reliance on strong parametric as-
sumptions is limiting. In this work, we study a
flexible model for pairwise comparisons, under
which the probabilities of outcomes are required
only to satisfy a natural form of stochastic transi-
tivity. This class includes parametric models in-
cluding the BTL and Thurstone models as special
cases, but is considerably more general. We pro-
vide various examples of models in this broader
stochastically transitive class for which classi-
cal parametric models provide poor fits. Despite
this greater flexibility, we show that the matrix
of probabilities can be estimated at the same rate
as in standard parametric models. On the other
hand, unlike in the BTL and Thurstone models,
computing the minimax-optimal estimator in the
stochastically transitive model is non-trivial, and
we explore various computationally tractable al-
ternatives. We show that a simple singular value
thresholding algorithm is statistically consistent
but does not achieve the minimax rate. We then
propose and study algorithms that achieve the
minimax rate over interesting sub-classes of the
full stochastically transitive class. We comple-
ment our theoretical results with thorough nu-
merical simulations.

1. Introduction

Pairwise comparison data is ubiquitous and arises naturally
in a variety of applications, including tournament play, vot-
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ing, online search rankings, and ad placement problems.
In rough terms, given a set of n objects, and a collec-
tion of possibly inconsistent comparisons between pairs of
these objects, the goal is to aggregate these comparisons
in order to perform effective statistical inference on vari-
ous underlying properties of the population. A particular
property of interest is the underlying pairwise comparison
probabilities—that is, the probability that object 7 is pre-
ferred to object j in a pairwise comparison. The Bradley-
Terry-Luce (Bradley & Terry, 1952; Luce, 1959) and Thur-
stone (Thurstone, 1927) models are mainstays in analyzing
this type of pairwise comparison data. These models are
parametric in nature: more specifically, they assume the
existence of an n-dimensional weight vector that measures
the quality or strength of each item. The pairwise com-
parison probabilities are then determined via some fixed
(parametric) function of the qualities of the pair of objects.
Estimation in these models reduces to estimating the un-
derlying weight vector, and a large body of prior work has
focused on these models (see, e.g., Negahban et al. 2012;
Hajek et al. 2014; Shah et al. 2016a). These models how-
ever, enforce strong relationships on the pairwise compari-
son probabilities that often fail to hold in real applications.
Various papers (Davidson & Marschak, 1959; McLaughlin
& Luce, 1965; Tversky, 1972; Ballinger & Wilcox, 1997)
have provided experimental results in which these paramet-
ric modeling assumptions fail to hold.

Our focus in this paper is on models with roots in so-
cial science and psychology (e.g., see Fishburn 1973 for
an overview), where the only coherence assumption made
on the pairwise comparison probabilities is that of strong
stochastic transitivity, or SST for short. These models
include parametric models as special cases but are con-
siderably more general. The SST model is validated by
several empirical analyses in a long line of work (David-
son & Marschak, 1959; McLaughlin & Luce, 1965; Tver-
sky, 1972; Ballinger & Wilcox, 1997). The conclu-
sion of Ballinger & Wilcox (1997) is especially strongly
worded:
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All of these parametric c.d.f.s are soundly rejected
by our data. However, SST usually survives scrutiny.

We are thus provided with strong empirical motivation for
studying the fundamental properties of pairwise compari-
son probabilities satisfying SST.

In this paper, we focus on the problem of estimating the
matrix of pairwise comparison probabilities—that is, the
probability that an item ¢ will beat a second item j in any
given comparison. Estimates of these comparison probabil-
ities are useful in various applications. For instance, when
the items correspond to players or teams in a sport, the pre-
dicted odds of one team beating the other are central to
betting and bookmaking operations. In a supermarket or
an ad display, an accurate estimate of the probability of a
customer preferring one item over another, along with the
respective profits for each item, can effectively guide the
choice of which product to display. Accurate estimates of
the pairwise comparison probabilities can also be used to
infer partial or full rankings of the underlying items.

