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Abstract

In this paper, we propose a novel algorithm based
on nonconvex sparsity-inducing penalty for one-
bit compressed sensing. We prove that our al-
gorithm has a sample complexity of O(s/ε2) for
strong signals, and O(s log d/ε2) for weak sig-
nals, where s is the number of nonzero entries in
the signal vector, d is the signal dimension and
ε is the recovery error. For general signals, the
sample complexity of our algorithm lies between
O(s/ε2) and O(s log d/ε2). This is a remark-
able improvement over the existing best sam-
ple complexity O(s log d/ε2). Furthermore, we
show that our algorithm achieves exact support
recovery with high probability for strong signals.
Our theory is verified by extensive numerical ex-
periments, which clearly illustrate the superiority
of our algorithm for both approximate signal and
support recovery in the noisy setting.

1. Introduction
Compressed sensing (Donoho, 2006; Candes & Tao, 2006)
is a technique to design measurement matrices and recov-
ery algorithms to estimate a sparse signal vector using a
few linear measurements. Recently, one-bit compressed
sensing (Boufounos & Baraniuk, 2008), which is a vari-
ant of conventional compressed sensing, has received in-
creasing attention for its low computational cost and ro-
bustness to noise and non-linearity (Boufounos, 2010). In
contrast to conventional compressed sensing, which uses
real-valued measurement, one-bit compressed sensing uses
one-bit measurement to recover the unknown signals. For
example, suppose x∗ is the unknown signal vector, and
{ui}ni=1 is a set of measurement vectors. The sign of real-
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valued measurement is observed as follows:

yi = sign(〈ui,x∗〉), i = 1, 2, . . . , n,

where yi is the binary one-bit measurement. Since signs
of real-valued measurements are used, scaling x∗ will not
make changes on the measurements. In other words, we
cannot recover the norm of x∗ from

{
(yi,ui)

}n
i=1

. For this
reason, when studying approximate vector recovery in one-
bit compressed sensing, we always assume that the original
signal x∗ is a unit vector, i.e., ‖x∗‖2 = 1.

In general, there are two major tasks in one-bit compressed
sensing: (1) support recovery (Gupta et al., 2010; Haupt &
Baraniuk, 2011; Gopi et al., 2013), which recovers the sup-
port of the unknown signal vector x∗; and (2) approximate
signal vector recovery (Gopi et al., 2013; Jacques et al.,
2013; Zhang et al., 2014), which aims at finding a unit vec-
tor x̂ such that ‖x̂− x∗‖2 is small.

In this paper, we aim at presenting an algorithm, which
is able to achieve both approximate signal recovery and
support recovery with strong theoretical guarantees. At
the core of our method is the nonconvex sparsity-inducing
penalty. While nonconvex sparsity-inducing penalties have
achieved great success in the statistics community (Fan &
Li, 2001; Zhang, 2010; Wang et al., 2014; Gu et al., 2014),
it is unclear whether nonconvex sparsity-inducing penal-
ties are advantageous for one-bit compressed sensing. In
our study, we show that the answer is in the affirmative.
More specifically, the main contributions of this work are
summarized as follows:

• We propose to incorporate sparsity-inducing penalty
functions into one-bit compressed sensing, and derive an
algorithm to efficiently solve the resulting problem. To
the best of our knowledge, this is the first work on one-
bit compressed sensing that utilizes nonconvex penalty
functions.

• We prove that our proposed method improves sam-
ple complexity from previous best results O(s log d/ε2)
to O(s/ε2) for strong signals. And for general sig-
nals, our algorithm attains a sample complexity between
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O(s log d/ε2) and O(s/ε2).
• We prove that our proposed method can exactly recover

the support of the signal under mild magnitude assump-
tions on the signal.

• We verify the effectiveness of our method by thorough
numerical experiments.

The remainder of this paper is organized as follows. We
will review related work in Section 2, and then describe
our method in Section 3. We present the main theoretical
results in Section 4 and experiment results in Section 5. We
conclude the paper in Section 6.

