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Abstract

In recent years, the /; ,-regularizer has been
widely used to induce structured sparsity in the
solutions to various optimization problems. Cur-
rently, such ¢; ,-regularized problems are typi-
cally solved by first-order methods. Motivated
by the desire to analyze the convergence rates of
these methods, we show that for a large class of
¢, p-regularized problems, an error bound condi-
tion is satisfied when p € [1,2] or p = oo but
fails to hold for any p € (2,00). Based on this
result, we show that many first-order methods
enjoy an asymptotic linear rate of convergence
when applied to ¢; j,-regularized linear or logis-
tic regression with p € [1,2] or p = oo. By
contrast, numerical experiments suggest that for
the same class of problems with p € (2, c0), the
aforementioned methods may not converge lin-
early.

1. Introduction

Optimization with sparsity-inducing penalties has received
increasing attention in various application domains such
as machine learning, statistics, computational biology, and
signal processing (Bach et al., 2012). As the convex enve-
lope of £y-norm, the ¢;-norm has been widely used as a reg-
ularizer in sparse variable selection, such as LASSO (Tib-
shirani, 1996). Recently, ¢;-regularization has been ex-
tended to Group-Lasso regularization (Yuan & Lin, 2006;
Bach, 2008; Meier et al., 2008), and more generally, to £; ;-
regularization with 1 < p < oo (Fornasier & Rauhut, 2008;
Kowalski, 2009; Vogt & Roth, 2012). Such extensions have
been applied to sparse regression (Eldar et al., 2010), multi-
ple kernel learning (Tomioka & Suzuki, 2010; Kloft et al.,
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2011), etc., and have witnessed great success in yielding
sparsity on the group level when p > 1. In these appli-
cations, one is interested in solving a convex optimization
problem of the form
min F(z) := f(x) + P(z). (1)
LS
Here, f : R® — R is a smooth convex function and P :
R™ — R takes the form

P(z) = Z wyllzsllp,

JeJ

where J is a non-overlapping partition of the coordinate
index set {1,2,...,n}, wy > 0 for each J € J, and
||| is the £,-norm. Note that ¢; -regularization and Group-
Lasso regularization are special cases of (1), as they corre-
spond to p = 1 and p = 2, respectively. Additionally,
¢p,-regularization is also incorporated when no partition is
made.

To cope with the rapidly growing size of datasets, recent re-
searches on numerical algorithms for solving non-smooth
composite minimization problems such as (1) have chiefly
been focusing on first-order methods, such as the proxi-
mal gradient method and its accelerated version (Beck &
Teboulle, 2009), the coordinate descent method (Tseng,
2001), and the coordinate gradient descent method (Tseng
& Yun, 2009). Since then, adaptations of these methods
to the ¢, ,-regularized problem (1) have been proposed
in (Meier et al., 2008; Liu et al., 2009; Liu & Ye, 2010).
To study the efficiency of these iterative algorithms, one
approach is to analyze the rates at which the iterates gener-
ated by the algorithms converge to an optimal solution. Ex-
isting results in this line of research reveal that for smooth
convex functions f, the aforementioned first-order methods
for solving the ¢, ,-regularized problem (1) converge at a
sublinear rate, and a linear rate is achievable when f is ad-
ditionally assumed to be strongly convex (Nesterov, 2004;
Meier et al., 2008; Liu & Ye, 2010). However, for many
applications, the strong convexity assumption is too strin-
gent. Moreover, various first-order methods for solving (1)



{1 p-Norm Regularization: Error Bounds and Convergence Rate Analysis of First-Order Methods

have exhibited a linear rate of convergence in numerical
experiments even when f is not strongly convex—a case
in point is the proximal gradient method for solving ¢;-
regularized linear regression problems (Hale et al., 2008;
Xiao & Zhang, 2013). It is thus natural to ask whether such
a phenomenon can be explained theoretically, and more
generally, whether certain structures of the functions f and
P can be exploited to establish faster convergence rates for
the aforementioned first-order methods.

To address these questions, a powerful approach is to uti-
lize a so-called error bound (EB) condition (Definition 1),
which can be viewed as a relaxed notion of strong con-
vexity. Indeed, assuming the EB condition holds, various
first-order algorithms have been demonstrated to achieve a
linear rate of convergence (Luo & Tseng, 1993; Hong &
Luo, 2012; So, 2013; Wang & Lin, 2014). Moreover, it has
been shown that the EB condition is satisfied by a number
of optimization problems for which strong convexity fails
to hold, such as linear regression with ¢;-regularizer (Luo
& Tseng, 1992). However, verifying whether a given op-
timization problem satisfies the EB condition remains an
intriguing issue.

In this paper, we consider the /; ,-regularized problem (1)
with p € [1, oo] and study when the EB condition holds for
this problem. Previous researches show that under some
mild assumptions on the function f (which are satisfied
by many machine learning applications), the EB condition
holds when p € {1,2,00} (Luo & Tseng, 1992; Tseng,
2010; Zhang et al., 2013). However, to the best of our
knowledge, it is not known whether the same is true for
other values of p. In fact, this question does not seem to
be amenable to the techniques developed in (Luo & Tseng,
1992; Tseng, 2010), as they require either the non-smooth
function P to have a polyhedral epigraph, which merely
corresponds to p = 1 and p = oo, or an explicit expres-
sion of the residual function, which is only available when
p=1landp=2.

The contribution of this paper is twofold. First, by exploit-
ing the notion of upper Lipschitz continuity of set-valued
mappings, we establish a sufficient condition under which
the EB condition holds for problem (1). In fact, our condi-
tion only requires the function P to be convex and thus can
potentially be used to certify the EB condition for a wide
range of regularizations. Second, based on our newly de-
veloped sufficient condition, we completely determine the
values of p for which the ¢; j-regularized problem (1) sat-
isfies the EB condition. Specifically, we show that under
standard assumptions on the smooth convex function f (see
Assumption 1), the EB condition holds when p € [1, 2] and
p = 00. On the other hand, we show via a family of ex-
amples that without further assumptions, the EB condition
can fail for any p € (2, 00).

