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Abstract

We introduce a new meta-algorithm for proba-
bilistic inference in graphical models based on
random projections. The key idea is to use ap-
proximate inference algorithms for an (exponen-
tially) large number of samples, obtained by ran-
domly projecting the original statistical model
using universal hash functions. In the case
where the approximate inference algorithm is a
variational approximation, this approach can be
viewed as interpolating between sampling-based
and variational techniques. The number of sam-
ples used controls the trade-off between the accu-
racy of the approximate inference algorithm and
the variance of the estimator. We show empiri-
cally that by using random projections, we can
improve the accuracy of common approximate
inference algorithms.

1. Introduction

Sampling based techniques (Andrieu et al., 2003; Jer-
rum & Sinclair, 1997; Madras, 2002) and variational ap-
proaches (Jordan et al., 1999; Wainwright & Jordan, 2008)
are the two main families of probabilistic inference tech-
niques. Sampling based techniques answer queries by
looking at a small number of representative samples from
the entire exponentially large state space. Variational tech-
niques, on the other hand, take a more global view and at-
tempt to globally approximate a complex probability distri-
bution using a family of more tractable ones. These two ap-
proaches have advantages and disadvantages with respect
to each other, and neither approach dominates the other.

In this paper, we introduce a new meta-algorithm for prob-
abilistic inference in graphical models. Our approach can
be seen as a general sampling scheme based on universal
hashing, and can be used in combination with any partition
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function or marginal probability approximation scheme, in-
cluding both Markov Chain Monte Carlo (MCMC) sam-
pling and variational approaches. The key idea is to con-
sider a number of samples which can be extremely large,
potentially exponential in the dimensionality (number of
variables in a graphical model). This seemingly impossi-
ble task (simply enumerating the samples would take ex-
ponential space) can be achieved using powerful universal
hashing techniques (Goldreich, 2011; Vadhan, 2011; Er-
mon et al., 2013b; Chakraborty et al., 2013), which can
be used to represent the set of samples in an implicit and
compact way. In particular, we exploit randomness ampli-
fication ideas to generate an exponentially large number of
random variables (one for each possible state of the world),
using as input a limited amount of randomness. This pro-
cess can also be interpreted as applying a random projec-
tion (perturbation) of the original graphical model (Tar-
low et al., 2012; Papandreou & Yuille, 2011; Hazan &
Jaakkola, 2012; Gane et al., 2014; Maddison et al., 2014;
Chakraborty et al., 2014), where each possible state of the
world is selected with some probability (or more generally,
its likelihood is perturbed by a random amount). Since in
general we cannot enumerate such a large number of re-
sulting samples, we use approximate inference techniques
to estimate their statistical properties (such as marginals or
partition function). The quality of the approximate infer-
ence for the samples can be substantially better than the
one obtained for the entire state space. For example, in the
extreme case where the number of samples is small enough
that enumeration is possible, exact inference can be per-
formed.

In the case where the approximate inference algorithm is
a variational approximation, this hybrid approach can be
seen as smoothly interpolating between a pure sampling
strategy and a pure variational one. Intuitively, if we choose
a small enough number of samples, we can avoid the ap-
proximation entirely by enumerating the samples (as in tra-
ditional Monte Carlo sampling methods). At the other side
of the spectrum, we can use the entire state space as our
sample space (no sampling) obtaining the original varia-
tional approximation. Our method allows for a broad spec-
trum of possibilities in between these two extremes.
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Additional properties of the approximate inference algo-
rithm carry over to our hybrid scheme. For example, if the
inference algorithm computes the exact partition function
of a graphical model (e.g., in the case of low treewidth or
small number of samples), our sampling-based estimator is
provably unbiased. If the approximate inference algorithm
provides lower (or upper) bounds for the partition function
or probability of evidence queries, our estimator provides
a lower (or upper) bound in expectation. The key trade-off
involved is in terms of the accuracy of the approximate in-
ference algorithm vs. the variance of the estimator. In fact,
the number of samples used and statistical properties of the
hash function (essentially, the clash probability) affect both
the variance of the estimator and the accuracy of the ap-
proximate inference algorithm. We explore this trade-off
experimentally and show that for several Ising models and
real world datasets from genetics and medical diagnosis we
can substantially improve the accuracy of the approximate
inference algorithm by averaging over randomly subsam-
pled models.

