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Abstract

We propose and study a row-and-column affine

measurement scheme for low-rank matrix recov-

ery. Each measurement is a linear combination of

elements in one row or one column of a matrix

X . This setting arises naturally in applications

from different domains. However, current algo-

rithms developed for standard matrix recovery

problems do not perform well in our case, hence

the need for developing new algorithms and the-

ory for our problem. We propose a simple algo-

rithm for the problem based on Singular Value

Decomposition (SV D) and least-squares (LS),

which we term SVLS . We prove that (a simpli-

fied version of) our algorithm can recover X ex-

actly with the minimum possible number of mea-

surements in the noiseless case. In the general

noisy case, we prove performance guarantees on

the reconstruction accuracy under the Frobenius

norm. In simulations, our row-and-column de-

sign and SVLS algorithm show improved speed,

and comparable and in some cases better accu-

racy compared to standard measurements designs

and algorithms. Our theoretical and experimen-

tal results suggest that the proposed row-and-

column affine measurements scheme, together

with our recovery algorithm, may provide a pow-

erful framework for affine matrix reconstruction.

1. Introduction

In the low-rank affine matrix recovery problem, an un-

known matrix X ∈ Rn1×n2 with rank(X) = r is

measured indirectly via an affine transformation A :
Rn1×n2

→ R
d and possibly with additive (typically Gaus-

sian) noise z ∈ R
d. Our goal is to recover X from the

vector of noisy measurements b = A(X) + z. The prob-

lem has found numerous applications throughout science

Proceedings of the 32
nd International Conference on Machine

Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

and engineering, in different fields such as collaborative

filtering (Koren et al., 2009), face recognition (Basri & Ja-

cobs, 2003), quantum state tomography (Gross et al., 2010)

and computational biology (Chi et al., 2013). The prob-

lem has been studied mathematically quite extensively in

the last few years. Most attention thus far has been given

to two particular ensembles of random transformations A:

(i) the Matrix Completion (MC) setting, in which each

element of A(X) is a single entry of the matrix where

the subset of the observed measurements is sampled uni-

formly at random (Candès & Recht, 2009; Candès & Plan,

2010; Candès & Tao, 2010; Keshavan et al., 2009; 2010;

Recht, 2011) (ii) Gaussian-Ensemble (GE) affine-matrix-

recovery, in which each element of A(X) is a weighted

sum of all elements of X with i.i.d. Gaussian weights

(Candès & Plan, 2011; Recht et al., 2010). Remarkably,

although the recovery problem is in general NP-hard, when

r ≪ min(n1, n2) and under certain conditions on the ma-

trix X or the measurement operator A, one can recover X
from d ≪ n1n2 measurements with high probability and

using efficient algorithms (Candès & Recht, 2009; Recht

et al., 2010; Candès & Tao, 2010; Recht, 2011). However,

it is desirable to study the problem with other affine trans-

formations A beyond the two ensembles mentioned above

for the following reasons: (i) In some applications we can-

not control the measurements operator A, and different

models for the measurements may be needed to allow a re-

alistic analysis of the problem (ii) When we can control and

design the measurement operator A, other measurement

operators may outperform the two ensembles mentioned

above with respect to optimizing different resources such

as the number of measurements required, computation time

and storage. The main goal of this paper is to present and

study a different set of affine transformations, which we

term row-and-column affine measurements. This setting

may arise naturally in many applications, since it is often

natural and possibly cheap to measure a single row or col-

umn of a matrix, or a linear combination of a few such rows

and columns. For example, (i) In collaborative filtering, we

may wish to recover a users-items preference matrix and

have access to only a subset of the users, but can observe

their preference scores for all items (ii) When recovering
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a protein-RNA interactions matrix in molecular biology, a

single experiment may simultaneously measure the inter-

actions of a specific protein with all RNA molecules (Chu

et al., 2011).

In general, we can represent any affine transformation A in

matrix representation A(X) = Avec(X), where vec(X)
is a column vector obtained by stacking all columns of X
on top of each other. In our row and column framework

the measurement operator A is represented differently us-

ing two matrices A(R), A(C) which multiply X as a ma-

trix (rather than multiplying the vector vec(X)) from left

and right, respectively. We focus on two ensembles of

A(R), A(C): (i) Matrix Completion from single Columns

and Rows (RCMC). Here we observe single matrix entries

in similar to standard matrix completion case, however the

measured entries are not scattered randomly along the ma-

trix, but instead we sample a few rows and a few columns,

and measure all entries in these rows and columns. This

ensemble is implemented by setting the rows (columns) of

A(R) (A(C)) as random vectors from the standard basis of

R
n1 (Rn2 ). (ii) Gaussian Row-and-Column (GRC) mea-

surements. Here each set of measurements is a weighted

linear combination of the matrix’s rows (or columns) with

the weights taken as i.i.d. Gaussians. This ensemble is

implemented by setting the entries of A(R), A(C) as i.i.d.