As a direct consequence of our results, we show that many
first-order methods, including the proximal gradient algo-
rithm and coordinate gradient descent method, enjoy an
asymptotic linear rate of convergence when applied to ¢; -
regularized linear or logistic regression with p € [1,2] or
p = oo. By contrast, for the same class of problems with
p € (2,00), our numerical results suggest that these meth-
ods may not converge linearly. Our results not only expand
the repertoire of optimization problems that are known to
satisfy the EB condition but also explain how the choice of
p could affect the convergence rates of first-order methods.

In the sequel, we shall adopt the following notations. For
any vector z € R", z; € R!VI denotes the restriction of z
onto the coordinate index set J C {1,...,n}; ||z||p, where
p € [1,00], denotes the £,-norm of x. For simplicity, we
write ||z|| for ||x||2. For any matrix B € R™*", || B is
the matrix norm of B induced by the ¢3-norm; i.e., | B|| =
max||,||—1 [|[Bvl|. For any scalar a € R, sgn(a) is the sign
of a; i.e., sgn(a) = 1ifa > 0, sgn(a) = 0if a = 0, and
sgn(a) = —1if a < 0. For any closed set S, d(x, S) is the
distance of  to S; i.e., d(z,S) = minyes ||v — ||

2. Preliminaries
2.1. Basic Setup

Throughout the paper, we make the following assumptions
regarding the ¢ j,-regularized problem (1):

Assumption 1 (a) The convex function f is of the form
f(z) = h(Az), 2)

where A € R™*" is a matrix and h : R™ — R is
a continuously differentiable function with Lipschitz
continuous gradient Vh and is strongly convex over

any compact subset of the effective domain dom(h)
of h.

(b) The optimal solution set of (1), denoted by X, is non-
empty; i.e., X # (.

The above assumption is satisfied by many optimiza-
tion problems arising in machine learning. For in-
stance, in linear models, the empirical risk takes the form
fl@) = 30, 60, aT20), where {(20),§0) €
R™ x RP|4 = 1,...,N} are sample points and ¢
RP x RP — R is a loss function. Such an f can be put
into the form (2) by letting A = [2M) ... 2(M]T and
hy) = % Sis, (5D, y0) with y = (..., y™).
Two commonly used loss functions are the square loss
gD,y @) = Lg® — y®|? and the logistic loss
(5D, y®) = >oF_ log(1 + eXp(—Q](-Z)y](-Z))). It can be
verified that linear models with either the square loss or the
logistic loss satisfy Assumption 1.
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Assumption 1 implies some important properties of the op-
timal solution set of (1), which we summarize in the fol-
lowing proposition. The proof is given in the supplemen-
tary material.

Proposition 1 Under Assumption 1, the optimal solution
set X has the following properties:

(i) There exist a pair of vectors (§,g) € R™ x R™ with
g = ATV h(5) such that for any x € X,

Av=7, Vf)=3.

(ii) X is a compact convex set.

2.2. Error Bound Condition

In the convergence analysis of numerical algorithms for (1),
it is essential to measure the distance of any given iterate
x* to the optimal solution set X'; i.e., d(x*, X'). However,
without actually solving (1), such a quantity is not easily
accessible. As an alternative, let us define a function R :
R™ — R™, which we call the residual function of (1), as
follows:

R(x) = argmin {(Vf(x), d) + Pz +d) + ;|d||2} .

deRrn

3)
It is easy to verify that R(x) = O if and only if x € X.
Moreover, given any x € R", R(x) is typically much easier
to compute and analyze than d(z, X’). This suggests that
[|R(x)|| can serve as a surrogate measure of the proximity
of x to X. However, such a surrogate measure would not
be very useful unless a relationship between ||R(z)|| and
d(x, X) can be established. This motivates the exploration
of the following error bound (EB) condition:

Definition 1 (EB Condition) We say that problem (1) sat-
isfies the EB condition if there exist a constant k > 0 and a
closed set U C dom(F), such that

d(z,X) < k||R(x)|| whenever x € U. 4)

Moreover, we say the EB condition is global ifU = dom(F")
and is local if U is the closure of some neighborhood of the
optimal solution set X.

The EB condition can alternatively be viewed as a relaxed
notion of strong convexity, as it is automatically satisfied
if F is strongly convex (Pang, 1987). For illustration, con-
sider the simple case of (1) where P = 0. From (3), we
see that R(x) = —V f(z). Hence, the EB condition is ask-
ing for a constant x > 0 such that d(z, X') < ||V f(x)|,
which holds globally when f is strongly convex.

2.3. Set-Valued Mappings and Upper Lipschitz
Continuity

Our approach to establishing the EB condition is based on
the notion of upper Lipschitz continuity of set-valued map-

pings, which features prominently in variational analysis.
Let us begin with some definitions.

Let Y and Z be two Euclidean spaces. A mapping I' :
Y — Z is said to be a set-valued mapping, or equivalently,
a multifunction, if for each element of y € ), I'(y) is a
subset of Z. For example, let B € R™*"™ be given and
consider the solution set of the following linear system:

S(b) = {z € R" | Bz = b}.

Then, S is a set-valued mapping from R™ to R", because
for each b € R™, S(b) is an affine subset of R™. The graph
of a set-valued mapping I" : YV — Z, denoted by gph(T"),
is the subset of ) x Z defined by

gph(l') :={(y,2) e Y x Z [z € ['(y)}.

For set-valued mappings, we can define a notion of conti-
nuity as follows:

Definition 2 A set-valued mapping I' : YV — Z is said to
be upper Lipschitz continuous (ULC) at y € Y if T'(y) is
non-empty and closed, and there exist constants 0 > 0 and
d > 0 such that for all y € Y with ||y — 3| < 6,

I(y) € T(y) +0lly — 9B,

where B = {z € Z | ||z|| < 1} is the unit {y-norm ball of
Z and “+” is the Minkowski sum of two sets.

The ULC property above can be viewed as an extension
of the calmness property of single-valued functions to set-
valued functions (Dontchev & Rockafellar, 2009).