2. Problem Setup

Given an undirected graphical model with n binary vari-
ables!, let X = {0, 1}" be the set of all possible configura-
tions (variable assignments or possible states of the world).
Define a weight function w : X — R that assigns to
each configuration = a score proportional to its probabil-
ity p(): w(z) = [[oezYa({z}a). The partition func-
tion of the model Z is defined as Z = }  _,w(z) =
S ex Taer Yal{zta) so that p(x) = w(z)/Z. Com-
puting Z is typically intractable because it involves a sum
over an exponential number of configurations, and is of-
ten the most challenging inference task for many families
of graphical models. Computing Z is however needed for
many inference and learning tasks, such as evaluating the
likelihood of data for a given model, computing marginal
probabilities, and parameter estimation (Wainwright & Jor-
dan, 2008; Koller & Friedman, 2009).

Given that probabilistic inference problems are intractable
in the worst case (Roth, 1996), a number of approximate
inference algorithms have been developed. There are two
main families of algorithms: Monte Carlo sampling tech-
niques and variational approximations. Since we will uti-
lize these approaches in this paper, we give a very brief
overview. We refer the reader to standard references for
more details (Koller & Friedman, 2009).

'Our approach applies more generally to discrete graphical
models. We restrict ourselves to binary variables for the ease of
exposition.

2.1. Sampling
The simplest (naive) approach is to sample
x1,---,xpy  uniformly  from &, and estimate

Z = LM w(z;)2". This is an unbiased estima-
tor since E[Z] = & M S L h2"w(z) = Z. The
variance of this estimator can be very large since we are
limited to a small number of samples M, while the number
of configurations is exponential in n. The variance can
be reduced using importance sampling techniques, i.e.
sampling using a proposal distribution (which is closer to
p(z)) rather than uniformly (Andrieu et al., 2003; Jerrum
& Sinclair, 1997; Madras, 2002). Unfortunately, it is
usually the case that the closer the proposal distribution is
to the original intractable p(x), the harder it gets to sample
from it.

Markov Chain Monte Carlo sampling is another leading
sampling method. The key idea is to draw proper repre-
sentative samples from p(x) by setting up a Markov Chain
over the entire state space which has to reach an equilib-
rium distribution. For many statistical models of interest,
reaching the equilibrium distribution will require simulat-
ing the chain for a number of steps which is exponential
in the dimensionality (number of variables). Unless there
are special regularity conditions, if the random walk does
not visit all the possible states it might miss some impor-
tant parts. In practice, the approach will therefore only give
approximate answers. There is generally little or no infor-
mation on the quality of the approximation. In fact, the
Markov Chain may get trapped in less relevant areas and
completely miss important parts of the state space.

2.2. Variational Approximations

The basic idea is to approximate the intractable target prob-
ability distribution p(x) o w(x) with one that is more
tractable. This is typically achieved by choosing a distri-
bution from a family of distributions that are computation-
ally easier to work with, and minimizing a measure of di-
vergence (usually, KL divergence). We refer the reader to
(Jordan et al., 1999; Wainwright & Jordan, 2008) for more
details. In this paper we will use Mean Field, which pro-
vides a lower bound to the value of the partition function
Z, and Belief Propagation.

2.3. Randomized Hashing

We provide standard definitions and constructions for uni-
versal hash functions (cf. Valiant & Vazirani, 1986; Vad-
han, 2011; Goldreich, 2011). Randomized hash functions
will be used to randomly select (exponentially) large por-
tions of the state space.

Definition 1. A family of functions # = {h : {0,1}" —
{0,1}™} is pairwise independent if the following two con-
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ditions hold when H is chosen uniformly at random from
H. 1) Vz € {0,1}", the random variable H(x) is uni-
formly distributed in {0,1}™. 2) V1,22 € {0,1}" 21 #
Z9, the random variables H(x1) and H (x5) are indepen-
dent.