2. Related Work
One-bit compressed sensing was first introduced
in (Boufounos & Baraniuk, 2008), with only the noiseless
one-bit measurement considered. In particular, Boufounos
& Baraniuk (2008) proposed an estimator by minimizing
the `1 norm of a unit vector consistent with the measure-
ments. Since the minimization is on the unit square, the
problem is non-convex. To address this problem, Plan
& Vershynin (2013b) proposed a convex formulation
by putting the constraint on the `1 norm of real-valued
measurement vector instead of the `2 norm of the signal.
The sample complexity of this work is O(s log2 d/ε5).
Another convex estimator was proposed in (Plan & Ver-
shynin, 2013a), which maximizes the dot product of the
one-bit measurements of the real signal and the real-valued
measurements of the recovered signal. This framework can
recover both exactly and approximately sparse signals with
noise, with sample complexity O(s log d/ε4). Currently,
the best sample complexity result for vector recovery
is achieved by (Zhang et al., 2014), where the authors
proposed an efficient algorithm with close-from solution
based on adding `1 regularization. In noisy and noiseless
cases, the sample complexity of their work isO(s log d/ε2)
for exactly sparse signals.

Another branch of one-bit compressed sensing is support
recovery. Current best result in terms of sample complexity
is O(s log d) in (Haupt & Baraniuk, 2011). However, their
work depends on various specially designed measurement
matrices, thus not universal. A universal support recovery
method is proposed in (Gopi et al., 2013), where all signals
can be recovered using a single measurement matrix. The
sample complexity of their work is O(s2 log d).

Most of the methods mentioned above use Gaussian mea-
surements, and recently it is also extended to non-Gaussian
measurements in (Ai et al., 2014), where the authors use
sub-Gaussian measurements to recover both exactly and
approximately sparse signals. There are also other exten-
sions. For example, Movahed et al. (2014) considered re-
covery of signals with unknown and time-variant sparsity

levels. Zeng & Figueiredo (2014) studied one-bit com-
pressed sensing on piece-wise smoothing signals.

On the other hand, most of the existing studies only target
one of the tasks in approximate vector recovery and sup-
port recovery. In this paper, we propose a method that can
improve the previous best results for approximate vector re-
covery and achieve exact support recovery simultaneously.

3. The Proposed Method
In this section we will describe our method. Theoretical
analysis of our method can be found in the next section.

3.1. Background

We will first briefly review the general framework of one-
bit compressed sensing. As described in (Plan & Ver-
shynin, 2013a), we assume yi can be viewed as drawn in-
dependently with the expectation

E(yi|ui) = θ
(
〈ui,x∗〉

)
, i = 1, 2, . . . , n,

where value domain of the function θ(z) is [−1, 1]. We
define

E[θ(g)g] =: γ > 0, (3.1)

where g is a standard Gaussian random variable, and γ
measures the correlation between yi and 〈ui,x∗〉.

When these two are well correlated, γ will get a larger
value. When yi is equal to sign(〈ui,x∗〉) with no noise, γ
will get maximal value

√
2/π. Since scaling of x∗ does not

influence the one-bit measurements and we cannot restore
the scale, we assume x∗ is a unit vector, i.e., ‖x∗‖2 = 1.

3.2. Nonconvex Penalty Functions

We now introduce the decomposable nonconvex penalty
functions we consider in our work, i.e., Gλ,b(x) =∑d
i=1 gλ,b(xi).

