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A. The Derivation of Dual Problem
Here, we give the detailed derivation of the dual problem of Eq. (2). First, we rewrite it as the following equivalent
constrained optimization problem

min
1

2
‖Z‖2F + λ ‖W‖∗ s.t. Z = XW −Y (S1)

Let us introduce the dual variable λP ∈ Rn×m for the equality constraint, then the Lagrangian of Eq. (S1) can be written
as

L(W,Z,P) =
1

2
‖Z‖2F + λ ‖W‖∗ + λTr

[
PT (Z− (XW −Y))

]
(S2)

Then, the dual problem g(P) is

g(P) = inf
W,Z

L(W,Z,P) = λTr
[
PTY

]
+ inf

Z

{1
2
‖Z‖2F + λTr

[
PTZ

] }
+ λ inf

W

{
‖W‖∗ − Tr

[
PTXW

] }
(S3)

In order to obtain g(P), we need to solve the two optimization problems in Eq. (S3). For the first optimization problem,
it can be solved by setting its derivative with respect to Z equal to 0 and we obtain the optimal solution Z = −λP.
Substituting Z into Eq. (S3), we obtain the optimal value for the first problem as− 1

2λ
2 ‖P‖2F . For the second problem, we

have (Boyd & Vandenberghe, 2004)

λ inf
W

{
‖W‖∗ − Tr

[
PTXW

] }
= −λ sup

W

{
Tr
[
PTXW

]
− ‖W‖∗

}
= 0 s.t.

∥∥XTP
∥∥
2
≤ 1 (S4)

Combing the optimal values of the first and second problems, we obtain the dual problem

max
P

1

2
‖Y‖2F −

λ2

2

∥∥∥∥P− Y

λ

∥∥∥∥2
F

s.t.
∥∥XTP

∥∥
2
≤ 1 (S5)

which can be rewritten as the following equivalent problem

min
P

λ2

2

∥∥∥∥P− Y

λ

∥∥∥∥2
F

s.t.
∥∥XTP

∥∥
2
≤ 1 (S6)

Let W∗
λ and P∗

λ be the primal and dual optimal solutions, respectively. By using the KKT condition, we have

Z∗
λ = XW∗

λ −Y (S7)
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Z∗
λ + λP∗

λ = 0 (S8)

Then, the above two equations establish the following relationship between W∗
λ and P∗

λ

λP∗
λ = Y −XW∗

λ (S9)

To find the value of λmax such that the solution W∗
λ is 0 for any λ ≥ λmax, we substitute W∗

λ = 0 into Eq. (S9) and obtain
P∗
λ = Y

λ . Since P∗
λ is a dual feasible point and satisfies the constraints

∥∥XT Y
λ

∥∥
2
≤ 1, which implies λmax =

∥∥XTY
∥∥
2
.

B. The Screening Rule Based on KKT Condition is not Applicable for Subspace Screening
In this section, we derive why the screening rule based on KKT condition is not applicable for subspace screening. Suppose
that the rank of W∗

λ is r and the SVD of W∗
λ is UλΣλV

T
λ where Uλ ∈ Rd×r,Σλ ∈ Rr×r and Vλ ∈ Rm×r, then the

subgradient of ‖W∗
λ‖∗ is (Watson, 1992)

∂ ‖W∗
λ‖∗ = {UλV

T
λ + Q : UT

λQ = 0,QVλ = 0, ‖Q‖2 ≤ 1} (S10)

From the KKT condition, we have

0 ∈ ∂L(W,Z,P)

∂Θij
= Tr

[(
∂L(W,Z,P)

∂W

)T
∂W

∂Θij

]
= uTi SWvj − uTi XTP∗

λvj , where SW ∈ ∂ ‖W∗
λ‖∗ (S11)

which implies that there exists SW ∈ ∂ ‖W∗
λ‖∗ such that

uTi XTP∗
λvj = uTi SWvj (S12)

Since {uivTj , i = 1, . . . , d, j = 1, . . . ,m} are orthogonal to each other, then the value of uTi UλV
T
λvj will be zero if we

have (Θ∗
λ)ij = 0. In addition, if we know (Θ∗

λ)ij 6= 0, then we obtain ui ∈ span(U∗
λ) and vj ∈ span(V∗

λ), which implies
uTi Qvj = 0. As a result, we have

uTi SWvj ∈

{
uTi UλV

T
λvj if (Θ∗

λ)ij 6= 0

uTi Qvj , ‖Q‖2 ≤ 1 if (Θ∗
λ)ij = 0

(S13)

According to Eq. (S12), the following holds

uTi XTP∗
λvj ∈

{
uTi UλV

T
λvj if (Θ∗

λ)ij 6= 0

uTi Qvj , ‖Q‖2 ≤ 1 if (Θ∗
λ)ij = 0

(S14)

Same as feature screening, we have uTi XTP∗
λvj ∈ [−1, 1] if (Θ∗

λ)ij = 0. However, unlike feature screening, for(
Θ∗
ij

)
ij
6= 0, we usually do not have

∣∣uTi XTP∗
λvj
∣∣ = 1, which holds in feature screening since the absolute value of

the subgradient of `1 norm at nonzero point is always 1. In particular, we also have uTi XTP∗
λvj ∈ [−1, 1] for nonzero

(Θ∗
λ)ij , thus the value of uTi XTP∗

λvj can not be used to determine whether (Θ∗
λ)ij is zero or not. Therefore, the screening

rule based on KKT condition is not applicable for subspace screening.

