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7. Appendix

7.1. Proofs for Noiseless GRC Case

Proof of Lemma 1

Proof. First, rank(X2A
(C)) = rank(X1A

(C)) = r and rank(A(R)X2) = rank(A(R)X1) = r. Since

span(X1A
(C)), span(X2A

(C)) are subspaces of span(X1), span(X2) respectively, and dim(span(X2)) ≤ r we get

span(X2) = span(X2A
(C)) = span(X1A

(C)) = span(X1), and we define U ∈ On1×r a basis for this subspace.

For X1, X2 there are Y1, Y2 ∈ Rr×n2 such that X1 = UY1, X2 = UY2. Therefore A(R)UY1 = A(R)UY2. Since

rank(A(R)UY1) = r and U ∈ On1×r we get rank(A(R)U) = r, hence the matrix UTA(R)TA(R)U is invertible, which

gives Y1 = Y2, and therefore X1 = UY1 = UY2 = X2.

Proof of Lemma 2

Proof. span(XA(C)) ⊆ span(X) and rank(XA(C)) = rank(X) = r, hence span(XA(C)) = span(X) and Û
from stage 1 in Algorithm 1 is a basis for span(X). We can write X = ÛY for some matrix Y ∈ Rr×n2

. Since

rank(A(R)ÛY ) = rank(Û) = r, we have rank(A(R)Û) = r. Thus eq. (6) gives X̂ in closed form and we get:

A(R)X̂ = A(R)Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TB(R,0) =

A(R)Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TA(R)ÛY =

A(R)ÛY = A(R)X. (16)

X̂A(C) = Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TA(R)XA(C) =

Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TA(R)ÛY A(C) =

ÛY A(C) = XA(C). (17)

Lemma 3. Let V ∈ On×r and A(C) ∈ Rn×k be a random matrix A(C) i.i.d.∼ N(0, σ2). Then V TA(C) i.i.d.∼ N(0, σ2).

Proof. For any two matrices A ∈ Rn1×n2
and B ∈ Rm1×m2

we define their Kronecker product as a matrix in

Rn1m1×n2m2 :

A⊗B =













a11B a12B . . a1n2
B

. . . . .

. . . . .

. . . . .
an11B an12B . . an1n2

B













(18)

Now, we have vec(V TA(C)) = (In ⊗ V T )vec(A(C)) and since vec(A(C)) ∼ N(0, σIn) the vector (In ⊗ V T )vec(A(C))
is also a multivariate Gaussian vector with zero mean and covariance matrix:

COV
(

V TA(C)
)

= COV
(

(In ⊗ V T )vec(A(C))
)

=

(In ⊗ V T )COV
(

vec(A(C))
)

(In ⊗ V T )T =

σ2(In ⊗ V T )(In ⊗ V T )T = σ2Ir ⊗ In = σ2Inr. (19)

Proof of Theorem 1

For the GRC model, Lemmas 1,2 and 3 can be used to prove exact recovery of X with the minimal possible number of

measurements:
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Proof. Let UΣV T be the SV D of X . From Lemma 3 the elements of the matrix V TA(C) have a continuous Gaussian

distribution and since the measure of low rank matrices is zero and k(C) ≥ r we get that P (rank(V TA(C)) = r) = 1.

Since B(C) = UΣV TA(C) we get P (rank(B(C)) = rank(UΣV TA(C)) = r) = 1. In the same way P (rank(B(R)) =
r) = 1. Combining Lemma 2 with Lemma 1 give us the required result.

7.2. Gradient Descent

The gradient descent stage is performed directly in the space of rank r matrices, using the decomposition X̂=WS where

W ∈ Rn1×r and S ∈ Rr×n2 and computing the gradient of the loss as a function of W and S,

L(W,S) = F(WS) = ||A(R)WS −B(R)||2F + ||WSA(C) −B(C)||2F . (20)

We want to minimize eq. (20) but the loss L isn’t convex and therefore gradient descent may fail to converge to a global

optimum. We propose X̂ (the output of SVLS) as a starting point which may be close enough to enable gradient descent

to converge to the global optimum, and in addition may accelerate convergence.