Typical nonconvex penalties include the smoothly clipped
absolute deviation (SCAD) penalty (Fan & Li, 2001) and
minimax concave penalty (MCP) (Zhang, 2010). For ex-
ample, MCP is given by

gλ,b(t) =


λ|t| − t2

2b
, if |t| ≤ bλ,

bλ2

2
, if |t| > bλ,

(3.2)

with fixed regularization parameters b > 0, λ > 0. A well-
used property of the nonconvex penalties gλ,b(t) is that they
can be formulated as the sum of a `1 penalty part and a
concave part hλ,b(t) : gλ,b(t) = λ|t|+ hλ,b(t).
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Note that we do not require specific forms of gλ,b(t), such
as MCP or SCAD. Generally, our work only depends on
the following conditions on gλ,b(t) and hλ,b(t):

C1. g′λ,b(t) = 0, for |t| ≥ ν ≥ 0.
C2. h′λ,b(t) is monotone, and for t′ > t, there is a constant

ζ− ≥ 0 such that

−ζ−(t′ − t) ≤ h′λ,b(t′)− h′λ,b(t).

C3. hλ,b(0) = h′λ,b(0) = 0.
C4. |h′λ,b(t)| ≤ λ for any t.

There are a lot of nonconvex penalty functions that hold the
above properties. We can prove that MCP and SCAD are
valid choices. For MCP, ν = bλ and ζ− = 1/b. Since we
use MCP as our nonconvex penalty, we will use g, G and h,
H to specifically denote MCP in (3.2) and its concave part
for the rest of this paper.

3.3. One-bit Compressed Sensing with Nonconvex
Penalty

Our estimator is any local optimal solution to the following
optimization problem

x̂τ = argmin
‖x‖2≤1

− 1

n

n∑
i=1

yi〈ui,x〉+ Gλ,b(x) +
τ

2
‖x‖22,

(3.3)

where u1,u2, . . . ,un ∈ Rd are the rows of known mea-
surement matrix U ∈ Rn×d.

Now we describe our algorithm to efficiently compute our
estimator by deriving the local minima of (3.3). We denote
v = U>y/n ∈ Rd. We begin with the following lemma.

Lemma 3.1. The solution to the following optimization
problem

x̂ = argmin
x

1

2
(x− y)2 + gλ,b(|x|)

is given by

• if b > 1

x̂ =


S(y, λ)

1− 1/b
, if |y| ≤ bλ,

y, if |y| > bλ,

(3.4)

• if b ≤ 1

x̂ =

{
0, if |y| ≤

√
bλ,

y, if |y| >
√
bλ,

(3.5)

where S(y, λ) is the soft-thresholding operator (Donoho
et al., 1993) defined for λ ≥ 0 by

S(y, λ) =


y − λ, if y > λ,

0, if |y| ≤ λ,
y + λ, if y < −λ.

Proof. For b > 1, please see (Breheny & Huang, 2011).
For b ≤ 1, please see the longer version of this paper.

We can quickly come up with a similar version of
Lemma 3.1 with τ > 0.

Lemma 3.2. The solution to the following optimization
problem

x̂ = argmin
x

1

2
(x− y)2 + gλ,b(|x|) +

τ

2
x2

is given by

• if b(1 + τ) > 1

x̂ =


S(y, λ)

1 + τ − 1/b
, if |y| ≤ bλ(1 + τ),

y

1 + τ
, if |y| > bλ(1 + τ).

(3.6)

• if b(1 + τ) ≤ 1

x̂ =

 0, if |y| ≤
√
b(1 + τ)λ,

y

1 + τ
, if |y| >

√
b(1 + τ)λ.

(3.7)

For the omitted proof of lemmas and theorems in the rest
of this work, please see the longer version of this paper.

Now we are ready to solve (3.3). For the sake of simplicity,
we first consider the case where τ = 0 to illustrate our
method. We will show that the case where τ > 0 can be
solved in a similar way.