Gaussian random variables.

The measurement operators A in our RCMC and GRC

models do not satisfy standard requirements which hold

for GE and MC. It is thus not surprising that algorithms

such as nuclear norm minimization (Recht et al., 2010;

Candès & Recht, 2009), which succeed for the GE and MC

models, fail in our case, and different algorithms and the-

ory are required. However, the specific algebraic structure

provided by the row-and-column measurements, allows us

to derive efficient and simple algorithms, and to analyze

their performance. In addition, we provide extensive sim-

ulation results, which demonstrate the improved accuracy

and speed of our approach over existing measurement de-

signs and algorithms. All of our algorithms and simulations

are implemented in a Matlab software package available at

https://github.com/avishaiwa/SVLS.

1.1. Prior Work

Before giving a detailed derivation and analysis of our de-

sign and algorithms, we give an overview of existing de-

signs and their properties. We concentrate on two prop-

erties: (i) storage required in order to represent the mea-

surement operator, and (ii) measurement sparsity, defined

as the sum over all measurements of the number of matrix

entries participating in each measurement, that is S(A) =
||vec(A)||0. The latter property may be related to measure-

ment costs, as well as to computational time.

In the Gaussian Ensemble model, the entries of the matrix

A in the matrix representation A(X) = Avec(X) are i.i.d.

Gaussian random variables, Aij ∼ N(0, 1). For this en-

semble, one can recover uniquely a low rank matrix X with

O(r(n1+n2)) noiseless measurements using nuclear norm

minimization (Recht et al., 2010; Candès & Plan, 2011)

or other methods such as Singular Value Projection (SVP)

(Jain et al., 2010), which is optimal up to constants. Re-

covery in this model is robust to noise, with only a small in-

crease in number of measurements. The main disadvantage

of this model is that the design requires O(dn1n2) storage

space for A, which could be problematic for large matri-

ces. Another possible disadvantage of this method is that

measurements are dense - each measurement represents a

linear combination of all O(n1n2) matrix entries, and the

overall measurement sparsity of A(X) is also O(dn1n2),
which could be problematic for large n1, n2.

In the standard matrix completion problem (Candès &

Recht, 2009) we can recover X with high probability from

single entries chosen uniformly at random using nuclear

norm minimization (Cai et al., 2010; Toh & Yun, 2010;

Candès & Tao, 2010; Ma et al., 2011; Recht, 2011) or us-

ing other methods such as SV D and gradient descent (Ke-

shavan et al., 2009; 2010). This model has the lowest stor-

age requirements (O(d)) and measurement sparsity (O(d)).
However, recovery guarantees for this model are weaker:

setting n = max(n1, n2), it is shown that Θ(nrlog(n))
measurements are required to recover a rank r matrix of

size n1 × n2 (Candès & Tao, 2010). In addition, unique

recovery from this number of measurements requires addi-

tional incoherence conditions on the matrix X , and recov-

ery of matrices which fail to satisfy such conditions (e.g.

matrices with a few spikes) may require a much larger num-

ber of measurements.

Recently a new design of rank one projections was pro-

posed (Cai & Zhang, 2015), where each measurement is of

the form αTXβ and such that α ∈ R
n1 , β ∈ R

n2 have

i.i.d standard Gaussian entries. It was proven that nuclear

norm minimization can recover X with high probability in

this design from O(n1r + n2r) measurements. This is the

first model deviating from MC and GE we are aware of.

This model is different from our row-and-column model,

as each measurement is obtained by multiplying X from

both sides, whereas in our model each measurement is ob-

tained by multiplying X from either left or right. More-

over, in our model the measurements are not chosen inde-

pendently from each other but come in groups of size n1

or n2 (corresponding to rows or columns A(R), A(C)). An

advantage of rank one projection is that it leads to a sig-

nificance reduction in measurement storage needed for A
with overall O(dn1 + dn2) storage space. However, each

measurement is still dense and involve all matrix elements,

hence measurement sparsity is O(dn1n2). In contrast, our
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GRC model requires only O(d) storage for A, and every

measurement depends only on O(n) elements, leading to a

reduced overall time for all measurements O(dn1 + dn2).

For RCMC, we need only O(dlog(n)
n

) storage for A, and

measurement sparsity is O(d).

2. Preliminaries and Notations

We denote by Rn1×n2
the space of matrices of size n1×n2,

by On1×n2
the space of matrices of size n1 × n2 with or-

thonormal columns, and by M(r)
n1×n2

the space of matrices

of size n1×n2 and rank 6 r. We denote n = max(n1, n2).