Optimal hash functions (in a statistical sense) can be con-
structed by considering the family # of all possible func-
tions from {0,1}" to {0,1}™. It is easy to verify that
this is a family of fully independent functions. If we de-
fine a sample set (e.g., from the set of all possible config-
urations) as S = H~1(0) C {0,1}", where H is chosen
at random from 7, the resulting sampled configurations .S
would be chosen independently (i.i.d. samples). Unfortu-
nately, specifying a function from this family requires m2"
bits (m bits for each possible variable assignment), making
this construction not very useful for large n. On the other
hand, pairwise independent hash functions can be specified
compactly. They are generally based on modular arithmetic
constraints of the form Az = b mod 2, referred to as par-
ity or XOR constraints.

Proposition 1. Ler A € {0,1}*", b € {0,1}™. The
family H = {hap(z) : {0,1}" — {0,1}™} where
hap(zr) = Az + b mod 2 is a family of pairwise inde-
pendent hash functions.

Note that in order to get pairwise independence, we must
choose a hash function H uniformly at random from the
family H. In particular, this is equivalent to generating
A, b by the following process: choose each entry A; ; i
Bernoulli(4) and b; #d Bernoulli(3). The resulting A ma-
trix generated this way is relatively dense since, on average,
half of the entries will be ones, and the parity constraints
generated this way will involve many variables.

If we are willing to sacrifice pairwise independence for a
weaker notion of independence, we can use sparse parity
constraints, where each parity constraint involves signifi-
cantly fewer variables than required for pairwise indepen-
dence. In practice, these sparse parity constraints are much
more easily decoded by optimization solvers. The weaker
notion of independence that sparse parity constraints sat-
isfy is known as Average Universal and defined in (Ermon
et al., 2014), where the following proposition is proven:

Proposition 2. Ler A € {0,1}"™*™ be a random matrix
whose entries are Bernoulli i.i.d. random variables of pa-
rameter f < 1/2, i.e., P[A;; = 1] = f. Letb € {0,1}" be
chosen uniformly at random, independently from A. Then
the family HY = {hay(x) : {0,1}" — {0,1}™}, where
hap(z) = Az +b mod 2 and H € H' is chosen ran-
domly according to this process, is a family of Average Uni-
versal hash functions (for some parameters).

3. Combining Random Projections with
Probabilistic Inference Algorithms

3.1. Computing the Partition Function

We now introduce our hybrid approach for probabilistic in-
ference utilizing random projections. The key idea is that
instead of directly choosing = uniformly at random from
X and then scaling w(x) by 2" to use as an unbiased es-
timator of Z, we will choose an exponentially large subset
of configurations S C X at random using a universal hash
function and then scale our estimate Z for Y wes W(T) ap-
propriately to use as our estimator of Z = ), w(x).

Concretely, given a graphical model G with partition func-
tion Z = ), w(x), we will accomplish the random pro-
jection by adding m random XOR factor nodes to GG, where
each XOR factor node represents an XOR constraint on our
model. We will then run a probabilistic inference algorithm
on each randomly projected graphical model to obtain esti-
mates Z that we will then scale and average appropriately
to obtain our estimate of Z.

The specific construction for adding the i*” XOR constraint
to our graphical model is as follows. Generate a parity
bit b uniformly at randomly from {0,1}. Add each vari-
able node j from G to our XOR constraint with probability
f € (0,1). Suppose that in the previous step we’ve added
[ variable nodes x,, , ..., z,, from G. If the parity of these !
nodes x,, @ T, ® ... ® x,, = b, then let the potential func-
tion over this factor ¢;(z,,,...,z,) = 1. Otherwise, let
Vi (Tyy, ...y, ) = 0. Such a parity constraint implements a
universal hash function and can be compactly represented
even when [ is large (Ermon et al., 2013b;a). This fact is
well known in the coding theory and parity check codes
literature (MacKay, 1999).

More formally, let A; ; = 1 if node j is included in the
i XOR constraint and A; j = 0 otherwise. Let b; be the
parity bit generated for the i*" XOR constraint. A config-
uration x € X satisfies the set of XOR constraints if and
only if Ax = b (mod 2). After M random trials, we obtain
M randomly projected graphical models G*), each with m
XOR constraints determined by the outcomes of the ran-

dom variables {{AE?}?:D bgk)}zl where each AE? i

Bernoulli(f) and bgk) “ Bernoulli(3). Such a construc-
tion implements the sparse parity constraints described in
Section 2.3. Let us denote the partition function of the k"
randomly projected graphical model G*) as Z(*). Incor-
porating the XOR factor potentials explicitly, we have that

Z(k) — erx w(x) H:il d){AEk),bgk)}(fB{AEk)}).