We consider the Lagrange function f(µ) of (3.3) given by

f(µ) = min
x
−x>v + Gλ,b(x) + µ(‖x‖22 − 1)

= min
x

2µ

(
1

2
‖x− v

2µ
‖22 +

Gλ,b(x)
2µ

)
− ‖v‖

2
2

4µ
− µ

= 2µ

(∑
i

min
xi

1

2

(
xi −

vi
2µ

)2
+ gλ/(2µ),2µb(|xi|)

)

− ‖v‖
2
2

4µ
− µ. (3.8)

Note that for the last step, given (3.2), we would easily

get that
1

2µ
gλ,b(|xi|) = gλ/2µ,2µb(|xi|). We will use µ∗ to

denote the dual optimal solution that maximizes f(µ).
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According to Lemma 3.1, we need to consider two cases:
(1) 2µb ≤ 1 and (2) 2µb > 1. For the first case, i.e.,
0 < µ ≤ 1/2b, we have summarized our method in Algo-
rithm 1. For µ > 1/2b, our method is summarized in Algo-
rithm 2. We will just sketch the outline here, and derivation
and technical details of Algorithm 1 and 2 can be found in
the longer version of this paper.

• 2µb ≤ 1: In this case, the solution to (3.8) comes
from (3.5). Therefore, we need to compare the value
of |vi/2µ| and λ

√
b/2µ, which is equivalent to compar-

ing µ and v2i /2bλ
2, to decide the value of each term in

the summation in (3.8). After sorting |vi| and dividing
the feasible region into intervals, we will compute f(µ)
and find µ∗ within each interval, which has a close form
solution as in Line 5 to 9 of Algorithm 1. Finally, among
optimal solutions in each interval, we find µ∗1 that maxi-
mizes f(µ).

Algorithm 1 Find maximizer of f(µ) when µ ≤ 1/2b

1: Input: λ, b,v
2: Output: µ∗1
3: Initialize f = f(1/2b), µ∗1 = 1/2b
4: v(1), v(2), ..., v(d) = Sort(|v1|, |v2|, ..., |vd|)
5: v(0) = 0, v(d+1) =∞
6: l = Find(v(l) ≤ 1/2b < v(l+1))
7: for i:=0 ... l do
8: if

√∑n
j=i v

2
(j)/2 ∈ (v2(i)/2bλ

2, v2(i+1)/2bλ
2] then

9: µ =
√∑d

j=i v
2
(j)/2

10: else
11: µ = v2(i+1)/2bλ

2

12: end if
13: if f(µ) > f and µ < 1/2b then
14: f = f(µ), µ∗1 = µ
15: end if
16: end for

• 2µb > 1: In this case, the solution to (3.8) comes
from (3.4). We do similar sorting and dividing opera-
tion, yet within each interval, we need to solve a simple
optimization as in Line 8, Algorithm 2. Then we will
find the final µ∗2 based on values from each interval.

After finding the optimal values of µ from the above two
cases, we compare the objective function values of outputs
of Algorithm 1 and 2 to get the final µ∗:

µ∗ = argmax
µ∈{µ∗

1 ,µ
∗
2}
f(µ). (3.9)

The optimal primal solution is

x̂ = argmin
x

1

2
‖x− v

2µ∗
‖22 +

Gλ,b(x)
2µ∗

.

Algorithm 2 Find maximizer of f(µ) when µ > 1/2b

1: Input: λ, b,v
2: Output: µ∗2
3: Initialize f = f(1/2b), µ∗2 = 1/2b
4: v(1), v(2), ..., v(d) = Sort(|v1|, |v2|, ..., |vd|)
5: v(0) = 0, v(d+1) =∞
6: l = Find(v(l) ≤ 1/2b < v(l+1))
7: for i:=l ... n do
8: S1 =

∑n
j=i+1 v

2
(j)

9: S2 =
∑i
j=l (|v(j)| − λ)2

10: J(µ) = S1

4µ + S2

2(2µ−1/b) + µ

11: if µi = argminµ J(µ) ∈ (|v(i)|/2bλ, |v(i+1)|/2bλ]
then

12: µ = µi
13: else
14: µ = |v(i+1)|/2bλ
15: end if
16: if f(µ) > f and µ > 1/2b then
17: f = f(µ), µ∗2 = µ
18: end if
19: end for

By Lemma 3.1, we would finally get our estimator as fol-
lows:

• if 2µ∗b > 1

x̂i =


S(vi, λ)

2µ∗ − 1/b
, if |vi| ≤ 2µ∗λb,

vi
2µ∗

, if |vi| > 2µ∗λb.