Our contributions: We begin by studying the perfor-
mance of optimal methods for estimating matrices in the
SST class: our first main result (Theorem 1) characterizes
the minimax rate in squared Frobenius norm up to logarith-
mic factors. This result reveals that even though the SST
class of matrices is considerably larger than the classical
parametric class, surprisingly, it is possible to estimate any
SST matrix at the same rate as the classical parametric fam-
ily. On the other hand, computing this optimal estimator
over the SST class is non-trivial, as a brute force approach
entails an exhaustive search over permutations. Accord-
ingly, we turn to studying computationally tractable esti-
mation procedures. Our second main result (Theorem 2)
applies to a polynomial-time estimator based on threshold-
ing the singular values of the data matrix. We sharpen and
generalize a previous analysis of Chatterjee (2014), and
give a tight characterization of the rate achieved by both
hard and soft thresholding estimators. Our third contribu-
tion, formalized in Theorems 3 and 4, is to show that for
certain interesting subsets of the full SST class, a com-
bination of parametric maximum likelihood (Shah et al.,
2016a) and noisy sorting algorithms (Braverman & Mossel,
2008) leads to a tractable two-stage method that achieves
the minimax rate. Our fourth contribution is to supplement
our minimax lower bound with lower bounds for various
known estimators. These lower bounds show that none
of these tractable estimators achieve the minimax rate uni-
formly over the entire class. The lower bounds also show
that the minimax rates for any of these subclasses is no bet-
ter than the full SST class.

Related work: The literature on ranking and estimation
from pairwise comparisons is vast and we refer the reader

to various surveys (Fligner & Verducci, 1993; Marden,
1996; Cattelan, 2012) for a more detailed overview. We fo-
cus our literature review on papers that are closely related
to the contributions of our work. Some recent work (Ne-
gahban et al., 2012; Hajek et al., 2014; Shah et al., 2016a)
studies procedures and minimax rates for estimating the la-
tent quality vector that underlie such parametric models.
Theorem 4 in the present paper provides an extension of
these results, in particular by showing that an optimal esti-
mate of the latent quality vector can be used to construct an
optimal estimate of the pairwise comparison probabilities.
Chatterjee (2014) formally introduced the estimation prob-
lem considered in this paper, and analyzed an estimator
based on singular value thresholding. We provide a sharper
analysis of this estimator, and show that our upper bound
is—in fact—unimprovable.

Various papers (Kenyon-Mathieu & Schudy, 2007; Braver-
man & Mossel, 2008) consider the noisy sorting problem,
in which the goal is to infer the underlying order under the
assumption that each pairwise comparison has a probabil-
ity of agreeing with the underlying order that is bounded
away from % by a fixed constant. These works provide
polynomial-time algorithms to infer the true underlying or-
der with a certain accuracy. Part of our analysis leverages
an algorithm due to Braverman & Mossel (2008); in par-
ticular, we extend their analysis to provide guarantees for
estimating pairwise comparison probabilities as opposed to

estimating the underlying order.

As will be clarified in the sequel, the assumption of strong
stochastic transitivity has close connections to the statis-
tical literature on shape constrained inference (e.g., Silva-
pulle & Sen 2011), particularly to the problem of bivariate
isotonic regression. Some of our analysis leverages metric
entropy bounds from past work in this area (e.g., Gao &
Wellner 2007; Chatterjee et al. 2015).

While in the present paper we establish guarantees on
the recovery of the pairwise-comparison probabilities, in
a companion paper (Shah & Wainwright, 2015), we study
the problem of identifying the top subset or estimating the
total ordering of the items based on noisy pairwise compar-
isons.

2. Background and problem formulation

Given a collection of n > 2 items, suppose that we have
access to noisy comparisons between any pair i # j of
distinct items. The full set of all possible pairwise com-
parisons can be described by a probability matrix M* €
[0, 1]™*™, in which M is the probability that item i is pre-
ferred to item j. The upper and lower halves of the proba-
bility matrix M* are related by the shifted-skew-symmetry
condition M, = 1 — M for all 4, j € [n].
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2.1. Estimation of pairwise comparison probabilities

For any matrix M* € [0,1]"*™ with M} = 1 — M}
for every (i,7), suppose that we observe a random ma-
trix Y € {0,1}™*™ with (upper-triangular) independent
Bernoulli entries, in particular, with P[Y;; = 1] = M}
forevery 1 <i < j<nandYj; =1 —Y,;. Based on ob-
serving Y, our goal in this paper is to recover an accurate
estimate, in the squared Frobenius norm, of the matrix M *.

Our primary focus in this paper will be on the setting where
for n items we observe the outcome of a single pairwise
comparison for each pair. We will subsequently (in Sec-
tion 3.5) also address the more general case when we have
partial observations, that is, when each pairwise compari-
son is observed with a fixed probability.