We denote by || · ||F the matrix Frobenius norm, by || · ||∗
the nuclear norm, and by || · ||2 the spectral norm. For a

vector, || · || denotes the standard l2 norm.

For X ∈ Rn1×n2we denote by span(X) the subspace of

R
n1 spanned by the columns of X and define PX to be the

orthogonal projection into span(X).

For a matrix X we denote by Xi• the i-th row, by X•j the

j-th column and by Xij the (i, j) element. For two sets of

indices I, J , we denote by XIJ the sub-matrix obtained by

taking the rows with indices in I and columns with indices

in J of X . We denote by [k] the set of indices 1, .., k. We

denote by vec(X) the (column) vector obtained by stacking

all the columns of X on top of each other.

We use the notation X
i.i.d.∼ G to denote a random matrix

X with i.i.d. entries Xij ∼ G.

For a rank-r matrix X ∈ M(r)
n1×n2

let X = UΣV T be the

Singular Value Decomposition (SV D) of X where U ∈
On1×r, V ∈ Or×n2

and Σ = diag(σ1(X), ..., σr(X))
with σ1(X) ≥ σ2(X) ≥ .. ≥ σr(X) > 0 the (non-

zero) singular values of X (we omit the zero singular val-

ues and their corresponding vectors from the decomposi-

tion). For a general matrix X ∈ Rn1×n2
we denote by

X(r) the top-r singular value decomposition of X , X(r) =
U•[r]Σ[r][r]V

T
•[r].

Our model assumes two affine transformations applied to

X , representing rows and columns, B(C,0) = XA(C) and

B(R,0) = A(R)X, achieved by multiplications with two

matrices A(R) ∈ Rk(R)×n1
and A(C) ∈ Rn2×k(C) , respec-

tively. We obtain noisy observations of these transforma-

tions, B(R), B(C) obtained by applying additive noise:

A(R)X + Z(R) = B(R) ; XA(C) + Z(C) = B(C) (1)

where the total number of measurements is d = k(R)n1 +
n2k

(C), and Z(R) ∈ Rn1×k(R) ,Z(C) ∈ Rk(C)×n2
are two

zero-mean noise matrices. Our goal is to recover X from

the observed measurements B(C) and B(R). To achieve

this goal, we define the squared loss function

F(X) = ||A(R)X −B(R)||2F + ||XA(C) −B(C)||2F (2)

and solve the least squares problem:

Minimize F(X) s.t. X ∈ M(r)
n1×n2

. (3)

If Z(R), Z(C) i.i.d.∼ N(0, τ2) , minimizing the loss function

in eq. (2) is equivalent to maximizing the log-likelihood of

the data, giving a statistical motivation for the above score.

Problem (3) is non-convex due to the non-convex rank con-

straint rank(X) ≤ r.

Our problem is a specialization of the general affine matrix

recovery problem (Recht et al., 2010), in which a matrix

is measured using a general affine transformation A with

b = A(X)+z. We consider next and throughout the paper

two specific random ensembles of measurement matrices:

1. Row and Column Matrix Completion (RCMC): In

this ensemble each row of A(R) and each column of

A(C) is a vector of the standard basis ej for some j -

thus each measurement B
(R)
ij or B

(C)
ij is obtained from

a single entry of X . We define a row-inclusion proba-

bility p(R) and column inclusion probability p(C) such

that each row (column) of X will be measured with

probability p(R) (p(C)). More precisely, we define

r1, .., rn1 i.i.d. Bernoulli variables, P (ri = 1) =
p(R), and include ei as a row in A(R) if and only if

ri = 1. Similarly, we define c1...cn2
i.i.d. Bernoulli

variables, P (ci = 1) = p(C), and include ei as a col-

umn in A(C) if and only if ci = 1. The expected

number of observed rows (columns) is k(R) = n1p
(R)

(k(C) = n2p
(C)). The model is very similar to the

possibly more natural model of picking k(R) distinct

rows and k(C) distinct columns at random for fixed

k(R), k(C), but allows for easier analysis.

2. Gaussian Rows and Columns (GRC): In this ensem-

ble A(R), A(C) i.i.d.∼ N(0, 1). Each observation B
(R)
ij

or B
(C)
ij is obtained by a weighted sum of a single row

or column of X , with i.i.d. Gaussian weights.