• if 2µ∗b ≤ 1

x̂i =

 0, if |vi| ≤
√

2µ∗bλ,
vi
2µ∗

, if |vi| >
√

2µ∗bλ.

For the case τ > 0, we have a similar Lagrange function
f(µ′) with µ′ = µ + τ/2. The optimization of f(µ′) is in
a similar manner, and we omit it here.

Note that although our algorithm is fairly involved, it only
involves sorting and analytic form calculation. So it is still
very efficient.

Remark 3.3. When τ > ζ−, the estimator in (3.3) is ac-
tually strongly convex. The output of our algorithm is the
global optimal solution for (3.3). When τ = 0, the estima-
tor in (3.3) is nonconvex and our algorithm will output a
local minimum in the primal.

4. Main Results
We will prove that under a reasonable assumption on the
elements of the true signal x∗, our estimator will have ora-
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cle property, i.e., identical to the oracle estimator, with high
probability. This indicates exact support recovery. We will
also show the advantage of our method in terms of sample
complexity.

4.1. Oracle Property and Sample Complexity of Our
Estimator for Strong Signals

In this section, we will introduce the advantage of our esti-
mator for strong signals, which consists of two parts, the or-
acle property and improved sample complexity ofO(s/ε2).
The definition of the oracle estimator x̂O is given by

x̂O = argmin
supp(x)⊂S,‖x‖2≤1

LO(x), (4.1)

where LO(x) = −1/n
∑n
i=1 yi〈ui,x〉. Note that the ora-

cle estimator does not have `2 regularizer.

In the rest of this paper, we define the following shorthand
notations

Hλ,b(x) =
d∑
i=1

hλ,b(xi) = Gλ,b(x)− λ‖x‖1,

L(x) = LO(x) +
τ

2
‖x‖22 = − 1

n
y>Ux+

τ

2
‖x‖22,

and

L̃λ(x) = L(x) +Hλ,b(x) =−
1

n
y>Ux+

τ

2
‖x‖22

+Hλ,b(x).

Before we lay out the main result, we first present two lem-
mas, which are central to prove the main result. First, we
have the following important property for the oracle esti-
mator.

Lemma 4.1. If τ ≤ ‖vS‖2 where v = −1/n
∑n
i=1 yiui

and S is the support of x∗. The following optimization
problem

x̂ = argmin
supp(x)⊂S,‖x‖2≤1

− 1

n

n∑
i=1

yi〈ui,x〉+
τ

2
‖x‖22, (4.2)

has the same solution as the oracle estimator in (4.1).

Second, the following lemma reveals the relation between
the real signal and the measurements.

Lemma 4.2. With a probability at least 1− 1/d, we have∥∥∥∥U>S yn − γx∗S
∥∥∥∥
2

≤ C
√
s

n
, (4.3)

where C is a universal constant and S is the support of x∗.

Equipped with Lemma 4.1 and Lemma 4.2, we have the
following theorem establishing the oracle property and
sample complexity of our estimator for strong signals.

Theorem 4.3. Assume that we have the nonconvex penalty
Gλ(x) =

∑d
i=1 gλ,b(xi) that satisfies conditions C1 and

C2. If the true signal x∗ satisfies the magnitude condition
minj∈S |x∗j | ≥ ν + ‖x̂O −x∗‖2, for our estimator x̂τ with
regularization parameter λ = C

√
log d/n + |γ − τ | and

ζ− < τ ≤ ‖vS‖2 as in Lemma 4.1, we have

(1) x̂τ = x̂O;

(2) With a probability of at least 1− 1/d,

‖x̂τ − x∗‖2 ≤
C

γ

√
s

n
,

where C is a universal constant.