2.2. Strong stochastic transitivity

Beyond the previously mentioned constraints on the matrix
M*—namely that M}; € [0,1] and that M}, =1 — M} —
more structured and interesting models are obtained by im-
posing further restrictions on the entries of M*. We now
turn to one such condition, known as strong stochastic tran-
sitivity (SST), which reflects the natural transitivity of any
complete ordering. Formally, suppose that the full collec-
tion of items [n] is endowed with a complete ordering 7*.
We use the notation 7% (i) < 7*(j) to convey that item i is
preferred to item j in the total ordering 7*. Consider some
triple (7, j, k) such that 7*(z) < 7*(j). A matrix M* satis-
fies the SST condition if the inequality M, > M7, holds
for every such triple. The intuition underlying this con-
straint is as follows: since ¢ dominates j in the true under-
lying order, when we make noisy comparisons, the proba-
bility that ¢ is preferred to k should be at least as large as the
probability that j is preferred to k. The SST condition was
first described in the psychology literature (e.g., Fishburn
1973; Davidson & Marschak 1959).

The SST condition is characterized by the existence of a
permutation such that the permuted matrix has entries that
increase across rows and decrease down columns. More
precisely, for a given permutation 7*, let us say that a
matrix M is m*-faithful if for every pair (¢,j) such that
(1) < 7*(j), we have M, > Mjy, for all k € [n]. With
this notion, the set of SST matrices is given by

Cosr = {M € [0,1]"" | My =1— Mgy V (a,b),
and 3 perm. 7* s.t. M is w*-faithful}. (1)

Note that the stated inequalities also guarantee that for any
pair with 7* () < 7*(j), we have My; < My, for all k,
which corresponds to a form of column ordering. The class
Cssr will be our primary focus in this paper.

2.3. Classical parametric models

Let us now describe a family of classical parametric mod-
els, one which includes Bradley-Terry-Luce and Thurstone
(Case V) models (Bradley & Terry, 1952; Luce, 1959;
Thurstone, 1927). As we will see, this family forms a rel-
atively small subclass of the SST matrices Cgyg;. In more
detail, parametric models are described by a weight vec-
tor w* € R™ that corresponds to the notional qualities of
the n items. Moreover, consider any non-decreasing func-
tion ' : R — [0,1] such that F(t) = 1 — F(—t) for all
t € R; we refer to any such function F’ as being valid. Any
such pair (F, w*) induces a particular pairwise comparison
model in which

Mj; = F(w] —w))

; for all pairs (2, 5). 2)

For each valid choice of F', we define

Coe(F) = {M € [0,1]"*"™ induced by (2)
for some w* € R™}. 3)

For any choice of F), it is easy to verify that Cor(F) is
a subset of Cgy;, meaning that any matrix M induced by
the relation (2) satisfies all the constraints defining the set
Cssr- As particular important examples, we recover the
Thurstone model by setting F'(t) = ®(t) where ® is the
Gaussian CDF, and the Bradley-Terry-Luce model by set-
ting F'(t) = %, corresponding to the sigmoid function.

Remark: One can impose further constraints on the
vector w* without reducing the size of the class
{Cyx(F), forsome valid F'}. In particular, since the
pairwise probabilities depend only on the differences
w; — wj, we can assume without loss of generality that
(w*, 1) = 0. Moreover, since the choice of F' can in-
clude rescaling its argument, we can also assume that
[[w*|lo < 1. Accordingly, we assume in our subse-
quent analysis that w* belongs to the set {w e R™ |
such that (w, 1) = 0 and [|w||s < 1.}.

2.4. Inadequacies of parametric models

As noted in the introduction, a large body of past work
(e.g., Davidson & Marschak 1959; McLaughlin & Luce
1965; Tversky 1972; Ballinger & Wilcox 1997) has shown
that parametric models, of the form (3) for some choice
of F, often provide poor fits to real-world data. What
might be a reason for this phenomenon? Roughly, para-
metric models impose the very restrictive assumption that
the choice of an item depends on the value of a single latent
factor (as indexed by w*)—e.g., that our preference for cars
depends only on their fuel economy, or that the probability
that one hockey team beats another depends only on the
skills of the goalkeepers. This intuition can be formalized
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Figure 1: Estimation for a class of SST matrices that are
far from parametric models. The parametric model (Thur-
stone MLE) yields a poor fit, whereas the singular value
thresholding (SVT) estimator, which allows for estimates
over the full SST class, leads to consistent estimation.

to construct matrices M * € Cg, that are far away from ev-
ery valid parametric approximation as summarized in the
following result:

Proposition 1. Foreveryn > 4, there exist matrices M* €
Cygr such that

inf inf i

2
valid F ME(CPAR(F) n2 |||M - M*mF > c, (4)

Jfor some universal constant ¢ > 0.