Before leaving this section, we present an important lemma
characterizing the ULC property of polyhedral multifunc-
tions, the proof of which can be found in (Robinson, 1981).
A set-valued mapping is called a polyhedral multifunction
if its graph is a finite union of polyhedral convex sets.

Lemmal LetT' : Y — Z be a polyhedral multifunction.
Then, T is ULC at any §j € Y such that T'(§) is non-empty.

3. A Sufficient Condition for the EB
Condition

In this section, we prove a sufficient condition for the EB
condition to hold, which forms the basis of our subsequent
analysis. Let ¥ : R™ x R™ — R” be the set-valued map-
ping defined by

S(y,9) :={x eR" | Az =y, —g € OP(x)}. (5)

The following proposition characterizes the relationship
between the set-valued mapping X and the optimal solu-
tion set A’
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Proposition 2 Under Assumption 1, we have
X = E(gag)v
where (g, g) € R™ x R™ are given in Proposition 1.

Furthermore, as shown in the following theorem, the ULC
property of 3 implies the EB condition for (1).

Theorem 1 Under Assumption 1, the EB condition holds
for (1) if the set-valued mapping ¥ is ULC at (§,3) €
R™ x R™,

The proofs of Proposition 2 and Theorem 1 are presented
in the supplementary material. Theorem 1 gives an alterna-
tive analysis framework for establishing the EB condition.
Indeed, instead of establishing the inequality (4) directly,
we may turn to study the ULC property of the set-valued
mapping ¥ associated with the optimization problem. This
approach can be advantageous, as it only relies on the prop-
erties of the subdifferential of the non-smooth function P,
which are often simpler than those of the residual function
R. In what follows, we will utilize this approach to study
when the EB condition holds for the ¢; ,,-regularized prob-
lem (1).

4. EB Condition for /, ,-Regularization

In this section, we consider the ¢; ,-regularized prob-

lem (1) under Assumption 1 and investigate for which val-

ues of p € [1,00] will the EB condition hold. In view of

Theorem 1, our strategy is to study when the set-valued

mapping ¥ possesses the ULC property. We divide our

analysis into three cases: (a) p = 1 and p = oo; (b)
€(1,2]; ©)p € (2,00).

4.1. EB Condition Holds when p = 1 and p = o©

We first state a result concerning the set-valued mapping
(5) when P has a polyhedral epigraph.

Lemma 2 Suppose that P has a polyhedral epigraph; i.e.,
the set {(x,t) € R"xR | P(x) < t} is a polyhedron. Then,
the set-valued mapping 3. is a polyhedral multifunction.

The proof is given in the supplementary material. Not-
ing that both the ¢;-norm and /,,-norm have polyhedral
epigraphs, by Lemma 2, the set-valued mapping ¥ is a
polyhedral multifunction when p = 1 and p = co. Hence,
by Lemma 1, ¥ is ULC at (7,3) € R™ x R™ if 3(7, g) is
non-empty. The latter is ensured by Assumption 1. Upon
applying Theorem 1, we have the following result:

Corollary 1 Under Assumption 1, the EB condition holds
for (1) whenp =1 and p = oc.

4.2. EB Condition Holds when p € (1, 2]

Next, we show that under Assumption 1, the EB condition
holds for (1) when p € (1,2]. Towards that end, let us first

state several technical results that will be used to establish
the ULC property of the set-valued mapping 3. The proofs
of these results can be found in the supplementary material.

Lemma3 Let B € R™*" b € R™ d € R*, and J C
{1,...,n} be given. Define the sets

'Plz{ngRn|B.’I:b},
P2;:{xERn|J)J=CLJ'dJa aJSO}'

Suppose that Py is non-empty. Then, there exists a constant
6 > 0 such that for any x € R",

d(z,P1) <0||Bx —1|.

Moreover, for any x € R™ and p € [1, 0],

d(x, P2) <z sllp-

b

’ dj X g
ldsllp ~ Nlzsllp

where we adopt the convention that u/||u||, = 0 if u = 0.

The following result is the so-called linear regularity
of a collection of polyhedral sets; see Corollary 5.26
of (Bauschke & Borwein, 1996).

Lemma4 LetCy,...,Cn be polyhedra in R™. Then, there
exists a constant T > 0 such that for any x € R”,

N N
i=1 =1

We next present a result concerning the subdifferential of
the £,-norm when p € (1,00). Let g denote the Holder
conjugate of p; i.e., 1/p+1/q = 1.

Proposition3 Let g € R, w > 0, and p € (1,00) be
given. Define the set

S:={z eR" | —g €wi|x|,}

Then,
0 if llgllg > w;
S=¢ {zlz=a-v(g), a<0} if [lgllq =w;
{o} if lgllg <w,

where the function v : R™ — R" is defined by

v(g) = (sen(glgnl?. . sen(ga)lgal )

In addition, when p € (1,2], for any g € R"™, there exist
constants 6 > 0 and v > 0 such that

[o(g) = v(@)Il < vllg = gll whenever |lg — gll < 4. (6)

Recall that P(x) = 3, wsllesll,, where J is a
non-overlapping partition of the coordinate index set
{1,...,n}. Hence, for any z,g € R", —g € OP(z) if and
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only if —g; € wy0|zs|, for all J € J. This, together
with Proposition 3, implies that if 3(y, g) is non-empty,
then ||gs|| < wy forall J € J. In particular, we may write

Az =y,
E(yag): X xJ:aJ'U(gJ)7aJ§01 VJEjlgv )
rz;=0,VJ € jzg
(7N
where

Ji={JeT|lgsll =ws},
s ={JeT|lgsll <ws}.

This shows that X(y, ¢) is closed. The next lemma reveals
that boundedness of X is a property that is stable under
small perturbations.

Lemma 5 Suppose that the set-valued mapping ¥ is non-
empty and bounded at (y, g) € R™ xR"™. Then, there exists
a constant § > 0 such that X.(3y, g) is bounded whenever
(7.9) € R™ x R" satisfies [|§ — gl < & and %(7,9) is
non-empty.