2.1. Comparison to Standard Designs

Our proposed rows-and-columns design differs from stan-

dard designs appearing in the literature. It is instructive

to compare our GRC ensemble to the Gaussian Ensem-

ble (GE) (Candès & Plan, 2011), with the matrix repre-

sentation A(X) = Avec(X) where A ∈ Rd×n1n2
and

A
i.i.d.∼ N(0, 1). For the latter, the following r-Restricted

Isometry Property (RIP) can be used:

Definition 1. (r-RIP) Let A : Rn1×n2 → R
d be a linear

map. For every integer r with 1 ≤ r ≤ min(n1, n2), de-

fine the r-Restricted Isometry Constant to be the smallest

number ǫr such that
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(1− ǫr)||X||F ≤ ||A(X)|| ≤ (1 + ǫr)||X||F (4)

holds for all matrices X of rank at most r.

The GE model satisfies the r-RIP condition for d = O(rn)
with high probability (Recht et al., 2010). Based on this

property it is known that nuclear norm minimization (Recht

et al., 2010; Candès & Plan, 2011) and other algorithms

such as SVP (Jain et al., 2010) can recover X with high

probability. Unlike GE, in our GRC model A(X) doesn’t

satisfy the r-RIP, and nuclear norm minimization fails. In-

stead, A(R), A(C) preserve matrix Frobenius norm in high

probability - a weaker property which holds for any low-

rank matrix. (see Lemma 7 in the Appendix).

We next compare RCMC to the standard Matrix Comple-

tion model (Candès & Recht, 2009), in which single entries

are chosen at random to be observed. Unlike GE, for MC

incoherence conditions on X are required in order to guar-

antee unique recovery of X (Candès & Recht, 2009) :

Definition 2. (Incoherence). Let U be a subspace of Rn

of dimension r, and PU be the orthogonal projection on U .

Then the coherence of U (with respect to the standard basis

{ei}) is defined as

µ(U)≡n

r
maxi||PU (ei)||2. (5)

We say that a matrix X ∈ Rn1×n2 is µ-incoherent if for the

SV D X = UΣV T we have max(µ(U), µ(V )) ≤ µ.

When X is µ-incoherent, and when known entries are sam-

pled uniformly at random from X , several algorithms (Ke-

shavan et al., 2009; Cai et al., 2010; Jain et al., 2010) suc-

ceed to recover X with high probability. In particular, nu-

clear norm minimization has gained popularity as a solver

for the standard MC problem because it provides recov-

ery guarantees and a convenient representation as a con-

vex optimization problem with availability of many itera-

tive solvers for the problem. However, nuclear norm mini-

mization fails for the RCMC design, even when the matrix

X is incoherent, as shown by the next example:

Example 1. Take X ∈ Rn×n for n
3 ∈ N with Xij =

1, ∀(i, j) ∈ [n] × [n]. Thus ||X||∗ = n. Take k(R) =
k(C) = n

3 . Set all unknown entries to 0.5, giving a matrix

X0 of rank 2 with σ1(X0) =
(
√
2+1)n
3 , σ2(X0) =

(
√
2−1)n
3 .

Therefore ||X0||∗ = n
√
2

3 < ||X||∗ and nuclear norm min-

imization fails to recover the correct X .

In Section 3 we present our SVLS algorithm, which does

not rely on nuclear-norm minimization. In Section 4 we

show that SVLS successfully approximates X for the GRC

ensemble.

3. Algorithms for Recovery of X

In this section we give an efficient algorithm which we call

SVLS (Singular Value Least Squares). SVLS is very easy

to implement - for simplicity, we start with Algorithm 1 for

the noiseless case and then present Algorithm 2 (SVLS )

which is applicable for the general (noisy) case.

3.1. Noiseless Case

In the noiseless case we reduce the optimization prob-

lem (3) to solving a system of linear equations (Candès

& Recht, 2009), and provide Algorithm 1, which often

leads to a closed-form estimator. We then give condi-

tions under which with high probability, the closed-form

solution is unique and is equal to the true matrix X . If

Algorithm 1

Input: A(R), A(C), B(R), B(C) and rank r

1. Compute a basis (of size r) to the column space of

B(C) using Gaussian elimination, represented as the

columns of a matrix Û ∈ Rn1×r.

2. Solve the linear system B
(R)
•j = A(R)ÛY•j for each

j = 1, .., n2 and write the solutions as a matrix Y =
Y•1...Y•n2

.

3. Output X̂ = ÛY

rank(A(R)Û) = r one can write the resulting estimator X̂
in closed-form as follows:

X̂ = ÛY = Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TB(R) (6)

Algorithm 1 does not treat the row and column measure-

ments symmetrically. We can apply the same algorithm,

but changing the role of rows and columns. The resulting

closed form solution is then:

X̂ = B(C)A(C)V̂ [V̂ TA(C)A(C)T V̂ ]−1V̂ T (7)

for an orthogonal matrix V̂ representing a basis for the rows

of X . Since the algorithm uses Gaussian elimination steps

for solving systems of linear equations, it is crucial that we

have exact noiseless measurements. Next, we modify the

algorithm to work also for noisy measurements.