Given that every entry of matrices in Cgg; lies in the interval
[0, 1], the Frobenius norm diameter of the class Cg, is at
most n?, so the scaling of the lower bound (4) is sharp.

What sort of matrices M* are “bad” in the sense of sat-
isfying a lower bound of the form (4)? To provide some
intuition, let us return to the analogy of rating cars. A key
property of any parametric model is that if we prefer car
1 to car 2 more than we prefer car 3 to car 4, then we
must also prefer car 1 to car 3 more than we prefer car 2
to car 4. (This condition follows from the proof of Propo-
sition 1.) This condition is potentially satisfied if there is
a single determining factor across all cars, for instance, the
fuel economy. In more generality, in any situation where a
single (latent) parameter per item does not adequately ex-
plain our preferences, one can expect that the class of para-
metric models to provide a poor fit to the pairwise prefer-
ence probabilities.

The lower bound of Proposition 1 means that any para-
metric estimator of the matrix M* should perform poorly.
This expectation is confirmed by the simulation results in
Figure 1. After generating observations from a “bad ma-
trix” over a range of n, we fit the data set using either the
maximum likelihood estimate in the Thurstone model, or
the singular value thresholding (SVT) estimator to be dis-
cussed in Section 3.2. For each estimator M , we plot the

- I3 — M|
rescaled Frobenius norm error “——>—F versus the sam-
ple size. Consistent with the lower bound (4), the error in
the Thurstone-based estimator stays bounded above a uni-
versal constant. In contrast, the SVT error goes to zero with
n, and as our theory in the sequel shows, the rate at which
the error decays is at least as fast as 1/y/n.

3. Main results

Thus far, we have introduced two classes of models for ma-
trices of pairwise comparison probabilities. Our main re-
sults provide characterizations of the estimation error asso-
ciated with different subsets of these classes, using either
optimal estimators (that we suspect are not polynomial-
time computable), or more computationally efficient esti-
mators that can be computed in polynomial-time. Through-
out the section, we let ¢,,, ¢4, ¢, ¢y denote positive constants
whose values do not depend on n. All proofs are available
in the appendix.

3.1. Characterization of the minimax risk

We begin by providing a result that characterizes the mini-
max risk in squared Frobenius norm over the SST class.

Theorem 1. The minimax risk of estimating M* € Cg, is
bounded as

1.~ log?

“ < inf sup —E[M - M*3] < cu2 ",
2 D) F

n M M~*ecCgr T n

where the infimum ranges over all measurable functions M
of the observed matrix Y .

The proof of the lower bound is based on extracting a par-
ticular subset of Cgg; such that any matrix in this subset has
at least n positions that are unconstrained, apart from hav-
ing to belong to the interval [, 1]. We can thus conclude
that estimation of the full matrix is at least as hard as es-
timating n numbers belonging to the interval [1,1] based
on a single observation per number, and this leads to an
Q(n~!) lower bound, as stated.

Proving an upper bound requires substantially more effort.
In particular, we establish it via careful analysis of the con-
strained least-squares estimator

M e arg min |Y — M||%. (5a)

€Cssr

In particular, we prove that there are universal constants
(co, c1,¢2) such that, for any matrix M* € Cg, this esti-
mator satisfies the high probability bound

1, — log?
B[ 10T 2 2 e B M) < sy
n n
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Since the entries of M and M* all lie in the interval [0,1],
this tail bound implies the upper bound on the expected
mean-squared error stated in Theorem 1. Proving the high
probability bound (5b) requires sharp control on a quantity
known as the localized Gaussian complexity of the class
Cssr- We use Dudley’s entropy integral in order to derive
an upper bound that is sharp up to a logarithmic factor; do-
ing so in turn requires deriving upper bounds on the metric
entropy of the class Cgs; for which we leverage the prior
work of Gao & Wellner (2007).