Now, we are ready to study the ULC property of the set-
valued mapping .

Theorem 2 Suppose that p € (1,2]. Then, the set-valued
mapping Y. is ULC at any (y,g) € R™ x R™ such that
3 (y, g) is non-empty and bounded.

Proof Define the sets

Ci(J)={zeR"|z;=ay v(g9s), a;y <0}, VJ € J7,
CQZZ{QJER”|$J:0,VJEJ§},
Cs :={x eR" | Ax = y}.

Then, by (7), we have X(y, g) = (ﬂJejlgcl(J)) NCaNCs.

Moreover, since Cy(J), C2,Cs, where J € J, are all poly-
hedral subsets of R™, by Lemma 4, there exists a constant
7 > 0 such that for any x € R",

3

> d(,Ci() + Y d(x,Ci)

JeTy i=2

d(l‘, Z(yag)) <7

®)
Thus, to prove Theorem 2, it suffices to bound the right-
hand side of (8) for all x € (7, ), where (7, g) € R™ x
R™ lies in a neighborhood of (y, g) € R™ xR™ and (7, §)
is non-empty. Towards that end, we first note that since
llgsll < wy for J € JJ, there exists a constant §; > 0
such that

lgsl| <wy, VIeTd )

whenever ||(7,§) — (y,9)|| < d1. Now, for any such pair
(9,9) € R™ x R™ and any index set J € J7, we either
have (a) [|g/| = wy or (b) |G| < wy. (The case [|g,[| >

wy cannot happen because (7, §) is assumed to be non-
empty.) It follows that 7 = J{(a) U J{ (b), where

JP(a) ={J e I gl =ws},
JY0) ={Je T | g/l <ws}-

(10)
Y

Since 3(y, g) is non-empty and bounded, by Lemma 5,
there exist constants do > 0 and R > 0 such that for any
x € (g, g), we have

lzll, < R whenever [|(7,9) — (y,9)Il < 02.  (12)

Therefore, in view of (9)—(12) and Proposition 3, every z €
(7. §) that satisfies || (7. 3) — (y.9)|| < min{4y,6,} must
also satisfy the following conditions:

Az =, (13)
xy=ay-v(gys) forsomeay; <0, VJ € J(a), (14)
xy=0,VJ e J7(b)u Ty, (15)
[zllp < R. (16)

Using (15), it is clear that
d(z,Cs) = 0. (17)

Moreover, by (13) and Lemma 3, there exists a constant

0’ > 0 such that
d(x,C3) < 0| Az — y|| = 0'[|7 — yl|. (18)

Now, by (14), (15), and Lemma 3, we have d(x,C1(J)) =
0 for J € J7(b) and

v(g.) Ty
d(x,Ci(J)) <l sllp - ‘ lo(g)lp, — llzsllp
v(gy) v(g.)

= ||zsll, ‘ ool ~ 0@,

1— -
=w; N gllp - llv(g.s) — (@)l
1— -

<wyw; " Nally - llgs — g.ll

for J € J!(a), where the third line follows from the fact
that ||v(g)|, = w9™! whenever ||g||, = w, and the fourth
line is due to (6). Together with (16), the above yields

dod@, ()< > vy sl - llgs — dall

JeJy JeJ{(a)
< (R 3 ww?{q> lg—gll. (19
JeJ
Substituting (17), (18), and (19) into (8), we obtain

d(x,%(y,9)) < 0(7,9) — (v, 9)ll

for any 2 € %(g, ) with [[(7,9) — (y, g)|| < min{éy, 02},
where § = max {9/, RY jcs VJ&J!l]iq}. It follows that X
is ULC at (y, g) € R™ x R™, as desired. |
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Seeing that Assumption 1 and Propositions 1 and 2 ensure
the boundedness of (7, g), the following result is a direct
combination of Theorems 1 and 2:

Corollary 2 Under Assumption 1, the EB condition holds
for (1) whenp € (1,2].

4.3. EB Condition Fails when p € (2, 00)

It can be verified that in this scenario, the set-valued map-
ping X is not ULC at certain points. The key intuition is
that when p € (2,00), we have 0 < ¢/p < 1, which im-
plies that the function s — |s|%/? is not Lipschitz continu-
ous at s = 0. As such, the inequality (6) fails to hold, which
means that Theorem 1 is no longer valid in this scenario.
In what follows, we will construct an explicit example to
demonstrate that under Assumption 1, the EB condition for
problem (1) fails to hold for any p € (2, c0).

Example. Consider the following problem:
o1 2
min oAz = b + [|z]lp, (20)

where A = [1,0], b = 2. It is obvious that this problem
satisfies Assumption 1. In addition, the optimal value and
optimal solution set of (20) can be calculated explicitly.

Proposition 4 Consider problem (20) with p € (2,00).
The optimal value is v* = 3/2 and the optimal solution
set is given by X = {(1,0)}.

The proof of Proposition 4 can be found in the supplemen-
tary material. Now, let {0y } x>0 be a sequence converging
to zero; i.e., Oy = o(1). For simplicity, we assume that
dr > 0 for all k£ > 0. Consider the sequence {Ik}kzo with

, 2 (1—6)s 1 1
;13]f::2—(1—(5;c)57 xgzzi( ’i) “0p + 07,
(175]@)7)

where ¢ is the Holder conjugate of p. Since 6, — 0, the

sequence z* converges to X'. Our goal now is to show that

|R(z*)|| = o(d(x*, X)) when p € (2, 00).

To begin, observe that x¥ converges to 1 at the rate ©(dy,)
and % converges to 0 at the rate @(6,1/ ) (note that when
p > 1,6, = O(5,/"). Thus, we have d(z*,X) =
0(5,/").

Next, we need to compute R(z*). This is done in the fol-

lowing lemma, whose proof can be found in the supple-
mentary material.

Lemma 6 For the sequence {x*}>o defined above, we
have R(z*) = (0, —5,1/(1).