3.2. General (Noisy) Case

In the noisy case we seek a matrix X minimizing the loss

F in eq. (2). The minimization problem is non-convex

and there is no known algorithm with optimality guaran-

tees. We propose Algorithm 2 (SVLS), which empirically

returns a matrix estimator X̂ with a low value of the loss
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F . In addition, we prove in Section 4 recovery guarantees

on the performance of SVLS.

Algorithm 2 SVLS

Input: A(R), A(C), B(R), B(C) and rank r

1. Compute Û , the r largest left singular vectors of B(C),

(Û is a basis for the columns space of B
(C)
(r) ).

2. Find the least-squares solution

Ŷ = argminY ‖ B(R) −A(R)ÛY ||F . (8)

If rank(A(R)Û) = r we can write Ŷ in closed form

as before:

Ŷ = [ÛTA(R)TA(R)Û ]−1ÛTA(R)TB(R). (9)

3. Compute the estimate X̂(R) = Û Ŷ .

4. Repeat steps 1-3, replacing the roles of columns and

rows to get an estimate X̂(C).

5. Set X̂ = argminX̂(R),X̂(C)F(X), for the loss F(X)
given in eq. (2).

3.2.1. GRADIENT DESCENT

The estimator X̂ returned by SVLS may not minimize the

loss function F in eq. (2). We therefore perform an ad-

ditional gradient descent stage starting from X̂ to achieve

an estimator with lower loss (while still possibly only a lo-

cal minimum since the problem is non-convex). SVLS can

be thus viewed as a fast method for providing a desirable

starting point for local-search algorithms. The details of the

gradient descent are given in the Appendix, Section 7.2.

3.3. Estimation of Unknown Rank

In real life problems, one doesn’t know the true rank of

a matrix and should estimate it from data. Our rows-

and-columns sampling design is particularly suitable for

rank estimation since rank(B(C,0)) = rank(B(R,0)) =
rank(X) with high probability when enough rows and

columns are sampled. In the noiseless case we can estimate

rank(X) by r̂=rank(B(C,0)) or rank(B(R,0)).

For the noisy case we estimate rank(X) from B(C), B(R).

We use the popular elbow method to estimate rank(B(C))
in the following way

r̂(C) = argmaxi∈[k(C)−1]

(

σi(B
(C))

σi+1(B(C))

)

(10)

We compute similarly r̂(R) from B(R) and take the aver-

age as our rank estimator, r̂ = round
(

r̂(C)+r̂(C)

2

)

. We

demonstrate the performance of our rank estimation using

simulations in the Appendix, Section 7.7.

Modern methods for rank estimation from singular val-

ues (Gavish & Donoho, 2014) can be similarly applied to

B(R), B(C) and may yield more accurate rank estimates.

After we estimate the rank, we can plug-in r̂ as the rank

parameter in the SVLS algorithm and recover X .

3.4. Low Rank Approximation

In the low rank matrix approximation problem, the goal

is to approximate a (possibly full rank) matrix X by the

closest (in Frobenius norm) rank-r matrix X(r). By the

Eckart-Young Theorem (Eckart & Young, 1936), this prob-

lem has a closed-form solution which is the truncated SV D
of X . SV D is a powerful tool in affine matrix recov-

ery and different algorithms such as SVT, OptSpace , SVP

and others apply SV D. In (Halko et al., 2011) the authors

try to find a low rank approximation to X using measure-

ments XA(C) = B(C) and A(R)X = B(R). For large

n1, n2 they give a single-pass algorithm which computes

X(r) using only B(C) and B(R). We bring their algorithm

in the Appendix, Section 7.6. The main difference between

the above formulation and our problem in eq. (3) is the

rank estimation. In (Halko et al., 2011) it is assumed that

k(R) = k(C) = k and one estimates X(k) instead of a rank-

r matrix which can lead to poor performance if r ≪ k. We

adjusted the algorithm presented in (Halko et al., 2011) to

our problem and give a new estimator which is a combina-

tion of SVLS and (Halko et al., 2011)’s method, replacing

X̂(R) and X̂(C) in steps 3,4 of SVLS by:

X̂
(R)
P = X̂(R)V̂ V̂ T , X̂

(C)
P = Û ÛT X̂(C). (11)

Here V̂ is the r largest right singular vectors of B(R) and

Û is the r largest left singular vectors of B(C). We call this

new estimator SV LSP . Simulations show almost identical

and in some cases slightly better performance of this mod-

ified algorithm compared to SVLS (see Appendix, Section

7.6). This modified estimator is however difficult to an-

alyze rigorously, and therefore we present throughout the

paper our results for the SVLS estimator.