Notice that, on average, adding one XOR constraint will re-
move half of the terms in the sum ) __, w(z) since from
Proposition 2, half of the configurations in X will not sat-
isfy the XOR constraint. We define our set of samples .S as
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Algorithm 1 RP-InfAlg(G, A, M, m, f,p)
fork=1,---,M do
Construct G*) from G by adding m random XOR
factor nodes to GG as follows:
fori=1,--- ,mdo

Generate parity bit b\" 4 Bernoulli( 3)

For each variable node j from G, randomly choose
AE? % Bernoulli( f)

Let {@y ooy, } = {xj‘Az('? =1}

Let the potential over this factor be
oo (Xpyy ey py) = 1ifz,, ®Xp, @ ... By, = bgk)

and (bgk)(xﬁ, .oy Xy, ) = p otherwise
end for
Z*) « Run inference algorithm A on the graphical
model G*) which is a random projection (perturba-
tion) of G
end for B
Return 7 25:1:1 (p—il)mZ(k)

the subset of all configurations satisfying these m randomly
generated parity constraints. The number of XOR nodes m
we add controls how large the set S is, or in other words
what is the size of the resulting state space after the random
projection. f determines the average length of each XOR
constraint and controls the quality of the sampling proce-
dure. In particular, note that samples in .S are not chosen
independently of each other. If the length of each XOR
constraint is sufficiently large, we obtain a strongly uni-
versal hash function and the samples are chosen pairwise
independently.

Let M be the number of trials. We will construct
M random projections of G using the construction
above and run an inference algorithm on each projected
graphical model to get M estimates Z(*) of Z() =
Ywerx w(@) [Timy w{AEk)abEk)}(x{AEk)}) that we will then
average and scale by 2" to get our estimate of Z.

Proposition 3. The estimator - Zkle 2m7®) is an un-
biased estimator of the partition function Z.

Proof. Let Z = ) _, w(x). Suppose we add m XOR
constraints according to the construction above. Fix any
k, and consider the indicator random variable y(z) =
I, /l/){Aﬂ(Lk),bgk)}(x{Agk)}). Thus, y(z) = 1 if the con-
figuration x € & is allowable under our set of XOR
constraints and O otherwise. By definition, Z k) =
Ypex w(@)y(x), so E[ZW] = 3y w(@)Ely(z)] =
ZweX 'UJ(.’,E) Hi:l E [¢{Agk>,b5k>} (I{Aik)})] = 2%, and
this proves that our estimator is unbiased. O

Since E“SH = ]E[er/'\f HZZI ¢{A5k>ab£k)}(x{A5k)})] =

%, computing an estimate Z*) of > zes W(T) requires

summing over a significantly smaller state space than X,
and probabilistic inference algorithms which compute an
approximation to this sum might compute a much more
accurate approximation Z(*) for the projected graphical
model than for the original one. Furthermore, variational
techniques are known to be empirically very effective at
decoding low-density parity check codes, which are also
implemented with XOR constraints (MacKay, 1999; Er-
mon et al., 2013a). Intuitively, the I-projections used by
variational techniques to minimize KL-divergences tend to
be overconfident and focus on particular modes of the true
posterior distribution (Koller & Friedman, 2009). Ran-
domly projecting the model, on the other hand, can force
the I-projection to focus on other parts of the state space.