Since 1/p < 1/q when p € (2,00), we have 5,1,/‘1 =
0(5,1/’)). It follows from Lemma 6 that when p € (2, 00),

Irehl=e (5 ) =o (3 ) =o(a et )

which shows that the EB condition fails for problem (20).

S. Convergence Rates of First-Order Methods

As mentioned in the Introduction, the EB condition (4) can
be used to derive strong convergence rate results for vari-
ous first-order methods. In this section, we use the newly-
established EB condition for ¢; j,-regularization to analyze
the convergence rates of the proximal gradient (PG) and
block coordinate gradient descent (BCGD) methods when
they are applied to solve problem (1). In what follows,
we say that a sequence {w"} k>0 converges Q-linearly
(resp. R-linearly) to w® if there exists a constant p € (0, 1)
such that lim sup;,_, . {||w**! — w>||/|[w* — w™>||} < p
(resp. if there exist constants v > 0 and p € (0,1) such
that ||w* — w™| < v - p* forall k > 0).

5.1. Proximal Gradient Method

The PG method is well suited for solving non-smooth com-
posite optimization problems. Its adaptation for solving
¢, p-regularization is proposed in (Liu & Ye, 2009; 2010;
Zhang et al., 2013). Each iteration of the PG method in-
volves the computation of a proximal operator. For prob-
lem (1), the proximal operator is defined as

1
proxp(x) := argmin {P(z) + =z — x||2} .
ZGR'IL 2

It can be verified that x € R™ is an optimal solution to (1)
if and only if it satisfies the following fixed-point equation:

x = proxp(z — Vf(z)).
This motivates the following fixed-point iteration for solv-
ing (1):

gkt = prox,,, p (zF — apV f(2)),

where o, > 0 is the stepsize. It has been shown that for
p € [1,00], proxp(z) can be computed efficiently using
the so-called ¢; j-regularized Euclidean projection (EPy,)
method (Liu & Ye, 2009; 2010). We summarize the PG
method for solving (1) in Algorithm 1.

Algorithm 1 Proximal Gradient Method
Input: initial point 2°
for kK =0to N do
1. choose a stepsize ay, > 0
2. compute y* = zF — a;, V f(2*)
3. compute proxakp(yk) using the EP;,, method
"+ = prox,, p(y"*)

4. setx
end for

It is known that the sequence generated by the PG
method converges linearly if the EB condition (4) is satis-
fied (Zhang et al., 2013). By invoking Corollaries 1 and 2,
we obtain the following result:
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Corollary 3 Consider the () p-regularized problem (1)
with Assumption 1 satisfied. Let L > 0 be the Lipschitz
constant of Vf. Let {x* te>o be the sequence generated
by Algorithm 1. Suppose that the stepsizes {cy, } >0 satisfy

1
infag >0, supag < —.
A k kp k 7

Ifp € [1,2] or p = oo, then {f(z*)}x>0 converges Q-
linearly to the optimal value v* and {xk}kzo converges
R-linearly to an element in X.

5.2. Block Coordinate Gradient Descent Method

The BCGD method is developed in (Tseng & Yun, 2009)
and is applied to the /; ,-regularized problem (1) in (Meier
etal., 2008; Liu et al., 2009). In each iteration of the BCGD
method, a block J € J and a symmetric positive definite
matrix H are chosen. Then, a search direction vy (x; J),
which is defined as the minimizer of the problem

min  Vf(z)Td+ 3d"Hd + P(z + d)

st d,—0,Yj¢J, @D

is computed. Finally, the iterate is updated by moving
along the direction vy (x; J) with stepsize « > 0, where
« is chosen according to the Armijo rule (Tseng & Yun,
2009). We summarize the BCGD method in Algorithm 2.

Algorithm 2 Block Coordinate Gradient Descent Method

Input: initial point 2.°

for kK =0to N do
1. choose a block J* € J and a symmetric positive
definite matrix H*
2. solve problem (21) and obtain the search direction
vk (x5 JF)
3. choose a stepsize o, > 0 by the Armijo rule and
update 2%+ = ¥ + agvge (aF; JF)

end for

It has been shown in Theorem 2 of (Tseng & Yun, 2009)
that Algorithm 2 attains a linear rate of convergence if the
EB condition (4) is satisfied. By invoking again Corollar-
ies 1 and 2, we obtain the following result:

Corollary 4 Consider the {y ,-regularized problem (1)
with Assumption 1 satisfied. Let {x*}}>o be the sequence
generated by Algorithm 2, where the blocks {J*}1.>0 cycle
over J and the stepsizes {ay }i>o satisfy

infap >0, supag <1.
k k
Ifp € [1,2] or p = oo, then {f(z*)}x>0 converges Q-

linearly to the optimal value v* and {ij}kzo converges
R-linearly to an element in X.

As implied by Corollaries 3 and 4, the PG and BCGD meth-
ods for solving ¢; p-regularized linear regression or logis-
tic regression are theoretically guaranteed to attain a linear
rate of convergence when p € [1,2] or p = co. By con-
trast, since the EB condition fails to hold when p € (2, c0),
the PG and BCGD methods for solving the same class of
problems may not converge linearly.

6. Numerical Experiments

In this section, we perform numerical experiments to study
the convergence rates of the PG and BCGD methods for
solving ¢ j,-regularized linear regression and logistic re-
gression on synthetic datasets. As we shall see, the results
corroborate our theoretical analyses in previous sections.

6.1. Example for which the EB Condition Fails

Recall the example we constructed in Section 4.3; i.e.,
problem (20). In spite of its small size, problem (20) is of
particular interest in experiments of convergence rates due
to the following reasons. First, it belongs to the class of
¢, p-regularized problems that satisfy Assumption 1. Sec-
ond, the EB condition holds for (20) when p € [1,2] and
p = oo, while it fails when p € (2, 00). Third, its optimal
value v* is known in advance (Proposition 4), so that we
can trace the curve log(f(x*) — v*) precisely.