4. Performance Guarantees

In this section we give guarantees on the accuracy of the

estimator X̂ returned by SVLS . Our guarantees are prob-

abilistic, with respect to randomizing the design matrices

A(R), A(C). For the noiseless case we give conditions

which are close to optimal for exact recovery.
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4.1. Noiseless Case

A rank r matrix of size n1×n2 has r(n1+n2− r) degrees

of freedom, and can therefore not be uniquely recovered

by fewer measurements. Setting k(R) = k(C) = r gives

precisely this minimal number of measurements. We next

show that this number suffices, with probability 1, to guar-

antee accurate recovery of X in the GRC model. In the

RCMC model the number of measurements is increased by

a logarithmic factor in n and we need an additional inco-

herence assumption on X in order to guarantee accurate

recovery with high probability. We first present two Lem-

mas which will be useful. Their proofs are given in the

Appendix, Section 7.1.

Lemma 1. Let X1, X2 ∈ M(r)
n1×n2

and A(R) ∈
Rk(R)×n1

, A(C) ∈ Rn2×k(C) such that rank(A(R)X1) =

rank(X1A
(C)) = r. If A(R)X1 = A(R)X2 and

X1A
(C) = X2A

(C) then X1 = X2.

Lemma 2. Let X ∈ M(r)
n1×n2

and A(R) ∈
Rk(R)×n1

, A(C) ∈ Rn2×k(C) such that rank(A(R)X) =

rank(XA(C)) = r. For Algorithm 1 with inputs

A(R), A(C), B(R,0), B(C,0) and r the output X̂ satisfies

A(R)X = A(R)X̂, XA(C) = X̂A(C) (12)

4.1.1. EXACT RECOVERY FOR GRC

For the noiseless case, we can recover X with the minimal

number of measurements, as shown in Theorem 1 (proof

given in the Appendix, Section 7.1):

Theorem 1. Let X̂ be the output of Algorithm 1 in the GRC

model with Z(C), Z(R) = 0 and k(R), k(C) ≥ r. Then

P (X̂ = X) = 1.

4.1.2. EXACT RECOVERY FOR RCMC

In the RCMC model, rows and columns of X are sampled

with replacement. Since the same row can be sampled over

and over, we cannot guarantee uniqueness of solution, as

was the case for the GRC model, but rather wish to prove

that exact recovery of X is possible with high probabil-

ity. We assume the Bernoulli rows and columns model

as described in Section 2 and assume for simplicity that

k(R) = k(C) = k.

Theorem 2. Let X = UΣV T be the SV D of X ∈
Rn1×n2 , and max(µ(U), µ(V )) < µ. Take A(R) and

A(C) as in the RCMC model without noise and probabil-

ities p(R) = k
n1

and p(C) = k
n2

. Let β > 1 such that

CR

√

βlog(n)rµ
k

< 1 where CR is uniform constant and

let X̂ be the output of Algorithm 1. Then P
(

X̂ = X
)

>

1− 6min(n1, n2)
−β .

The proof of Theorem 2 is in the Appendix, Section 7.3.

Remark 1. Both row and column measurements are need

in order to guarantee unique recovery. If, for example, we

observe only rows then even with n− 1 observed rows and

rank r = 1 we can only determine the unobserved row up

to a constant, and thus cannot recover X uniquely.

4.2. General (Noisy) Case

In the noisy case we cannot guarantee exact recovery of

X , and our goal is to minimize the error ||X − X̂||F for

X̂ the output of SVLS. Here, we give bounds on the error

for the GRC model. For simplicity, we show the result for

k(R) = k(C) = k.

We focus on the high dimensional case k ≤ n, where

the number of measurements is low. In this case our

bound is similar to the bound of the Gaussian Ensemble

(GE). In (Candès & Plan, 2011) it is shown for GE that

||X − X̂||F < CG

√

nrτ2

d
holds with high probability for

some constant CG. We next give an analogous result for

our GRC model (proof in the Appendix, Section 7.4).

Theorem 3. Let A(R) and A(C) with k ≥ max(4r, 40)
be as in the GRC model with noise matrices Z(R), Z(C).