More generally, we can use the potential function
¢(Tr,,...,xy,) = 1 if the parity of the [ randomly chosen
nodes x,, ® Tp, ® ... ® xy, = b, and ¢(xy,, ..., Ty,) =P
otherwise for 0 < p < 1. This generalization intro-
duces a “softer”, smoothed perturbation to our graphical
model than the O and 1 “hard” XOR constraints, where
each constraint, on average, removes half of the terms in
the sum. Since ¢(x) = p + (1 — p)y(x), it follows that
El¢(z)] =p+ (1 —p)/2 = (p+1)/2, and we can recover
an unbiased estimator for Z from Z(¥) using the scale fac-

tor (p%)m

Note that when we start using the “’soft” parity constraints,
we are not really doing a random projection of the state
space but instead a random perturbation (the operator is not
idempotent). A possible intuitive explanation for why per-
turbations with p > 0 work well is that they can attenuate
the ”overconfidence” problem of I-projections by “flatten-
ing” the distribution. Similarly, when running Gibbs sam-
pling, the Markov chain may get trapped and miss impor-
tant parts of the state space. When we average over differ-
ent perturbations, it’s likely that we’ll cover a much larger
area of the state space and avoid getting trapped in a few
areas, leading to more accurate results.

The  pseudocode of the  algorithm, called
RandomlyProjected-Inference Algorithm (RP-InfAlg),
is reported. It takes as input a graphical model G, a
probabilistic inference algorithm A for estimating the
partition function, and some parameters for the random
projection (perturbation), and outputs an estimate of the
partition function of G. The parameters for the random
projection are the number of samples M > 1, number of
XOR constraints m > 1, sparsity parameter f € (0, 3),
and smoothness parameter p € [0, 1].
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3.2. Bounds on the Partition Function

Proposition 4. If a probabilistic inference algorithm A
provides a lower (resp. upper) bound for the partition
function Z of a graphical model, then for any graphical
model G and choice of parameters M > 1, m > 1,
f € (0,3), p € [0,1], RP-InfAlg(G, A, M, m, f,p) is a
lower (resp. upper) bound for Z in expectation, i.e., E[RP-
InfAlg(G, A, M, m, f,p)] < Z.

Proof. Suppose the inference algorithm A always returns
a lower ‘t;\(f)und ZF) for ZF) satisfyi]rvllg Z%) < Z(k)w. Then
El37 Xres (Tﬂ) ZW] = 3 3, (p%) E[Zz®] <

M ,
3 k=1 (Til)mE[Z(m] =Z. O

For the case of lower bounds, we can further obtain a guar-
antee that some constant multiple of our estimator is a
lower bound for Z with high probability using Markov’s
inequality.

Proposition 5. If a probabilistic inference algorithm A
provides a lower bound for the partition function Z of
a graphical model, then for any graphical model G and
choice of parameters M > 1, m > 1, f € (O,%), p €
[0,1], 1/c times the value of RP-InfAlg(G, A, M, m, f,p)
is a lower bound for Z with probability at least 1 — 1/c.

Proof. By Markov’s  inequality, we have
that P[50, (G24)" 2% > cZ] <

sl i (534)"2%] o 0
cZ — c
For example, setting c = 100,

logyo (7 22421 (p—_’il)m%k)) — 2 is a lower bound
for log,, Z with probability at least 0.99. In Section 4.2,
we empirically show improvements in computing the
lower bound of the partition function of Ising grid models
using Mean Field, where the lower bounds provably hold
with high probability.

3.3. Discussion of Variance

Recall that in the case where we have the exact partition
functions, our estimator is unbiased, and the expected value
does not depend on our choice of parameters M, m, f, or p
in the random projection step. However, the variance of our
estimator does depend on these parameters in a crucial way.
Clearly, increasing the number of trials M that we use gives
us a more accurate answer. Similarly, using a smoother
perturbation (larger p) also decreases the variance. The pa-
rameters m and f control the trade-off between having a
simple model with easy inference but also high variance
for our estimator (e.g., when we have m XOR constraints
and include only one variable in each XOR constraint, we

are clamping m variables to a random value), and having
low variance for our estimator but only a slightly simpler
model with slightly easier inference than the one we started
off with. We can quantify the effects of the parameters on
the variance with the following Proposition.