We do not know whether the constrained least-squares es-
timator (5a) is computable in time polynomial in n, but we
suspect not. This complexity is a consequence of the fact
that the set Cg; is not convex, but is a union of n! convex
sets. Given this issue, it becomes interesting to consider the
performance of alternative estimators that can be computed
in polynomial-time.

3.2. Sharp analysis of singular value thresholding
(SVT) estimator

The first polynomial-time estimator that we consider is a
simple estimator based on thresholding singular values of
the observed matrix Y, and reconstructing its truncated
SVD. For the full class Cgq, Chatterjee (2014) analyzed
the performance of such an estimator and proved that the
squared Frobenius error decays as O(n_i) uniformly over
Cgsr. We prove that its error decays as (’)(n_%), again uni-
formly over Cg;, and moreover, that this upper bound is
unimprovable.

Let us begin by describing the estimator. Given the obser-
vation matrix Y € R™*", we can write its singular value
decomposition as Y = UDVT, where the (n x n) ma-
trix D is diagonal, whereas the (n x n) matrices U and V'
are orthonormal. Given a threshold level \,, > 0, the soft-
thresholded version of a diagonal matrix D is the diagonal
matrix Ty, (D) with values

[Ty, (D)];; = max{0,D;; — \,} forevery j € [1,n].

With this notation, the soft singular-value-thresholded
(soft-SVT) version of Y is given by Ty, (V) =
UT, (D)VT. The following theorem provides a bound
on its squared Frobenius error:

Theorem 2. For any M* € Cg, the soft-SVT estimator
My, =T, (Y) with \,, = 2.1 /n satisfies the bound

Cuy

NG

cn

1, — N _
B| S IM, — MY > S < coe

A few comments on this result are in order. Since the ma-
trices M), and M* have entries in the unit interval [0, 1],
the normalized squared error 5 || My, — M*[|2 is at most 1.
Consequently, the tail bound of Theorem 2 guarantees that

SUP - ccee Elz | M, — M*||2] < \C/“ﬁ In an extended
version of this paper (Shah et al., 2015), we prove a match-
ing lower bound showing that this upper bound on the error

of the SVT estimator is sharp up to constant factors.

To be clear, Chatterjee (2014) analyzed the hard-SVT esti-
mator, which is based on the hard-thresholding operator

[H,.(D)]j; = Dj; {Dj; = A}

Here 1{-} denotes the 0-1-valued indicator function. In
this setting, the hard-SVT estimator is simply, Hy, (Y) =
UH,,(D)VT. With essentially the same choice of \,, as
above, Chatterjee showed that the estimate Hy (Y') has a
mean-squared error of O(n~'/4). One can verify that the
proof of Theorem 2 in our paper goes through for the hard-
SVT estimator as well. Consequently the performance of
the hard-SVT estimator is of the order ©(n~'/2), and is
identical to that of the soft-thresholded version up to uni-
versal constants.

Note that the hard and soft-SVT estimators return matri-
ces that may not lie in the SST class Cgy,. In a compan-
ion paper (Shah et al., 2016b), we provide an alternative
computationally-efficient estimator with similar statistical
guarantees that is guaranteed to return a matrix in the SST
class.

The result of Theorem 2 provides a sharp characteriza-
tion of the behavior of the soft/hard SVT estimators. On
the positive side, these are easily implementable estimators
that achieve a mean-squared error bounded by O(1/+/n)
uniformly over the entire class Cgsr. On the negative side,
this rate is slower than the O(log? n/n) rate achieved by
the least-squares estimator, as in Theorem 1.

In conjunction, Theorems 1 and 2 raise a natural open ques-
tion: is there a polynomial-time estimator that achieves
the minimax rate uniformly over the family Cy? We
do not know the answer to this question, but the follow-
ing subsections provide some partial answers by analyzing
some polynomial-time estimators that (up to logarithmic
factors) achieve the optimal O(1/n)-rate over interesting
sub-classes of Cg;. In the next two sections, we turn to
results of this type.

3.3. Optimal rates for high SNR subclass

In this section, we describe a multi-step polynomial-time
estimator that (up to logarithmic factors) can achieve the
optimal (7)(1 /n) rate over an interesting subclass of Cggp.
This subset corresponds to matrices M that have a rela-
tively high signal-to-noise ratio (SNR), meaning that no
entries of M fall within a certain window of 1/2. More
formally, for some ~y € (0, %), we define the class

CHlGH('Y):{M S (CSST|maX<Mij7 Mji) > 1/2+’7 Vi 7é j}
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In terms of estimation difficulty, this SNR restriction does
not make the problem substantially easier: as the following
theorem shows, the minimax mean-squared error remains
lower bounded by a constant multiple of 1/n. Moreover,
we demonstrate a polynomial-time algorithm that achieves
this optimal mean squared error up to logarithmic factors.