In Theorem 4.3, the dependence on s is suboptimal, be-
cause we only obtain the `2 norm based estimator error
bound. In order to get rid of s, we need `∞ norm based es-
timator error bound, which requires a much stronger condi-
tion namely irrepresentable condition (Wainwright, 2009).

Theorem 4.3 indicates that our estimator will be identical
to oracle estimator under a magnitude assumption, while
requiring no oracle information a priori. This will lead
to exact support recovery directly. It is worth noting that
the `2 regularizer in (3.3) is essential to achieve the oracle
property, the estimator in (3.3) with τ > ζ− is identical to
the oracle estimator in (4.1). In particular, the `2 regular-
izer makes the objective function in (3.3) strongly convex,
based on which we can prove the estimator with `2 regu-
larizer in (3.3) is identical to the oracle estimator in (4.1).
Note that the oracle estimator in (4.1) does not have `2 reg-
ularizer. Therefore, the l2 regularizer in (3.3) does not in-
troduce any extra approximation error. Note also that for
Theorem 4.5, we do not need the `2 regularizer (τ = 0).
Now we analyze the error bound of oracle estimator, which
is also the error bound of our estimator. We will also show
that the magnitude assumption is actually a weak assump-
tion.

Moreover, we can see that the recovery error of our method
for strong signals is just O(

√
s/n), indicating a sample

complexity ofO(s/ε2), which is a significant improvement
from previous best result O(s log d/ε2).

In addition, we have ‖x̂O − x∗‖2 ≤ C/γ
√
s/n with high

probability, which does not depend on the magnitude as-
sumption. Therefore, we will only need

min
j∈S
|x∗j | ≥ ν + C/γ

√
s/n (4.4)

to get x̂τ = x̂O with probability at least 1 − 1/d. This
is a weak assumption, since one-bit measurements can be
acquired at very high rates. When n is very large, the right-
hand side of (4.4) will converge to a constant ν. Note again
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that for the oracle estimator, the error bound is always of
the order ofO(

√
s/n), which does not depend on the mag-

nitude assumption.

4.2. Sample Complexity of Our Estimator for General
Signals

We now turn to the case of general signals, where the mag-
nitude assumption does not hold necessarily. In this case,
we consider our estimator in (3.3) with τ = 0, i.e., x̂τ=0.
Note that when τ = 0, the problem in (3.3) is not convex.
However, as we will see later, our theory applies to any
local optimal solution to (3.3). In other words, it is suffi-
cient to get a local optimal solution to (3.3) as our estimator.
We start with the following lemma, which characterizes the
curvature of the loss function in the ball ‖x‖2 ≤ 1.
Lemma 4.4. For any x where ‖x‖2 ≤ 1, we have

〈E[U>y]/n,x∗ − x〉
γ

≥ 1

2
‖x∗ − x‖22.

Proof. We have

〈E[U>y]/n,x∗ − x〉 = 〈γx∗,x∗ − x〉
= 〈γx∗ − γx+ γx,x∗ − x〉
= γ‖x∗ − x‖22 + γ〈x,x∗ − x〉.

(4.5)

On the other hand, we have

〈x,x∗ − x〉 = x>x∗ − ‖x‖22 ≥ x>x∗ − 1

2
− 1

2
‖x‖22

= x>x∗ − 1

2
‖x∗‖22 −

1

2
‖x‖22

= −1

2
‖x− x∗‖22. (4.6)

Substituting (4.6) into (4.5), we obtain

〈E[U>y]/n,x∗ − x〉 ≥ γ

2
‖x− x∗‖22,

which completes the proof.

We are now ready to present the following theorem, which
bounds the error of our estimator for general signals.
Theorem 4.5. Suppose the nonconvex penalty Gλ,b(x) =∑d
i=1 gλ,b(xi) satisfies conditions C2, C3 and C4. For

any local optimal solution x̂τ=0 to (3.3) with τ = 0,

λ = C

√
log d

n
and ζ− <

γ

2
, we have with probability

at least 1− 1/d that

‖x̂τ=0 − x∗‖2 ≤
2C

γ − 2ζ−

√
s1
n︸ ︷︷ ︸

S1:|x∗
i |≥ν

+
6C
√
s2

γ − 2ζ−

√
log d

n︸ ︷︷ ︸
S2:0<|x∗

i |<ν

,

where C is a universal constant.