Proposition 6. For any graphical model G and choice of
parameters M > 1, m > 1, f € (0,3), p € [0,1],
% Qil (p—il)mZ (%) is an unbiased estimator of the par-
tition function Z. Furthermore, the variance of this estima-

tor is bounded from above by the following expressions:

M

Var{]\l/[; (pil)mzw]
< (% 5%— na —p>2>>m22

Proof. Refer to Appendix O

In the case of p = 0, the variance is bounded from above
by Var[ Sl 2mz(®0] < Zom 72,

If we choose p = 1/2, the variance is bounded from above
M m m
by Var[3; 2k2s (3)72W] < ()" 2%

Thus, we see that using the p = 0 hard XOR constraints
gives a variance bound which grows exponentially with
the number of XOR constraints m as 2" while using the
smoothed p = 1/2 XOR factor potentials gives a variance
bound which only grows as (%)™, a much more slowly

growing function.

In the case where we do not have the exact value of the
partition function Z(¥) but only an approximation Z*), the
variance of our estimator obviously also depends on the ac-
curacy of the approximate inference algorithm. Intuitively,
the variance is not too large in practice when m is not too
large because our estimate Z*) is scaled by (ﬁ)m with

()" < 209,

3.4. Computing Marginal Probabilities

In addition to computing partition functions using random
perturbations, we can also compute marginal probabilities
using the same framework. Given a graphical model G,
consider the problem of computing the marginal proba-
bility of a variable z;. Concretely, we want to estimate

P(z1) =), cx 5w1($)%~
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To do so, construct M randomly perturbed graphical mod-
els G(*) using Algorithm 1 (also described in Section 3.1).
Suppose we have P(*) (2, ), which is the marginal for G(*)

and Z(*), which is the partition function of G*). Let our

ZM P®) (g,)ZF)
estimator for P(xz1) be Thy = i k=1 T
M 1

will show that as the number of trials M becomes suffi-
ciently large, bias(Ths) — 0as M — oo.

_ M Z;@w 1 P(k)(ml)ZM)
]\/[ ZIZC‘I 1 Z(k)

is an asymptotically unbiased estimator of the marginal

probability P(x1).

Proposition 7. The estimator Ty; =

Proof. Note that

P(k)(xl) _ w(z) [TiL 1¢{A(k> b(k)}( alt)y )

and 20 =37, w() [T, Opa® 00y (Tpamy).

Define Y}, to be the k' term in the numerator and Zj,
to be the k*" term in the denominator, so Ty = Y /Z,
a ratio of sample means. Computing the expected
value of the numerator and denominator, we get that

B[] = [ZM W) TT b0 0 oa0y)| =
(™S e w( and E[Y%] =
E|:Z;E€X 631 (I‘)U}(Jf) ]._.[Zil (b{AE’“),bE"’)}(x{AE’“)})] =
%j)m ZzeX 6151 (x)w(x)

The marginal we want to estimate, P(xz1), is therefore
equal to % % Since the M samples (Y1, Z1), .... (Yar, Zor)
are i.i.d. random 2-vectors, a straightforward calculation

shows that the estimator T}, is an asymptotically unbiased
estimator of the marginal probability P(x1) (Shao, 2003).

O

similarly

4. Experimental Results
4.1. Experimental Methodology

The probabilistic inference algorithms we will test in this
section in conjunction with random projections are Mean
Field, Belief Propagation, and Gibbs sampling, as imple-
mented in the LibDAI library (Mooij, 2010).

We choose p = 1/2 for our XOR factor potentials to intro-
duce a smoothed perturbation to our graphical model and
reduce the variance of our estimator. In addition, instead
of adding each variable node to our XOR constraint with
probability f, we use a fixed number, [/, of variable nodes
in each XOR constraint. Constant XOR lengths further re-
duce the variance of the results and improve the quality
of the sampling. Intuitively, using fixed length constraints
rules out the generation of trivial constraints of length 0,

ZIGX Oz, ( )Z cxw(z) [[IZ 1¢{A(k> b(k)}( (4l )

which can happen if each variable is added to the con-
straints with fixed probability f.

Experimentally, we find that compared to computing
marginal probabilities using the asymptotically unbiased
estimator derived in section 3.4, averaging the marginal
probabilities across all M trials gives us better results. This
is because weighting the marginal probabilities by an esti-
mate Z () _of the partition function is unreliable when the
estimates Z(*) can differ by orders of magnitude from the
true values Z(¥) Concretely, we estimate a marginal prob-
ability P(X; = ;) as 77 Zk 1 P®) (X, = ;). In prac-
tice, averaging the marginal probabilities gives us good re-
sults when the number of trials M is much larger than the
number of variables n in our graphical model, because the
distribution of variables that each random projection affects
will tend to smooth out when we average over all M trials.