Let X̂ be the output of SVLS. Then there exist constants

c, c(R), c(C) such that with probability > 1− 5e−ck:

||X − X̂||F ≤
√

r

k

[

c(C)||Z(C)||2 + c(R)||Z(R)||2
]

. (13)

Theorem 3 applies for any Z(C) and Z(R). If k ≤ n

and Z(R), Z(C) i.i.d.∼ N(0, τ2), then from eq. (35) we

get max(||Z(R)||2, ||Z(C)||2) ≤ 4τ
√
n with probability

1 − e−2n. We therefore get the next Corollary for i.i.d.

additive Gaussian noise:

Corollary 1. Let A(R), A(C) as in the GRC with n ≥ k ≥
max(4r, 40), model and Z(R), Z(C) i.i.d.∼ N(0, τ2). Then

there exist constants c, CGRC such that:

P
(

||X − X̂||F ≤ CGRC

√

τ2nr

k

)

> 1− 5e−ck − e−2n.

(14)

5. Simulations Results

We studied the performance of our algorithm using simula-

tions. We measured the reconstruction accuracy using the

Relative Root-Mean-Squared-Error (RRMSE), defined as

RRMSE ≡ RRMSE(X, X̂) ≡ ||X − X̂||F /||X||F .
(15)

For simplicity, we concentrated on square matrices with

n1 = n2 = n and used an equal number of row and col-

umn measurements, k(R) = k(C) = k . In all simula-
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Figure 1. Reconstruction rates for matrices with dimension n =
150 and r = 3 where d is the number of known entries varied

between 0 to 8000. SVT and OptSpace are applied to the standard

MC design and Algorithm 1 to RCMC. For each d we sampled 50
matrices and calculated the reconstruction rate as described in the

main text.

tions we sampled a random rank-r matrix X = UV T with

U, V ∈ Rn×r , U, V
i.i.d.∼ N(0, σ2).

In all simulations we assumed that rank(X) is unknown

and estimated using the elbow method in eq. (10).

5.1. Row-Column Matrix Completion (RCMC)

In the noiseless case we compared our design to stan-

dard MC. We compared the reconstruction rate (probabil-

ity of exact recovery of X as function of the number of

measurements d) for the RCMC design with SVLS to the

reconstruction rate for the standard MC design with the

OptSpace (Keshavan et al., 2010) and SVT(Cai et al., 2010)

algorithms. To allow for numerical errors, for each simu-

lation yielding X and X̂ we defined recovery as successful

if their RRMSE was lower than 10−3, and for each value

of d recorded the percentage of simulations for which re-

covery was successful. In Figure 1 we show results for

n = 150, r = 3 and σ = 1. SVLS recovers X with

probability 1 with the optimal number of measurements

d = r(2n − r) = 894 yielding d
n2 ≈ 0.04 while MC with

OptSpace and SVT need roughly 3-fold and 8-fold more

measurements, respectively, to guarantee exact recovery.

The improvement in accuracy is not due to our design or

our algorithm alone, but due to their combination. We com-

pared our method to OptSpace and SVT for RCMC. We

sampled a matrix X with n = 100, r = 3, σ = 1 and noise

level τ2 = 0.252, and varied the number of row and col-

umn measurements k. Figure 2 shows that while the perfor-

mance of SVLS is very stable even for small k, the perfor-

mance of OptSpace varies, with multiple instances achiev-

ing poor accuracy, and SVT which minimizes the nuclear

10
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10
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k

8 10 12 14 16

R
R

M
S

E

SVT

OptSpace

SVLS

Figure 2. Box-plots represent the distribution of RRMSE as

a function of the number of column and row measurements k

over 50 different sampled matrices X = UV T with U, V
i.i.d.∼

N(0, 1) and Z(R), Z(C) i.i.d.∼ N(0, 0.252). OptSpace (red) fails

to recover X on many instances while SVLS (blue) performs very

well on all of them. SVT (black) fails to recover X for all in-

stances. The trimming of dense rows and columns in OptSpace

was skipped, since such trimming in our settings may delete all

measurement information for low k.

norm achieves poor accuracy for all problem instances.

Remark 2. The OptSpace algorithm has a trimming step

which delete dense columns. We omitted this step in the

RCMC model since it would delete all the known columns

and rows and it’s not stable for this type of measurements,

but it still get better result than SVT.

Next, we compared our RCMC to standard MC. We sam-

pled X as before with U, V ∈ R1000×r with standard

Gaussian distribution, different rank and different noise ra-

tio. The observations were corrupted by additive Gaussian

noise Z with relative noise level NR ≡ ||Z||F /||X||F .

Results, displayed in Table 1, show that SVLS is signifi-

cantly faster than the other two algorithms. It is also more

accurate than MC for small number of measurements, and

comparable to MC for large number of measurements.

Finally, we checked for RCMC and MC our performance

only on unobserved entries, to examine if RRMSE is

optimistic due to overfitting to observed entries. Results,

shown in the Appendix, Section 7.8, indicate than no over-

fitting is observed.