We implement the PG method (Algorithm 1) to solve (20)
with p = 1,1.25,1.5,1.75,2,2.5, 3,4, co. The stepsize is
chosen to be constant o, = 0.5, which can be verified to
satisfy the conditions stated in Corollary 3. The conver-
gence performance of the objective value is presented in
Figure 1. It is readily seen that when p € [1,2] or p = oo,
{f(2*)}r>0 converges linearly to v* (Figure 1(a)). By con-
trast, when p € (2, 00), the objective value converges at a
sublinear rate (Figure 1(b)). Our experiments suggest that
for the ¢; ,,-regularized problem (1), a linear rate of conver-
gence is in general not achievable if p € (2, 00).

6.2. Synthetic Datasets

In this section, we test the convergence rates of first-order
methods for solving ¢; ,-regularized regression with p €
[1,2] or p = oo on synthetic datasets. In particular, we
consider the PG method (Algorithm 1) for solving ¢; ,-
regularized linear regression and the BCGD method (Al-
gorithm 2) for solving ¢, j,-regularized logistic regression.

1 p-Regularized Linear Regression. We consider

d
IAX = YIE+7Y 1XDp (22)

i=1

. 1
min —=
XeRdxk 2

where A € R™*4 is a measurement matrix, Y € R"™** ig
the response matrix, and 7 > 0 is a regularization param-
eter. In addition, we treat each row of X as a group and
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Figure 1. The PG method for solving problem (20).

use X to denote the i-th row of X. We utilize the same
strategy as the experiments in (Liu & Ye, 2010). Precisely,
each entry of A is generated independently from the stan-
dard normal distribution. Moreover, we generate a jointly
sparse matrix X* € R%%k where the entries of the first
dop < d rows are being sampled from the normal distribu-
tion and the remaining entries are all set to 0. Then, we
let Y = AX* + Z, where Z € R™** ig the noise ma-
trix whose entries are sampled from the normal distribution
with mean zero and standard deviation 0.1. Figure 2 illus-
trates the convergence performance of the PG method (Al-
gorithm 1) for solving (22) with m = 50,d = 100,dy =
30, k = 20, and 7 = 50. It reveals that the objective value
converge linearly to the optimal value when p € [1,2] or
p = 00. This confirms our result in Corollary 3.

{1 p-Regularized Logistic Regression. We consider

S d
> "log(1 + exp(—y. (We, X)) + 7Y _ [ XD,
s=1

i=1

min
X Rdxk
(23)
where W, € R¥>* ¢ € {~1,1}, and 7 > 0 is a regu-
larization parameter. Here, (W, X) = trace(WZ X) and
X () denotes the i-th row of X . For the data generation, we
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Figure 2. The performance of the PG method for solving ¢ ;-
regularized linear regression.

first sample S matrices Wy, ..., Wg independently from
the standard Wishart distribution. Then, a jointly sparse
matrix X* is generated in the same way as in the experi-
ment of /; j-regularized linear regression. Finally, we let
ys = sgn((Ws, X)), where s = 1,...,S. Figure 3 shows
the convergence performance of the BCGD method (Algo-
rithm 2) for solving (23) with d = k = 50, S = 100,
dy = 10, and 7 = 20. It is clear from the figure that the ob-
jective value of (23) converges linearly to the optimal value
when p € [1,2] or p = oo. This corroborates our result in
Corollary 4.
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Figure 3. The performance of the BCGD method for solving ¢ ;-
regularized logistic regression.
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7. Supplementary Material
7.1. Proof of Proposition 1

For arbitrary x1, 20 € X, let y; = Axy,y2 = Axo and suppose that y; # y». Assumption 1(a) implies that the function h
is strongly convex on the line segment joining y; and yo. Thus, there exists a constant ¢ > 0 such that

+ 1 1 g
;(MW>§¥MQ+¥Mﬂ—ﬂm_WW

f (W) < %f(an) + %f(xz) - %Hi‘/l — 2.

Adding the above two inequalities and using x1, x2 € X yield
T+ « O "
F(E5) <o = Sl - P <o,

where v* is the optimal value of (1). However, this contradicts the optimality of v*. Hence, we have y; = ys; i.e., Ax is
invariant over X. Since V f(x) = ATVh(Az) by (2), we see that V f(z) is also invariant over X'. Therefore, there exists a
vector j € R™ such that § = Az and V f(z) = ATVh(y) = g for any z € X. Now, we can express the optimal solution
set as

X:{xER”

Ae=7, Y willzsll, = v" = () } :

JeJ

This shows that X" is a compact convex set. O

7.2. Proof of Proposition 2

Since problem (1) is convex, its first-order optimality condition is both necessary and sufficient. Hence, we have
X={zxeR"|0eVf(x)+0P(z)}. (24)

Now, let x € X be arbitrary. By Proposition 1, we have Ax = § and Vf(x) = g. This, together with (24), leads to

x € 3(7,g). On the other hand, for any x € X(, ), since g = ATVh(y) = ATVh(Az) = V f(z), we conclude that
0 Vf(x)+0P(x)ie,xz € X. O

7.3. Proof of Theorem 1

Since ¥ is ULC at (7, g), there exist constants § > 0 and ¢ > 0 such that for any (y, g) satisfying ||(y,g) — (3, 9)| < 9.
Sy, 9) € 2(9,9) +0ll(y, 9) — (,9)|B. (25)
Consider the functions y* : R® — R™ and g+ : R® — R given by
y' (@) = Az + R(z)), g"(x)=Vf(z)+ R(x). (26)

It is easy to verify that R(z) = proxp(x — V f(x)) — , where proxp : R™ — R” is the proximal operator given by

1
proxp(z) = argmin {P(z) + |z — x||2} .
ZeRn 2
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Thus, by Lemma 2.4 of (Combettes & Wajs, 2005), R is Lipschitz continuous. Since V f is also Lipschitz continuous, we
see that both y* and g1 are Lipschitz continuous. This, together with Proposition 1, implies the existence of a constant
p > 0 such that for all z € R™ satisfying d(z, X') < p,