From Theorem 4.5, we can see that for strong signals, we
have |x∗i | ≥ ν for all i ∈ S, thus s2 = 0. Then our recov-
ery error is just O(

√
s/n), which is equivalent to a sam-

ple complexity of O(s/ε2). In the worst case, |x∗i | < ν
for all i ∈ S, thus s2 = s, and our recovery error is
O(
√
s log d/n). This yields the worst sample complexity

of O(s log d/ε2).

When τ = 0, our algorithm will output a local minimum in
the primal. Note the proof of Theorem 4.5 relies only on the
first order necessary condition for local minima. Therefore,
any local minima to the optimization problem (3.3) with
τ = 0 enjoys the rate in Theorem 4.5. Since the output of
our algorithm in this case (τ = 0) is a local minimum in the
primal, it enjoys the theoretical guarantee in Theorem 4.5.

5. Experiments
In this section, we will verify our theoretical results on syn-
thetic datasets. For each recovery task, we will tune C and
b by cross validation and select λ and τ according to The-
orem 4.3 for strong signals and Theorem 4.5 for general
signals. For each parameter setting, we present the average
results of 100 trials of our method and four other methods:

• Passive: the passive algorithm proposed in (Zhang et al.,
2014), the best previous result on sample complexity.

• Convex: the convex programming approach proposed
in (Plan & Vershynin, 2013a).

• BIHT and BIHT-`2 proposed in (Jacques et al., 2013)

5.1. Approximate Vector Recovery for General Signals

In this subsection, we will show our experimental results on
general signals, i.e., no magnitude assumption guaranteed.
We will randomly select their support and draw the values
of nonzero elements from a standard normal distribution.
The elements in the matrix U are also drawn from standard
normal distribution. We choose the noisy setting in (Plan
& Vershynin, 2013a) by flipping the signs of measurements
with a probability of 0.1.

Figure 1(a) shows the recovery error against the dimension-
ality of signals d. We can see that our proposed method out-
performs all the other algorithms with a remarkable margin.
As the dimensionality of signal d goes up, the recovery er-
ror grows slowly, because the dependency on d is logarith-
mic by Theorem 4.5. We can also see that in this noisy set-
ting, the more vulnerable BIHT and BIHT-`2 consistently
perform worse than the other methods.

Figure 1(b) shows the recovery error against the number
of measurements n. Our method consistently achieves the
best performance. The passive algorithm also performs rea-
sonably well, but our method outperforms it in a wide range
of n.
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(a) s = 10, n = 1000.
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(b) s = 10, d = 1000.
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(c) d = 1000, n = 3000.

Figure 1. Recovery error for general signals

Figure 1(c) shows the recovery error against the sparsity
of signals s. We can see that for all the algorithms except
BIHT, the error goes up quickly when s becomes larger.
Our algorithm is still consistently the best among all. Note
that the dependency on s is not logarithmic, therefore, the
error grows much faster than the case of varying d. We
choose number of measurements n = 3000 here, which is
larger than the signal dimension d. This is practical in one-
bit compressed sensing, because the one-bit measurements
can be generated at very high rates. To sum up, our method
can improve recovery accuracy in different parameter set-
tings even with noise.

5.2. Approximate Vector Recovery for Strong Signals

In this subsection, we present results of our recovery algo-
rithm for strong signals. We will first generate unit sparse
signals with random support, and set all nonzero entries to
1/
√
s. Noise is added in the same way with section 5.1.
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Figure 2. Recovery error of strong signals against d when s = 10,
n = 1000.