The gradient of L is (using the chain rule)

∂L
∂W

= 2
[

A(R)T (A(R)WS −B(R))ST + (WSA(C) −B(C))A(C)T ST
]

∂L
∂S

= 2
[

WTA(R)T (A(R)WS −B(R)) +WT (WSA(C) −B(C))A(C)T
]

(21)

7.3. Proofs for Noiseless RCMC Case

We prove that if U ∈ On1×r is orthonormal then with high probability p−1||UTA(R)TA(R)U − pIr||2 < 1. Because U is

orthonormal, this is equivalent to

p−1||UUTA(R)TA(R)UUT − pUUT ||2 < 1⇔ p−1||PUPA(R)T PU − pPU ||2 < 1 (22)

where PU = UUT , PA(R)T = A(R)TA(R) and p(R) = p. We generalize Theorem 4.1 from (Candès & Recht, 2009).

Lemma 4. Suppose A(R) as in the RCMC model with inclusion probability p, and U ∈ On1×r with µ(U) =
n1

r maxi||PU (ei)||2 = µ. Then there is a numerical constant CR such that for all β > 1, if CR

√

βlog(n1)rµ
pn1

< 1

then:

P

(

p−1||PUPA(R)T PU − pPU ||2 < CR

√

βlog(n1)rµ

pn1

)

> 1− 3n−β
1 (23)

The proof of Lemma 4 builds upon (yet generalizes) the proof of Theorem 4.1 from (Candès & Recht, 2009). We next

present a few lemmas which are required for the proof of Lemma 4. We start with a lemma from (Candès & Romberg,

2007).

Lemma 5. If yi is a family of vectors in R
d and ri is a sequence of i.i.d. Bernoulli random variables with P (ri = 1) = p,

then

E
(

p−1||Σi(ri − p)yi ⊗ yi||
)

< C

√

log(d)

p
maxi||yi|| (24)

for some numerical constant C provided that the right hand side is less than 1.

We next use a result from large deviations theory (Talagrand, 1996):

Theorem 4. Let Y1...Yn be a sequence of independent random variables taking values in a Banach space and define

Z = supf∈F

n
∑

i=1

f(Yi) (25)
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where F is a real countable set of functions such that if f ∈ F then −f ∈ F .

Assume that |f | ≤ B and E(f(Yi)) = 0 for every f ∈ F and i ∈ [n]. Then there exists a constant C such that for every

t ≥ 0

P
(

|Z − E(Z)| ≥ t
)

≤ 3exp

( −t
CB

log(1 +
t

σ +Br
)

)

(26)

where σ = supf∈F
∑n

i=1 E(f2(Yi)).

Theorem 4 is used in the proof of the next lemma which is taken from Theorem 4.2 in (Candès & Recht, 2009). We bring

here the lemma and proof in our notations for convenience.

Lemma 6. Let U ∈ On×r with incoherence constant µ. Let ri be i.i.d. Bernoulli random variables with P (ri = 1) = p
and let Yi = p−1(ri − p)PU (ei) ⊗ PU (ei) for i = 1, .., n. Let Y =

∑n
i=1 Yi and Z = ||Y ||2. Suppose E(Z) ≤ 1. Then

for every λ > 0 we have

P
(

|Z − E(Z)| ≥ λ

√

µrlog(n)

pn

)

≤ 3exp
(

− γmin(λ2log(n), λ

√

pnlog(n)

µr
)
)

(27)

for some positive constant γ.