[(y* (), 9% (2)) = (7 9)]| <o (27)
Using the definition of R in (3), we have
0 € Vf(x)+ R(x) + OP(x + R(x)). (28)
Hence, by (5) and (26), for all x € R",
x4+ R(z) € X (y+(;v)7g+(x)) .
This, together with (25) and (27), yields
d(z+ R(x),%(7,9)) < 0| (y* (2), 9" (@) — (3.9 (29)
whenever d(x, X') < p. Now, using the fact that V f(z) = ATVh(A:c) and g = ATVh(y), we bound
[y* (@) — gl < Az —gll + [|A]| - [|R(2)]],
lg* (@) = g|| < LIAT(| - [ Az = g]| + | R(2)]l,

where L > 0 is the Lipschitz constant of V. Thus, by letting M = max {||A|, L|| AT, 1}, we obtain from (29) that
d(x + R(z), %(y,9)) < MO(|| Az — g + || R(z)|))
whenever d(z, X') < p. In view of Proposition 2 and the inequality d(z, X') < d(z + R(z), X) + ||R(z)||, this implies that
d(x, X) < ko (|| Az — gl + [| R(«)]]) (30)

whenever d(x, X) < p, where ko = max{M§, 1}. Upon squaring both sides of (30) and using the inequality (a + b)?
2(a? + b?), which is valid for all a, b € R, we have

@ (2, X) < 263 (| Az — 5II” + | R(2)[?) 3D

whenever d(z, X') < p. Since h is strongly convex on any compact subset of R™, there exists a constant o > 0 such that
for all x € R" satisfying d(z, X) < p,

ollAz - g|* < (Vh(Az) — Vh(7), Az — §)
= (Vf(z) - g,z — ), (32)
where Z is the projection of = onto X’. Using the convexity of P, for any u € OP(x + R(x)) and v € OP(Z), we have
(u—v,z+ R(z) —Z) > (33)
Due to (28) and the optimality of Z, we can take u = —V f(z) — R(z) and v = —g in (33) to get
(Vf(z) =g, —7) + |R@)|* < (g = Vf(z) + T — 2, R(x)).

Since ||R(x)||*> > 0 and V[ is Lipschitz continuous, by the Cauchy-Schwarz inequality, there exists a constant r; > 0
such that

(Vi(@) = g2 —2) <kl — 2] - [ R()]]

Combining this with (31) and (32), we see that there exists a constant ko > 0 such that for all x € R"™ satisfying
d($7 X) S p7
(2, X) < ko (o — 2| - [|R(2)]| + |1 R(2)[1?) -

Upon solving this quadratic inequality, we obtain a constant x > 0 such that
d(z, X) < k[ R(2)]|

whenever d(x, X) < p. This completes the proof. O
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7.4. Proof of Lemma 2

Since the epigraph of P is polyhedral, it can be represented as
epi(P) ={(z,w) e R"" xR | C,z + C,w < d},

where C, € R*" and C,,,d € R! for some [ > 1. We claim that for any 2,9 € R", —g € JP(x) if and only if there
exists a scalar s € R such that (z, s) is an optimal solution to the following linear program:

min (g,z) + w
st. CLz+ Cuw <d, (34)
z e R" weR.

Indeed, if —g € OP(x), then by definition,
P(z) > P(x) — (9,2 —x), Vz¢& dom(P).
Upon rearranging, we have
P(z)+(g,2) < P(2)+{(g,2) <w+{g,2), V(z,w) € epi(P).

This implies that (z, P(x)) is an optimal solution to (34). Conversely, if (x, s) is an optimal solution to (34), then s = P(x)
because otherwise (z, P(x)) is a feasible solution to (34) with lower objective value. Hence,

P(z) + {(g,z) < P(2) 4+ {(g,2), Vzé€ dom(P),

which, by the definition of subgradient, implies that —g € OP(x). This establishes the claim. Now, using (5) and the
optimality conditions of the linear program (34), we have

Y(y,9) = {z | (z,5,7) € S(y,g) forsomes € R,y R}, (35)
where
Az =y,
CTx+g=0,
CTx+1=0,

Sy 9) = (zw,}) L >0

C,z+ Cpw <d,
(AN Coz4+ Cpw—d)y=0

The set-valued function S is a polyhedral multifunction because gph(S), which is a subset of R™ x R™ x R™ x R x R!,
is a finite union of polyhedral convex sets. Moreover, we see from (35) that gph(X) is the projection of gph(S) onto
R™ x R™ x R™. Hence, gph(X) is also a finite union of polyhedral convex sets, which implies that ¥ is a polyhedral
multifunction. |

7.5. Proof of Lemma 3

The bound on d(x, P ) follows from the well-known Hoffman bound; see, e.g., Lemma 2.2 of (Luo & Tseng, 1992). To
prove the bound on d(z, P2), recall that by definition,

d(w,P2) = mip [l o].

Consider a fixed x € R™ and p € [1, 00]. It is clear that d(x, P2) = 0 if ; = 0. Hence, suppose that z; # 0. Set

_”xJHp
vy = ”dJHP

0 otherwise,

dy ifd; £0,
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and vje = x e, where J¢ = {1,...,n} \ J. Then, we have v € P,. Moreover,
d x .
ool | + 2| s 2o
d(z,Py) < ||z —v|| = |lzy — vy = dslly [l
Il ]| otherwise.
Using the convention that u/||u||, = 0 if u = 0, we can summarize the above results as
dy Ty
d(@,P2) < ||2allp - |57 |
Polllldslly Nl
Since the above inequality holds for arbitrary z € R™ and p € [1, oo], the proof is completed. ]

7.6. Proof of Proposition 3

Consider a fixed p € (1,00). For any = € R"™, we have

1 _ _ .
% (sgn(z1)]z1]? L sgn(zy) |z, |P 1) if x # 0;
x|, = (36)
{z e R ||zl < 1} ifr=0,
where d(z) = (3, |xi|p)%. From the above expression, we see that for any z € 9||z||,,

Izlg =1 ifz+#0;
Izl <1 ifz=0.