The following theorem applies to any fixed v € (0, 1] in-
dependent of n, and involves constants (cg, ¢, ¢) that may
depend on ~y but are independent of n.

Theorem 3. Any estimator M incurs an error lower
bounded as

C

~

1 T *
sup S E[|M - M*|7] >
M~*€Chrrgr ()

(6a)

= |

Moreover, there is an estimator M, computable in
polynomial-time, such that for any M* € Ce4(7)

c

culog?n
e

1=
P| I — M2 > < (6b)

n

As with our proof of the lower bound in Theorem 1, we
prove the lower bound by considering the sub-class of ma-
trices that are free only on the two diagonals just above and
below the main diagonal. We now provide a brief sketch
for the proof of the upper bound (6b) which is based on an-
alyzing the following two-step estimator:

Step 1: We first find a permutation 7gss of the n items
that minimizes the total number of disagreements with the
observations. (For a given ordering, we say that any pair
of items (i, j) are in disagreement with the observation if
either ¢ is rated higher than j in the ordering and Y;; = 0,
or if 4 is rated lower than j in the ordering and Y;; = 1.)
The problem of finding such a disagreement-minimizing
permutation 7gg is commonly known as the minimum
feedback arc set (FAS) problem. It is known to be NP-
hard in the worst-case (Ailon et al., 2008; Alon, 2006),
but our set-up has additional probabilistic structure that al-
lows for polynomial-time solutions with high probability.
In particular, we call upon a polynomial-time algorithm
due to Braverman & Mossel (2008) that, under the model
Cssr(7), is guaranteed to find the exact solution to the FAS
problem with high probability. Viewing the FAS permu-
tation Tgsg as an approximation to the true permutation w*,
the novel technical work in this first step is show that g, is
“good enough” for Frobenius norm estimation, in the sense
that for any M* € Cyeu(7), it satisfies the bound

clogn

1 * * = *

ﬁmﬂ (M*) = Teas (M7 < (Ta)
with high probability. In this statement, for any given per-
mutation 7, we have used 7 (M™*) to denote the matrix ob-
tained by permuting the rows and columns of M* by .
The term 5 ||7*(M*) — Tpas(M*)[|Z can be viewed in

some sense as the bias in estimation incurred from using
Teas in place of 7*.
Step 2: Define Cyo be the class of matrices M €
[0, 1]™*™ that satisfy the linear constraints M;; = 1 — M;
for all (i, ) € [n]?, and My, > M;; whenever k < i and
¢ > j. This class is the subset of matrices Cgg, that are
faithful with respect to the identity permutation. Letting
Tras (Caiso) = {Tras(M), M € Cyso} denote the image of
this set under 7g,s, the second step involves computing the
constrained least-squares estimate
M e Iy — M]3 (7b)

arg min
M €Tgas (Caiso)

Since the set Teas(Criso) is @ convex polytope with a num-
ber of facets that grows polynomially in n, the constrained
quadratic program (7b) can be solved in polynomial-time.
The final step in the proof of Theorem 3 is to show that
the estimator M also has mean-squared error that is upper

bounded by a constant multiple of logTQ".

Our analysis shows that for any fixed v € (0, 1], the pro-
posed two-step estimator works well for any matrix M™* €
Cuieu () Since this two-step estimator is based on finding
a minimum feedback arc set (FAS) in the first step, it is nat-
ural to wonder whether an FAS-based estimator works well
over the full class Csr. Somewhat surprisingly the answer
to this question turns out to be negative: we refer the reader
to an extended version of this paper (Shah et al., 2015) for
more intuition and details on why the minimal FAS estima-
tor does not perform well over the full class.