Proof. We know that Z = ||Y ||2 = supf1,f2〈f1, Y f2〉 = supf1,f2
∑n

i=1〈f1,Yif2〉, where the supremum is taken over a

countable set of unit vectors f1, f2 ∈ FV . Let F be the set of all functions f such that f(Y ) = 〈f1, Y f2〉 for some unit

vectors f1, f2 ∈ FV . For every f ∈ F and i ∈ [n] we have E(f(Yi)) = 0. From the incoherence of U we conclude that

|f(Yi)| = p−1|ri − p| × |〈f1, PU (ei)〉| × |〈PU (ei), f2〉| ≤ p−1||PU (ei)||2 ≤ p−1 r

n
µ. (28)

In addition

E(f2(Yi)) = p−1(1− p)〈f1, PU (ei)〉2〈PU (ei), f2〉2 ≤

p−1||PU (ei)||2|〈PU (ei), f2〉2| ≤ p−1 r

n
µ|〈PU (ei), f2〉|2. (29)

Since
∑n

i=1 |〈PU (ei), f2〉|2 =
∑n

i=1 |〈ei, PU (f2)〉|2 = ||PU (f2)||2 ≤ 1, we get
∑n

i=1 E(f2(Yi)) ≤ p−1 r
nµ.

We can take B = 2p−1 r
nµ and t = λ

√

µrlog(n)
pn and from Theorem 4:

P (|Z − E(Z)| ≥ t) ≤ 3exp

( −t
KB

log(1 +
t

2
)

)

≤ 3exp

(−tlog(2)
KB

min(1,
t

2
)

)

(30)

where the last inequality is due to the fact that for every u > 0 we have log(1 + u) ≥ log(2)min(1, u). Taking γ =
−log(2)/K finishes our proof.

We are now ready to prove Lemma 4

Proof. (Lemma 4) Represent any vector w ∈ Rn1 in the standard basis as w =
∑n1

i=1〈w, ei〉ei. Therefore PU (w) =
∑n1

i=1〈PU (w), ei〉ei =
∑n1

i=1〈w,PU (ei)〉ei. Recall the ri Bernoulli variables which determine if ei is included as a row of

A(R) as in Section 2 and define Yi and Z as in Lemma 6. We get

PA(R)T PU (w) =

n1
∑

i=1

ri〈w,PU (ei)〉ei =⇒ PUPA(R)T PU (w) =

n1
∑

i=1

ri〈w,PU (ei)〉PU (ei) (31)

In other words the matrix PUPA(R)T PU is given by

PUPA(R)T PU =

n1
∑

i=1

riPU (ei)⊗ PU (ei) (32)
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U is µ−incoherent, thus maxi∈[n1]||PU (ei)|| ≤
√

rµ
n1

, hence from Lemma 5 we have for p large enough:

E(p−1||PUPA(R)T PU − pPU ||2) < C

√

log(n1)rµ

pn1
≤ 1. (33)

For β > 1 which satisfy the lemma’s requirement, take λ =
√

β
γ where γ as in Theorem 4. We get that if p > µlog(n1)rβ

n1γ

then from Lemma 6 with probability of at least 1 − 3n−β
1 we have Z ≤ C

√

log(n1)rµ
pn1

+ 1√
γ

√

log(n1)rµβ
pn1

. Taking CR =

C + 1√
γ finishes our proof.

Proof of Theorem 2

Proof. From Lemma 4 and using a union bound we have that with probability > 1− 6min(n1, n2)
−β , p(R)−1||p(R)Ir −

UTA(R)TA(R)U ||2 < 1 and p(C)−1||p(C)Ir − V TA(C)A(C)T V ||2 < 1. Since the singular values of p(R)Ir −
UTA(R)TA(R)U are |p(R) − σi(U

TA(R)TA(R)U)| for 1 ≤ i ≤ r, we have

p(R) − σr(U
TA(R)TA(R)U) ≤ σ1(p

(R)Ir − UTA(R)TA(R)U) < p(R) ⇒ 0 < σr(U
TA(R)TA(R)U) (34)

and similarly for V TA(C)A(C)T V . Therefore rank(A(R)U) = rank(V TA(C)) = r and rank(A(R)X) =
rank(XA(C)) = r with probability > 1 − 6min(n1, n2)

−β . From Lemma 2 we get A(R)X = A(R)X̂ XA(C) =
X̂A(C) and from Lemma 1 we get X = X̂ with probability > 1− 6min(n1, n2)

−β .