5.2. Gaussian Rows and Columns (GRC)

We tested the performance of the GRC model with

A(R), A(C) i.i.d.∼ N(0, 1
n
) and with X = UV T where

U, V
i.i.d.∼ N(0, 1√

r
). We compare our results to the Gaus-

sian Ensemble model (GE) where for each n, A(X) was
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Table 1. RRMSE and time in seconds (in parenthesis) for SVLS

applied to RCMC, and OptSpace and SVT applied to the standard

MC. Results represent average of 5 different random matrices.

SVLS is faster than OptSpace and SVT by 1 to 3 orders of mag-

nitudes, and shows comparable or better RRMSE in all cases.

NR d r SVLS OptSpace SVT

10−2 120156 10 0.0063 (0.15) 0.004 (20.8) 0.0073 (18.7)

10−1 120156 10 0.064 (0.15) 0.044 (21.7) 0.05 (11)
1 120156 10 0.612 (0.16) 0.49 (24.5) 0.51 (1)

10−2 59100 20 0.029 (0.12) 0.97 (25.6) 0.76 (4.4)

10−1 59100 20 0.3 (0.12) 0.98 (40.1) 0.86 (6.5)

10−1 391600 50 0.081 (0.7) 0.05 (1200) 0.069 (13)
1 391600 50 0.72 (0.6) 0.61 (1300) 0.59 (5)

0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
10

−4

10
−3

10
−2

10
−1

10
0

10
1

R
R

M
S

E

d/n2

GE+APGL τ=0.1

GE+APGL τ=0.01

GE +APGLτ=0.001

GRC+SVLS τ=0.1

GRC+SVLS τ=0.01

GRC+SVLS τ=0.001

Figure 3. RRMSE as function of d, the number of measure-

ments, where we take X ∈ M(2)
100×100, d is varied from 400 to

4000 and for different noise levels: τ = 0.1, 0.01 and 0.001. For

every point we simulated 5 random matrices and computed the

average RRMSE.

normalized to allow a fair comparison. In Figure 3 we take

n = 100 and r = 2, and change the number of measure-

ments d = 2nk (where A(R) ∈ Rk×n and A(C) ∈ Rn×k).

We added Gaussian noise Z(R), Z(C) with different noise

levels τ . For all noise levels, the performance of GRC was

better than the performance of GE. The RRMSE error de-

cays at a rate of
√
k. For GE we used the APGL algorithm

(Toh & Yun, 2010) for nuclear norm minimization.

In the next tests we ran SVLS for measurements with dif-

ferent noise levels. We take n = 1000 and k = 100
with different rank level every entry in Z(C), Z(R) i.i.d.∼
N(0, τ2) and different values of τ . Results are shown in

Figure 4. The change in the relative error RRMSE is lin-

ear in τ while the rate depends on r.

We next examined the behaviour of the RRMSE when

n → ∞ and when n, k, r → ∞ together, while the ra-

tios k
n

and d
r

are kept constant. Results (shown in the Ap-

pendix, Section 7.5) indicate that when properly scaled, the

RRMSE error is not sensitive to the value of n and other
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Figure 4. RRMSE as a function of noise level τ varied from

0 to 0.1, for matrices X ∈ R1000×1000 of different ranks. For

each curve we fitted a linear regression line, with fitted slopes

0.145, 0.208, 0.25, 0.3 for r = 2, 4, 6, 8, respectively. The slope

is roughly proportional to
√
r in concordance with the error bound

in Theorem 3. Further investigation of the relation using extensive

simulations is required in order to evaluate the dependency of the

recovery error in r in a more precise manner.

parameters, in agreement with Theorem 3.

6. Discussion

We introduced a new measurements ensemble for low rank

matrix recovery where every measurements is an affine

combination of a row or column of X . We focused on two

models: matrix completion from single columns and rows

(RCMC) and matrix recovery from Gaussian combination

of columns and rows (GRC). We proposed a fast algorithm

for this ensemble. For the RCMC model we proved that in

the noiseless case our method recovers X with high prob-

ability and simulation results show that the RCMC model

outperforms the standard approach for matrix completion

in both speed and accuracy for models with small noise.

For the GRC model we proved that our method recovers X
with the optimal number of measurements in the noiseless

case and gave an upper bounds on the error for the noisy

case. For RCMC, our simulations show that the RCMC

design may achieve comparable or favorable results, com-

pared to the standard MC design, especially for low noise

level. Proving recovery guarantees for this RCMC model

is an interesting future challenge.

Our proposed measurement scheme is not restricted to re-

covery of low-rank matrices. One can employ this mea-

surement scheme and recover X by minimizing other ma-

trix norms. This direction can lead to new algorithms that

may improve matrix recovery for real datasets.
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