3.4. Optimal rates for parametric subclasses

Let us now return to the class of parametric models Cpyx (F')
introduced earlier in Section 2.3. As shown previously in
Proposition 1, this class is much smaller than the class Cgqp,
in the sense that there are models in Cg, that cannot be
well-approximated by any parametric model. Nonetheless,
in terms of minimax rates of estimation, these classes differ
only by logarithmic factors. An advantage of the paramet-
ric class is that it is possible to achieve the 1/n minimax
rate by using a simple, polynomial-time estimator. In par-
ticular, for any log concave function F', the maximum like-
lihood estimate iy, can be obtained by solving a convex
program. This MLE induces a matrix estimate M (W )
via Equation (2), and the following result shows that this
estimator is minimax-optimal up to constant factors.

Theorem 4. Suppose that F is strictly increasing, strongly
log-concave and twice differentiable. Then the minimax
risk over Cp(F) is lower bounded as

c
inf  sup

nf (8a)
M M* ECPAR(F)

]' 'Y *
—E[IM - M*|7] >

3|8

Conversely, the matrix estimate M (@Wy;) induced by the
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MLE satisfies the bound

1 Cy,
sup  —=E[||M (@) — M*|?] < 2.
oS M ) ~ MO <

(8b)

To be clear, the constants (cy, ¢,,) in this theorem are inde-
pendent of n, but they do depend on the specific properties
of the given function F'. We note that the stated conditions
on F' are true for many popular parametric models, includ-
ing (for instance) the Thurstone and BTL models.

The lower bound (8a) is, in fact, stronger than the the lower
bound in Theorem 1, since the supremum is taken over a
smaller class. The proof of the lower bound in Theorem 1
relies on matrices that cannot be realized by any parametric
model, so that we pursue a different route to establish the
bound (8a). On the other hand, in order to prove the upper
bound (8b), we make use of bounds on the accuracy of the
MLE @y from our past work (Shah et al., 2016a).

3.5. Extension to partial observations

We now consider the extension of our results to the setting
in which not all entries of Y are observed. Suppose instead
that every entry of Y is observed independently with prob-
ability pops. In other words, the set of pairs compared is
the set of edges of an ErdGs-Rényi graph G(n, popns) that
has the n items as its vertices.

In this setting, we obtain an upper bound on the minimax
risk of estimation by first setting Y7 % whenever the pair
(4, ) is not compared, then forming a new matrix Y’ as

1 1- obs
Y= —y 2 _PobsyyT (9a)
Dobs 2pobs
and finally computing the least squares solution
M € arg min Y’ — M|?. (9b)

M €eCsst

Likewise, the computationally-efficient singular value
thresholding estimator is also obtained by thresholding the

singular values of Y with a threshold A, ;.. = 2}]1:)/5 .

The parametric estimators continue to operate on the orig-
inal (partial) observations, first computing a maximum
likelihood estimate wy; of M* using the observed data,
and then computing the associated pairwise-comparison-
probability matrix M (W) via (2).

Theorem 5. In the setting where each pair is observed with
a probability pops:

(a) The minimax risk is sandwiched as

Ce

PobsT

. 1 A *
<inf sup —E[IM - M) <

M M*eCssr PobsT

when Pobs > o,

n

cu(logn)?

)

(b) The soft-SVT estimator J/\/[\,\n,pobb with Ay p...

2;);/5 satisfies the bound
1 — e
sup —E M)\n — M*II? <G
M*€Cgsr 2 H” Pobs |” F] obs \/ﬁ

(c) For a parametric sub-class based on a strongly log-
concave and smooth F, the estimator M (Wy) in-
duced by the maximum likelihood estimate Wy, of the
parameter vector w* has error upper bounded as

Cy

1 . N
sup S E[|M (D) — M*|7]
M*GCPAR(F) n

<
DPobsT

)

when Pobs > M~

We note that we do not have an analogue of the high-SNR
result in the partial observations case since having partial
observations reduces the SNR. In general, we are interested
in scalings of pops Which allow pgp,s — 0 as n — oo. The
noisy-sorting algorithm of Braverman & Mossel (2008) for
the high-SNR case has computational complexity scaling
as 6774, and hence is not computable in time polynomial
in n when v < (logn)~ 4. This restriction disallows most
interesting scalings of pop,s With n.

4. Simulations

In this section, we present results from simulations to
gain a further understanding of the problem at hand, in
particular to understand the rates of estimation under
specific generative models. The simulations in this section
add to the simulation results of Section 2.4 (Figure 1)
demonstrating a large class of matrices in the SST class
that cannot be represented by any parametric class. We
investigate the performance of the soft-SVT estimator
(Section 3.2) and the maximum likelihood estimator under
the Thurstone model (Section 2.3).! The output of the
SVT estimator need not lie in the set [0, 1]™*™ of matrices;
in our implementation, we take a projection of the output
of the SVT estimator on this set, which gives a constant
factor reduction in the error.