7.4. Proofs for Noisy GRC Case

The proof of Theorem 3 is using strong concentration results on the largest and smallest singular values of n × k matrix

with i.i.d Gaussian entries:

Theorem 5. (Szarek, 1991) Let A ∈ Rn×k be a random matrix A
i.i.d.∼ N(0, 1

n ). Then, its largest and smallest singular

values obey:

P
(

σ1(A) > 1 +

√
k√
n
+ t
)

≤e−nt2/2

P
(

σk(A) ≤ 1−
√
k√
n
− t
)

≤e−nt2/2. (35)

Corollary 2. Let A ∈ Rn×k be a random matrix A
i.i.d.∼ N(0, 1) where n ≥ 4k, and let A† be the Moore-Penrose

pseudoinverse of A. Then

P

(

||A†||2 ≤
6√
n

)

> 1− e−n/18 (36)

Proof. Since A† is the pseudoinverse of A, ||A†||2= 1
σk(A) and from Theorem 5 we get σk(A) ≥

√
n −

√
k − t

√
n with

probability ≥ 1 − ent
2/2 (notice the scaling by

√
n of the entries of A compared to Theorem 5). Therefore, if we take

n ≥ 4k and t = 1
3 we get

P

(

||A†||2 ≤
6√
n

)

= P

(

σk(A) ≥
√
n

6

)

≥ 1− e−n/18. (37)

We also use the following lemma from (Shalev-Shwartz & Ben-David, 2014):

Lemma 7. Let Q to be a finite set of vectors in R
n, let δ ∈ (0, 1) and k be an integer such that

ǫ ≡
√

6log(2|Q|/δ)
k

≤ 3. (38)
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Let A ∈ Rk×n be a random matrix with A
i.i.d.∼ N(0, 1

k ). Then,

P

(

maxx∈Q

∣

∣

∣

∣

||Ax||2
||x||2 − 1

∣

∣

∣

∣

≤ ǫ

)

> 1− δ. (39)

Lemma 7 is a direct result of the Johnson-Lindenstrauss lemma (Dasgupta & Gupta, 2003) applied to each vector in Q
and using the union bound. Representing the vectors in Q as a matrix, Lemma 7 shows that A(R), A(C) preserve matrix

Frobenius norm with high probability - a weaker property than the RIP which holds for any low-rank matrix.

To prove Theorem 3, we first represent ||X − X̂||F as a sum three parts (Lemma 8), then give probabilistic upper bounds

to each of the parts and finally use union bound. We define A
(R)

Û
= A(R)Û and A

(C)

V T = V TA(C). From Lemma 3

A
(R)

Û
, A

(C)

V T

i.i.d.∼ N(0, 1), hence rank(A
(R)

Û
) = rank(A

(C)

V T ) = r with probability 1. We assume w.l.o.g that X̂ = X̂(R)

(see SVLS description). Therefore, from eq. (9) we have X̂ = Û(A
(R)T

Û
A

(R)

Û
)−1A

(R)T

Û
B(R).

We denote by A
(R)

Û

†
= (A

(R)T

Û
A

(R)

Û
)−1A

(R)T

Û
and A

(C)

V T

†
= A

(C)T

V T (A
(C)

V T A
(C)T

V T )−1 the Moore-Penrose pseudoinverse of

A
(R)

Û
and A

(C)

V T , respectively. We next prove the following lemma

Lemma 8. Let A(R) and A(C) be as in the GRC model and Z(R), Z(C) be noise matrices. Let X̂ be the output of SVLS.