Hence, if —g € wd||z||, for some z € R", then ||g||; < w. In particular, we have S = () when ||g||; > wand S = {0}
when ||g||; < w. On the other hand, if ||g||, = w, then either z = 0 or

—g= %&:) (sgn(z1)|z1 [P, sgn(m,) |z, P71 37)

In either case, we have

_1 q
9i Pt gil \* ,
= =senta) (la)) ™ = senta) (21) el i=1m

This shows that if 1, 22 # 0 and x1, 25 satisfies (37), then 21 must be a positive multiple of z5. Now, observe that —v(g)
satisfies (37). Hence, we conclude that

S = {x € R" | x is a non-negative multiple of —v(g)} = {x € R" | x = a - v(g), a < 0}.

Lastly, if p € (1, 2], then ¢/p > 1. In this case, the function ¢ > sgn(t)|t|7 is continuously differentiable and hence locally
Lipschitz. Thus, for any ¢ € R, there exist constants v > 0 and > 0 such that

sgn(s)|s|? — sgn(t)|t|? | < v|s —t| whenever |s — t| < 4.
This implies (6). O

7.7. Proof of Lemma 5

Using (5) and (7), we can write
(y,9) ={z e R" | Az =y} N C(g),

where

Clg) ={reR"| —g€dP(x)} = {x eR"

zy=ay-v(gs),a; <0,YJ € J{,
r;=0,YJ € J{ '

Let N'(A) be the nullspace of A. The following proposition provides a characterization of the boundedness of X (y, g):
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Proposition 5 Suppose that 3(y, g) is non-empty. Then, 3(y, g) is bounded if and only if N (A) N C(g) = {0}.

Proof Letz € X(y, g) be arbitrary. Suppose there exists a vector d € R™ \ {0} such that d € N'(A4) N C(g). Since C(g)
is a convex cone, for any s > 0, we have z + sd € C(g). Moreover, we have A(x + sd) = Az = y. It follows that
x4+ sd € X(y, g) forall s > 0; i.e., X(y, g) is unbounded.

Conversely, suppose that 3(y, ¢) is unbounded. Since (y, ¢) is a non-empty closed convex set, by Theorem 8.4 of (Rock-
afellar, 1970), there exists a vector d € R™ \ {0} such that for any 2 € X(y, g) and s > 0,  + sd € X(y, g). This implies
that Ad = 0 and d € C(g), which in turn implies that d € N'(4) N C(g). 0

In view of Proposition 3, it suffices to show the existence of a constant 6 > 0 such that whenever (g,g) € R™ x R”
satisfies ||§ — ¢|| < ¢ and X(g, §) is non-empty, we have

N(A)NC(g) = {0}.

Suppose to the contrary that the above does not hold. Then, there exist sequences {y*}r>0, {g* }x>0, and {d*}r>o such
that X(y*, g*) is non-empty and 0 # d* € N(A) N C(g*) for all k& > 0, and that g* — g. Since both N'(A) and C(g"*)
are cones, we have

% d*
Note that ||d*|| = 1 for all & > 0. Thus, by passing to a subsequence if necessary, we may assume that d* — d for some

d € R™\ {0}. Clearly, we have d € N(A). Moreover, by definition of C'(g*) and the fact that d* € C(g*), we have
—g* € OP(d¥) forall k > 0. Since g* — g and d* — d, Theorem 24.4 of (Rockafellar, 1970) implies that —g € 9P (d),
or equivalently, d € C(g). It follows that 0 # d € N(A) N C(g), which, together with Proposition 5, contradicts the
boundedness of Y:(y, g). This completes the proof of Lemma 5. ]
7.8. Proof of Proposition 4

For simplicity and consistency, let f(z) = %||Az—b||* and P(z) = ||z||,, where p € (2, 00). We first show that Z = (1, 0)
is an optimal solution to problem (20). Indeed, using (36), we have

V@) =(-1,0), 0P(z)=(1,0).

Thus, 0 € V f(Z) + OP(Z), which implies the optimality of Z. Next, we show that £ = (1, 0) is the only optimal solution
to problem (20); i.e., X = {Z}. Let & € X be arbitrary. Since Az is invariant over X', we have

Az = Az =1,
which implies that Z; = 1. Moreover, since V f(z) is also invariant over X', we have V f(Z) = V f(Z) = (—1,0). Now,
the optimality of Z yields (1,0) € OP(&). This, together with Proposition 3, implies that Z is a non-negative multiple of
(1,0). Since #; = 1, we conclude that Z = (1,0) = Z, as desired. Finally, we have v* = f(Z) + P(Z) = 3/2. O
7.9. Proof of Lemma 6

By definition of R(x*), we have
0 € Vf(z*) + R(z*) + 0P (2* + R(z")) .

Adding z* to both sides and rearranging, we get
a¥ — Vf(a¥) € 2 + R(z") + 0P (2* + R(2")), (38)

which is a relationship of the form u € (I + OP)(z). Since P is a maximal monotone operator (see, e.g., (Minty, 1964)),
a result of Minty (Minty, 1962) states that given any v € R™, there exists a unique vector z = z(u) € R"™ such that

u € (I + OP)(2(u)). Thus, it remains to show that R(z*) = (0, 75]1/(1) satisfies (38).

To begin, we use the definition of 2" and the fact that V f(x) = (1 — 2,0) to compute

2-(1—3)% 1 1
k*V k) = 27 M= 27 1 0 oy .
x (%) = (2,3) ( RIEEAL vt k)
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Now, let zF =z + (0, —5,i/q). Then,

b (o er 2= =) 2\ _2—(1—=8)7 (. 1 2
z = <2 (1 5k) ) (1—(51@)% 5k;> 1 ((1 51@) ’6k)'

Q=

Using (36), it can be verified that for p € (2, 00),
AP(2*) = ((1 —5k)p21,5kp) - ((1 —5k)é,5g>.

It follows that )
2—(1—6)a 1 1
2P+ oP(2F) = (2, ((5)’“) 6+ 5,3) = 2P — Vf(zh). (39)
1—6,)7

Upon comparing (38) and (39), we conclude that R(z*) = (0, —(5,? 7, as desired. O