The evaluation criterion that we will use for marginal prob-
abilities is average L1 error. Given the exact marginal for
a variable Pi.,,.(X; = x;) and the marginal returned by an
approximate inference algorithm ﬁ(Xz = x;), the error is
given by é Z?:l Z E€EX; (XZ = xi) _Ptrue(Xi = xz>|
where d = 377" | 37 1is the total dimensionality. Tn
the case where all variables are binary, then the error re-
duces to = 37" | |P(X; = 1) — Pye(X; = 1))

4.2. Ising grid models

We evaluate our randomly projected inference algorithms
on 10 by 10 Ising grid models, with 100 binary vari-
ables, for marginal probabilities and on 15 by 15 Ising
grid models, with 225 binary variables, for Mean Field
partition function. Ising grid models have unary po-
tentials 9;(x;) = efi® and (mlxed) blnary interactions

Vij(x, x;) = e¥™i% where w;; “d Uniform(—w, w)

and f; i Uniform(—f, f). We report our results for
w € [1,10] with external field f = 0.1.

Partition function results for Mean Field are presented in
Figure 1. We construct M = 50 random projections of G
with XOR lengths [ = 1,2,4 and number of XOR con-
straints m = 20. We use 10 random initializations for
Mean Field on each randomly projected G(’C and report
the maximum value over the 10 restarts for Z(*). We ob-
tain an estimate Z by averaging over the Z 7Z(*)°s for each
choice of XOR length [ = 1,2, 4 and we choose the max-
imum over these 3 XOR lengths as our final estimate Z,
which we then compare to the estimate obtained by run-
ning Mean Field on G with 10M = 500 random restarts.
Note that we choose 500 random restarts for Mean Field to
ensure a fair comparison between MF and RP-MF in terms
of computational budget. For the hardest Ising models, we
did observe that having more random restarts improved the
lower bound provided by Mean Field.
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Figure 1. Partition function results for Ising grids using Mean Field, with and without random projections. Note that true Z is denoted
by the solid, horizontal line while recovered Z is denoted by the dashed lines.

Our results for 8 random Ising models G; are presented
in Figure 1 for selected values of w. For clarity, for
each 7, we shift all the log;, Z;’s by a constant ¢; along
the y-axis with ¢; determined by log,, ZIFUF 4 ¢; =
% Z§=1 logq ZJTRUE . Then, for each 7, the vertical dis-
tance between the solid horizontal line and the dashed line
represents the difference log,, ZI*VF — log,, ZM¥ or
log,y ZI'RUE —log,, Z-RP_MF. (For clarity, we also sort
the 8 random Ising models by decreasing log,, ZMF )

From Figure 1, we see that running Mean Field on G pro-
duces a lower bound (the dashed black line) that is many or-
ders of magnitude away from the true value of the partition
function (the solid, horizontal black line), as computed by
running Junction Tree on G. We see that the lower bound
on Z computed by running Mean Field on random projec-
tions of G is often orders of magnitude better than the lower
bound obtained from directly running Mean Field on G.
Furthermore, we know that log;, ZZ-RP*MF — 2is a lower
bound for log;, ZI' 'V E with probability at least 0.97 (by
the union bound). Thus, we see substantial improvements
in the accuracy of computing lower bounds for the partition
function. Notice that these results are obtained giving the
two techniques essentially the same computational budget.
Our approach, however, can be easily run in parallel, as in-
ference on each perturbed graphical model can be carried
out independently.