Then:

||X − X̂||F ≤ I+ II+ III

where:

I ≡ ||(B(C,0) −B
(C)
(r) )A

(C)

V T

†
||F (40)

II ≡||ÛA
(R)

Û

†
A(R)(B(C,0) −B

(C)
(r) )A

(C)

V T

†
||F (41)

III ≡||ÛA
(R)

Û

†
Z(R)||F . (42)

Proof. We represent ||X − X̂||F as follows

||X − X̂||F =

||X − Û(A
(R)T

Û
A

(R)

Û
)−1A

(R)T

Û
(A(R)X + Z(R))||F =

||X − ÛA
(R)

Û

†
A(R)X − ÛA

(R)

Û

†
Z(R)||F ≤

||X − ÛA
(R)

Û

†
A(R)X||F + III (43)

where we have used the triangle inequality. We next use the following equality

XA(C)A
(C)

V T

†
V T = UΣV TA(C)A

(C)

V T

†
V T = UΣV T = X (44)

to obtain:

||X − ÛA
(R)

Û

†
A(R)X||F =

||(In − ÛA
(R)

Û

†
A(R))X||F =

||(In − ÛA
(R)

Û

†
A(R))XA(C)A

(C)

V T

†
V T ||F =

||(In − ÛA
(R)

Û

†
A(R))B(C,0)A

(C)

V T

†
||F (45)
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where the last equality is true because V is orthogonal.

Since Û is a basis for span(B
(C)
(r) ) there exists a matrix Y such that ÛY = B

(C)
(r) and we get:

(In − ÛA
(R)

Û

†
A(R))B

(C)
(r) = B

(C)
(r) − ÛA

(R)

Û

†
A(R)ÛY = B

(C)
(r) − ÛY = 0. (46)

Therefore

||(In − ÛA
(R)

Û

†
A(R))B(C,0)A

(C)

V T

†
||F =

||(In − ÛA
(R)

Û

†
A(R))(B(C,0) −B

(C)
(r) )A

(C)

V T

†
||F ≤

||(B(C,0) −B
(C)
(r) )A

(C)

V T

†
||F + ||ÛA

(R)

Û

†
A(R)(B(C,0) −B

(C)
(r) )A

(C)

V T

†
||F = I+ II (47)

Combining eq. (43) and eq. (47) gives the required result.

We next bound each of the three parts in the formula of Lemma 8. We use the following claim:

Claim 1. ||B(C,0) −B
(C)
(r) ||2 ≤ 2||Z(C)||2

Proof. We know that ||B(C) −B
(C)
(r) ||2 ≤ ||B(C) −B(C,0)||2 since rank(B

(C)
(r) ) = rank(B(C,0)) = r with probability 1,

and by definition B
(C)
(r) is the closest rank-r matrix to B(C) in Frobenius norm. Therefore from the triangle inequality

||(B(C,0) −B
(C)
(r) )||2 ≤ ||B

(C) −B
(C)
(r) ||2 + ||B

(C) −B(C,0)||2 ≤ 2||B(C,0) −B(C)||2 = 2||Z(C)||2. (48)

Now we are ready to prove Theorem 3. The proof uses the following inequalities for matrix norms for any two matrices

A,B:

||AB||2 ≤ ||A||2||B||2
||AB||F ≤ ||A||F ||B||2

rank(A) 6 r ⇒ ||A||F ≤
√
r||A||2. (49)

Proof. (Theorem 3) We prove (probabilistic) upper bounds on the three terms appearing in Lemma 8.

1. We have

rank

(

(B(C,0) −B
(C)
(r) )A

(C)

V T

†
)

6 rank

(

A
(C)

V T

†
)

6 r. (50)

Therefore

I = ||(B(C,0) −B
(C)
(r) )A

(C)

V T

†
||F ≤

√
r||(B(C,0) −B

(C)
(r) )||2||A

(C)

V T

†
||2 (51)

Since A
(C)

V T

i.i.d.∼ N(0, 1), from Corollary 2 we get P
(

||A(C)

V T

†
||2 ≤ 6√

k

)

≥ 1 − e−k/18 for k ≥ 4r, hence with

probability ≥ 1− e−k/18,

I ≤ 6

√

r

k
||(B(C,0) −B

(C)
(r) )||2. (52)

From Claim 1 and eq. (40) we get a bound on I for some absolute constants C1, c1:

P
(

I ≤ C1

√

r

k
||Z(C)||2

)

> 1− e−c1k. (53)
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2. Û is orthogonal and can be omitted from II without changing the norm. Applying the second inequality in eq. (49)

twice, we get the inequality:

II =||ÛA
(R)

Û

†
A(R)(B(C,0) −B

(C)
(r) )A

(C)

V T

†
||F ≤ ||A(R)

Û

†
||2||A(R)(B(C,0) −B

(C)
(r) )||F ||A

(C)

V T

†
||2. (54)

From Corollary 2 we know that for k > 4r we have ||A(R)

Û

†
||2 ≤ 6√

k
and ||A(C)

V T

†
||2 ≤ 6√

k
, each with probability

> 1− e−k/18. Therefore,

P
(

II ≤ 36

k
||A(R)(B(C,0) −B

(C)
(r) )||F

)

> 1− 2e−k/18. (55)

A(R) and B(C,0) −B
(C)
(r) are independent and rank(B(C,0) −B

(C)
(r) ) ≤ 2r. Therefore we can apply Lemma 7 with k

such that k
6 > log(2k) + k

18 (this holds for k ≥ 40) to get with probability > 1− 2e−k/18:

II ≤ 36

k
||A(R)(B(C,0) −B

(C)
(r) )||F ≤

36
√
2k

k
||(B(C,0) −B

(C)
(r) )||F ≤ 36

√

4
r

k
||(B(C,0) −B

(C)
(r) )||2. (56)

From eq. (55) and (56) together with Claim 1 we have constants C2 and c2 such that,

P
(

II ≤ C2||Z(C)||2
)

> 1− 3e−c2k. (57)

3. rank(A
(R)

Û

†
) ≤ r and from Corollary 2 we get P

(

||A(R)

Û

†
||2 ≤ 6√

k

)

> 1 − e−k/18 for k > 4r. Therefore, with

probability > 1− e−k/18:

III =||ÛA
(R)

Û

†
Z(R)||F = ||A(R)

Û

†
Z(R)||F ≤

√
r||A(R)

Û

†
Z(R)||2 ≤

√
r||A(R)

Û

†
||2||Z(R)||2 ≤

6
√
r√
k
||Z(R)||2. (58)

Hence we have constants C3 and c3 such that, > 1− e−c3k.

P
(

III ≤ C3||Z(R)||2
)

> 1− e−c3k. (59)

Combining equations (53,57,59) with Lemma 8 and taking the union bound while setting c(C) = C1+C2, c(R) = C3 with

c = min(c1, c2, c3) concludes our proof.

7.5. Simulations for Large Values of n

We varied n between 10 and 1000, with results averaged over 100 different matrices of rank 3 at each point, and tried

to recover them using k = 20 row and column measurements. Measurement matrices were A(R), A(C) i.i.d.∼ 1
n to allow

similar norms for each measurement vector for different values of n. Recovery performance was insensitive to n. if we

take A(R), A(C) i.i.d.∼ N(0, 1) instead of N(0, 1
n ), the scaling of our results is in agreement with Theorem 3.
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Figure 5. Reconstruction error for n × n matrix where n is varied between 10 and 1000, k = 20 and r = 3 and two different noise

levels: τ = 0.1 (blue) and τ = 0.01 (red). Each point represents average performance over 100 random matrices.

Next, we take n, k, r →∞ while the ratios n
k = 5 and k

r = 4 are kept constant, and compute the relative error for different

noise level. Again, the relative error converges rapidly to constant, independent of n, k, r .
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Figure 6. Reconstruction error for n × n matrix X with rank r varying from 1 to 50 and with n = 20r, k = 4r. Two different noise

level are shown: τ = 0.1 (blue) and τ = 0.01 (red). Each point represents average performance over 100 random matrices.
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7.6. Low Rank matrix Approximation

We bring here the one pass algorithm to approximate X from (Halko et al., 2011) for the convenience of the reader. The

output of this algorithm isn’t low rank if k > r. This algorithm is different from SV LSP and its purpose is to approximate

a (possibly full rank) matrix by low rank matrix. We adjusted Algorithm 3 to our purpose with some changes. First, we

estimate the rank of X using the elbow method from Section 3.3 and instead of calculating the QR decomposition of B(C)

and B(R)T we find their r̂ largest singular vectors. Furthermore, we repeat part two in algorithm 3 while replacing the roles

of columns and rows as in SVLS . This variation gives our modified algorithm SV LSP as described in Section 3.4.