In our simulations, we generate the ground truth M * in the
following five ways:

e Uniform: (%) values in [4, 1] are chosen independently

and uniformly at random, and sorted in descending or-

"We could not compare the algorithm that underlies Theo-
rem 3, since it is not easily implementable. In particular, it relies
on the algorithm due to Braverman & Mossel (2008) to compute
the feedback arc set minimizer. The computational complexity of
this algorithm, though polynomial in n, has a large polynomial
degree which precludes it from being implemented for matrices
of any reasonable size.
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Figure 2: Error incurred by the singular value thresholding (SVT) estimator and the Thurstone MLE under different

methods to generate M *.

der. The values are inserted above the diagonal of an
(n X m) matrix such that the entries decrease down a
column or left along a row. We then make the matrix
skew-symmetric and permute the rows and columns.

e Thurstone: M™ is generated by first choosing w* €
[—1,1]™ uniformly at random from the set satisfying
(w*, 1) = 0, and then applying Equation (2) with F’
chosen as the CDF of the standard normal distribution.

e Bradley-Terry-Luce (BTL): Identical to the Thurstone
case, except that I’ is given by the sigmoid function.

e High SNR: A setting studied previously by Braverman
& Mossel (2008), in which the noise is independent of
the items being compared. Some global order of the n
items is fixed, and M;; = 0.9 = 1 — M, for every
pair (4,j) where ¢ is ranked above j in the underlying
ordering. The entries on the diagonal are 0.5.

e Independent bands: The diagonal entries of M ™ are first

set to % Entries on the band immediately above the di-
agonal itself are chosen independently and uniformly at
random from [3, 1]. The band above is then chosen uni-
formly at random from the allowable set, and so on. The
choice of any entry in this process is only constrained to
be upper bounded by 1 and lower bounded by the entries
to its left and below. The entries below the diagonal are

chosen to make the matrix skew-symmetric.

Figure 2 depicts the results of the simulations based on ob-
servations of the entire matrix Y. Each point is an average
across 20 trials. The error bars in most cases are too small
and hence not visible. We see that the uniform case (Fig-
ure 2a) is favorable for both estimators, with the error scal-
ing as O(ﬁ) With data generated from the Thurstone
model, both estimators continue to perform well, and the
Thurstone MLE yields an error of the order % (Figure 2b).
Interestingly, the Thurstone model also fits relatively well
when data is generated via the BTL model (Figure 2c).
This behavior is likely a result of operating in the near-

linear regime of the logistic and the Gaussian CDF where
the two curves are similar. In these two parametric settings,
the SVT estimator has squared error strictly worse than or-
der + but better than —=. The Thurstone model, however,
yields a poor fit for the model in the high-SNR (Figure 2d)
and the independent bands (Figure 2e) cases, incurring a
constant error as compared to an error scaling as (’)(ﬁ)
for the SVT estimator. We recall that the poor performance
of the Thurstone estimator was also described previously in
Proposition 1 and Figure 1.

In summary, we see that while the Thurstone MLE esti-
mator gives minimax optimal rates of estimation when the
underlying model is parametric, it can be inconsistent when
the parametric assumptions are violated. On the other hand,
the SVT estimator is robust to violations of parametric as-
sumptions, and while it does not necessarily give minimax-
optimal rates, it remains consistent across the entire SST
class. Finally, we remark that our theory predicts that the
least squares estimator, if implementable, would outper-
form both these estimators in terms of statistical error.

5. Discussion

We analyzed a flexible model based on stochastic transi-
tivity for pairwise comparison data that includes various
parametric models, including the BTL and Thurstone mod-
els, as special cases. We analyzed various estimators for
this broader matrix family, ranging from optimal estimators
through to various polynomial-time estimators, including
forms of singular value thresholding, as well as multi-stage
method based on a noisy sorting routine. We show that this
SST model permits far more robust estimation as compared
to popular parametric models, while surprisingly, incurring
little penalty for this significant generality. Our results thus
present a strong motivation towards the use of such general
stochastic transitivity based models. Establishing the best
possible rates for polynomial-time algorithms over the full
class Cg; is a challenging open problem.
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