Marginal results with Gibbs sampling and Belief Propaga-
tion are presented in Figure 2. We construct M = 1,000
random projections of G with XOR length [ = 4 and num-
ber of XOR constraints m = 20. We run up to 10,000
iterations of Gibbs sampling and Belief Propagation on

each G (k) to obtain our estimate of the marginal probabil-
ities P(®). For fairness, we compare our final estimate P
with the estimate of P obtained by running Gibbs sampling
or Belief Propagation on G with 10,000/ = 10,000,000
iterations. Our results, the L1 error between the Gibbs
marginals and the true marginals versus the L1 error be-
tween the RP-Gibbs marginals and the true marginals, are
presented in Figure 2 across many values of the Ising grid
parameter w (the binary interaction weights). For f = 0.1,
we see substantial improvements in the accuracy of the re-
covered marginals for almost all values of w. In particular,
we note that for large values of w, the marginals recovered
by running Belief Propagation and Gibbs sampling on G,
even with a large number of iterations, have close to a 0.5
L1 error compared to the true marginals, an error that can
be achieved by random guessing. Using random projec-
tions, we are able to drastically improve the accuracy of
the recovered marginals to an L1 error of around 0.1-0.2.

Note that all of the experiments we run are designed to
give a fair comparison in terms of computational budget
between an approximate inference algorithm with the use
of random projections and without the use of random pro-
jections. Specifically, this means that we allow both the
InfAlg and the RP-InfAlg (across its many random sam-
ples) to run for the same (maximum) number of iterations.
Given the addition of new factors, each iteration of the RP-
InfAlg might be slightly more expensive than InfAlg, but,
in practice, we observe that running times are comparable
due to the use of sparse constraints.

When computing the partition function with Mean Field,
we observe fast convergence in roughly the same num-
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Figure 2. Marginal results for Ising grids using Gibbs sampling and Belief Propagation, with and without random projections

Table 1. Average L1 error of recovered vs. true marginals on real-
world datasets using Gibbs sampling, with and without random
projections

Linkage Promedus |
Number of instances 17 28
RP-Gibbs 0.09 £0.02 | 0.21 = 0.06
Gibbs 0.29 £0.02 | 0.24 £ 0.06

ber of iterations for MF and RP-MF with comparable to-
tal running times. When estimating marginals with Gibbs
sampling and Belief Propagation, the total number of iter-
ations run on the original and projected models are mostly
the same (for Ising grids under most choices of parame-
ters, BP does not converge within the specified maximum
number of iterations). As we add more XOR factors, each
iteration becomes only slightly more expensive. For exam-
ple, 10,000 iterations of BP takes around 5.5 seconds, while
10,000 iterations of RP-BP (20 XOR constraints of length
4) takes around 7.0 seconds. Similarly, 10,000 iterations of
Gibbs takes around 2.6 seconds, while 10,000 iterations of
RP-Gibbs takes around 2.8 seconds. For reference, these
running times were obtained from running LibDAI on a
cluster of servers with Intel Xeon E5520 and E5620 pro-
cessors. We emphasize that the main advantage of using
random projections is the improved performance, and the
algorithm can easily be parallelized.

4.3. Real world data

In addition to Ising grid models, we evaluate the use of ran-
dom projections for computing marginal probabilities with
Gibbs sampling on two real-world datasets from the UAI

2014 Inference Competition (Gogate, 2014). Similar to
the setup in Section 4.2, we run Gibbs on the given graph-
ical model G with 10,000,0000 iterations and compare the
results with those from running Gibbs on M = 1,000 ran-
dom projections of GG, each with 10,000 iterations.

We report our results for two selected datasets, Linkage
(genetic linkage) and Promedus (medical diagnosis), in Ta-
ble 1. These two datasets were chosen because they were
the most challenging ones for Gibbs sampling in the UAI
dataset. The results in Table 1 show that for one dataset,
RP-Gibbs produces marginals which are only slightly more
accurate than Gibbs alone, while for the other dataset, RP-
Gibbs produces marginals which are much more accurate
than just Gibbs, a noticeable improvement consistent with
the results that we had for Ising grid models.

5. Conclusion

We introduced a new probabilistic inference meta-
algorithm based on running existing approximate inference
algorithms on stochastic perturbations of a probabilistic
model. Specifically, we propose to augment a graphical
model with randomly generated parity constraints imple-
menting universal hash functions, and we showed that in-
ference on these perturbed graphical models is often eas-
ier and solved more accurately by existing approximate in-
ference algorithms because of the simpler structure of the
state space. By performing inference on a small number of
these perturbed graphical models, we obtained better ap-
proximations for the partition function and marginal prob-
abilities, as demonstrated on a range of synthetic and real
world datasets.
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