Figure 2 shows the recovery error of strong signals. Ac-
cording to Theorem 4.3, our error rate does not depend on
dimensionality d, which is verified by the results. Our re-

covery error stays on the same level, while the errors of all
the other algorithms go up with increasing d. Note that the
error of BIHT is much higher than the other algorithms.
For better illustration and scaling the behavior of the other
methods, we omit it in the figure here.

5.3. Support Recovery

We are now going to investigate the problem of support
recovery. According to Theorem 4.3, our estimator enjoys
oracle property for strong signals. We generate the signals
in the same way as section 5.2 and present the F1 score of
support recovery in different d and n settings. F1 score is
defined as the harmonic mean of precision and recall.

Precision =
TP

TP + FP
,Recall =

TP
TP + FN

F1 =
2 · Precision · Recall
Precision + Recall

,

where

TP =

d∑
i=1

1(x̂i 6= 0,x∗i 6= 0),FP =

d∑
i=1

1(x̂i 6= 0,x∗i = 0)

FN =

d∑
i=1

1(x̂i = 0,x∗i 6= 0).

Note that our method is different from best previous work
on support recovery. We do not need to construct specific
measurement matrix as (Gopi et al., 2013; Haupt & Bara-
niuk, 2011), nor do we depend on dynamic range or adap-
tion of the measurement process as (Gupta et al., 2010).
Therefore, their methods are not directly comparable with
ours.

Figure 3(a) shows the F1 score against signal dimension
d. We can see that as the assumption in Theorem 4.3 is
satisfied, our algorithm can achieve exact support recovery
with very high probability. Our method and BIHT-`2 out-
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(a) s = 10, n = 1000.
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(b) s = 10, d = 1000.

Figure 3. F1 score for support reovery

perform the other algorithms with notable margins. In ad-
dition, Theorem 4.3 indicates that the support recovery of
our method does not depend on d, which is also validated
by the experiments. While for the other algorithms, the per-
formance of the passive algorithm drops significantly as d
goes up; BIHT is not effective either, nor can it achieve a
stable performance. Note that for the convex optimization
method, there is no `0 constraints on the signal. Therefore,
most of the entries in the estimator are nonzero, resulting
in very low precision. This explains the observation that
convex optimization method always have a F1-score close
to zero.

In Figure 3(b), we plot the F1 score against number of mea-
surements n. For the same reason, the convex optimization
method still suffers very low F1 score close to 0. For the
other four methods, when there are not enough measure-
ments, they perform poorly on support recovery. As the
number of measurements goes up, the passive algorithm is
the fastest to boost the performance. However, the F1 score
will stop increasing around 0.7 in spite of the increase of
measurements. For BIHT, the performance is less stable,
but F1 score will still converge around 0.7 with increasing
measurements. Compared with the passive algorithm, our
algorithm needs a bit more measurements to converge in
terms of F1 score. Moreover, when n is larger than 500,

our algorithm can achieve very good performance, almost
recover the support with probability 1. BIHT-`2 has a sim-
ilar behavior as our algorithm with enough measurements,
but our method requires fewer measurements.

5.4. Oracle Property

We will further study the oracle property of our estimator.
We plot the difference between proposed estimator and the
oracle estimator in (4.1). By Theorem 4.3, the two should
be the same with high probability. In Figure 4, we can see
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Figure 4. Difference between estimators and oracle estimators
against n when s = 10, d = 1000.

that when the number of measurements goes up, the differ-
ence between our estimator and oracle estimator converges
to zero very quickly. For BIHT and BIHT-`2, the differ-
ences are large; for the passive algorithm, the difference is
still discernible, and the support recovery is not satisfying;
for the convex optimization algorithm, although the norm
of the difference is converging, it cannot recover the sup-
port. Therefore, our estimator is the only one that enjoys
oracle property.

6. Conclusions
In this paper, we proposed a novel and effective method
based on nonconvex penalty functions for one-bit com-
pressed sensing. Compared with existing methods, our
method improves the sample complexity significantly, and
achieves excellent performance on support recovery. We
also showed that our method is robust to noise by numeri-
cal experiments.
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