Algorithm 3

Input: A(R), A(C), B(R), B(C)

1. compute Q(C)R(C) the QR decomposition of B(C), and Q(R)R(R) the QR decomposition for B(R)T

2. Find the least-squares solution Y = argminC ||Q(C)B(C) − CQ(R)TB(R)T ||F .

3. Return the estimate X̂ = Q(C)Y Q(R)T .

We compared our SVLS to SV LSP which is presented in Section 3.4. We took X ∈ M(10)
1000×1000 and σ = 1. We tried

to recover X in the GRC model with k = 12 for 100 different matrices. For each matrix, we compared the RRMSE
obtained for the outputs of SVLS and SV LSP . The RRMSE for SV LSP was lower than the RRMSE for SVLS in

most cases but the differences were very small and negligible.
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Figure 7. We recover a matrix X from 24000 measurements as in the GRC model 100 times. Figure shows average RRMSE over 100
simulations for SVLS (Y axis) and SV LSP (X axis). The red linear line Y = X was drawn for comparing those two algorithm, every

dot that under the red line is a simulation that SVLS was better than SV LSP and every dot above the line tells the opposite

7.7. Rank Estimation

We test the elbow method for estimating the rank of X (see eq. (10)). We take a matrix X of size 400× 400 and different

ranks. We add Gaussian noise with σ = 0.25 while the measurements are sampled as in the RCMC model. For each

number of measurements we sampled 100 matrices and took the average estimated rank. We compute the estimator r̂
for different values of d, the number of measurements. We compare our method to the rank estimation which appears in
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OptSpace (Keshavan et al., 2009) for the standard MC problem. Our simulation results, shown in Figure 8, indicate that

the RCMC model with the elbow method is a much better design for rank estimation of X .
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Figure 8. Estimation of rank(X) vs. d, the number of measurements, d = k(2n − k) where k is the number of columns in B(C) and

number of rows in B(R). For each d we sampled 100 different matrices. Estimation was performed by the elbow method for RCMC

model, as in eq. (10) in the main text, and for the MC model we used the method described in (Keshavan et al., 2009). RCMC recovers

the correct rank with smaller number of measurements.

7.8. Test Error

In matrix completion with MC and RCMC ensembles the RRMSE loss function measures the loss on both the observed

and unobserved entries. This loss may be too optimistic when considering our prediction error only on unobserved entries.

Thus, instead of including all measurements in calculation of the RRMSE we compute a different measure of prediction

error, given by the RRMSE only on the unobserved entries. For each single-entry measurements operatorA define E(A)
the set of measured entries and Ē it’s complement, i.e. the set of unmeasured entries (i, j) ∈ [n1] × [n2]. We define

XĒ to be a matrix such that XĒ
ij = Xij if (i, j) ∈ Ē and 0 otherwise. Instead of RRMSE(X, X̂) we now calculate

RRMSE(XĒ , X̂Ē). This quantity measures our reconstruction only on the unseen matrix entries Xij , and is thus not

influenced by overfitting. In Table 2 we performed exactly the same simulation as in Table 1 but with RRMSE(XĒ , X̂Ē).
The results of OptSpace , SVT and SVLS stay similar to the results in Table 1 and our RRMSE loss function does not

show overfitting.

Table 2. RRMSE only on the unknown measurements. for SVLS applied to RCMC, and OptSpace and SVT applied to the standard

MC. Results represent average of 5 different random matrices. The results in the are parentheses the standard RRMSE in Table 1.

NR d r SVLS OptSpace SVT

10−2 120156 10 0.006 (0.006) 0.004 (0.004) 0.0074 (0.0073)
10−1 120156 10 0.065 (0.064) 0.045 (0.044) 0.051 (0.05)
1 120156 10 0.619 (0.612) 0.49 (0.49) 0.52 (0.51)