C. Proof of Lemma 2
Proof. To prove this lemma, we first show that if there exists a γ such that P∗

λ0
= γY, then γ = 1/

∥∥XTY
∥∥
2
. It is easy to

check that Y/
∥∥XTY

∥∥
2

satisfies the constraint in Eq. (13). Substituting P = Y/
∥∥XTY

∥∥
2

and P∗
λ0

= γY into Eq. (13),
we obtain

Tr

[(
γY − Y

λ0

)T (
Y

‖XTY‖2
− γY

)]
=

(
γ − 1

λ0

)(
1

‖XTY‖2
− γ
)
‖Y‖2F ≥ 0

Thus, we have γ ∈
[
1/
∥∥XTY

∥∥
2
, 1/λ0

]
. Combining this with

∥∥XTP∗
λ0

∥∥
2
=
∥∥XT γY

∥∥
2
≤ 1, we get γ = 1/

∥∥XTY
∥∥
2
.

Next we start to prove Lemma 2. We note that

‖A‖2F =

∥∥∥∥Y

λ0
−P∗

λ0

∥∥∥∥2
F

≥ 0 (S15)
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where the equality holds if and only if Y/λ0 = P∗
λ0

. As shown above, P∗
λ0

= Y/λ0 iff λ0 =
∥∥XTY

∥∥
2

while we know
λ0 <

∥∥XTY
∥∥
2
, so we have ‖A‖2F > 0 which implies A 6= 0. The proof for B 6= 0 is similar to the proof for A 6= 0.

D. Proof of Theorem 1
Proof. Let α and β denote the dual variable for the two constraints in Eq. (26), then the Lagrangian can be written as

L(R, α, β) = e (SR)ij + αTr
[
AT (R + B)

]
+ β

(
‖R‖2F − ‖B‖

2
F

)
(S16)

If we only consider the constraint ‖R‖2F ≤ ‖B‖
2
F in Eq. (26), the optimal objective value is −‖D·i‖2 ‖B‖F , which

implies that the optimal value of Eq. (26) is lower bounded. Thus, the optimal dual variable β should be greater than 0,
otherwise, the Lagrangian L(R, α, β) is unbound below in R Setting the derivative of L(R, α, β) with respect to R equal
to 0, we obtain

eD·i (V·j)
T
+ αA + 2βR = 0⇒ R =

−eD·i (V·j)
T − αA

2β
(S17)

Substituting R into Eq. (S16), we obtain the dual problem of Eq. (26)

max − α2

4β
‖A‖2F +

(
Tr
[
ATB

]
− e (D·i)

T
AV·j

2β

)
α− 1

4β
‖D·i‖22 − β ‖B‖

2
F (S18)

s.t. α ≥ 0, β > 0

For DTAV, it can be expressed as

DTAV =
UT

(
XTX

)−1
XTXW∗

λ0
V

λ0
=

UT
(
XTX

)−1
XTXΣ

λ0
=

Σ̂

λ0

where Σ̂ = UT
(
XTX

)−1
XTXΣ. Then, we have (D·i)

T
AV·j =

Σ̂ij

λ0
. Hence, the dual problem can be rewritten as

max − α2

4β
‖A‖2F +

(
Tr
[
ATB

]
− eΣ̂ij

2λ0β

)
α− 1

4β
‖D·i‖22 − β ‖B‖

2
F (S19)

α ≥ 0, β > 0

Maximizing the dual problem leads to a closed form solution for α with given β

α = max

(
2λ0 Tr

[
ATB

]
β − eΣ̂ij

λ0 ‖A‖2F
, 0

)
(S20)

Here we need to consider two cases: α = 0 and α 6= 0.
If α = 0, which means

2λ0 Tr
[
ATB

]
β − eΣ̂ij ≤ 0 (S21)

In addition, substituting α = 0 into Eq. (S17) gives

R = −eD·i (V·j)
T

2β
(S22)

Since we have β 6= 0, by using the complementary slackness condition, we have

‖R‖2F =
1

4β2

∥∥∥(D·i)
T

V·j

∥∥∥2
F
= ‖B‖2F (S23)

Then, we have

β =
‖D·i‖2
2 ‖B‖F

(S24)
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Substituting β into Eq. (S21) gives
λ0 Tr

[
ATB

]
‖D·i‖2 ≤ e ‖B‖F Σ̂ij (S25)

In addition, we also have
(SR)ij = −e ‖D·i‖2 ‖B‖F (S26)

Next, we consider the case that α 6= 0. In other words,

α =
2λ0 Tr

[
ATB

]
β − eΣ̂ij

λ0 ‖A‖2F
(S27)

Substituting α into Eq. (S17) gives

R =
e

2β

(
Σ̂ij

λ0 ‖A‖2F
A−D·i (V·j)

T

)
−

Tr
[
ATB

]
‖A‖2F

A (S28)

Similar to the last case, we can use the complementary slackness condition since β 6= 0. By ‖R‖2F = ‖B‖2F , gives

β =

√
λ20 ‖A‖

2
F ‖D·i‖2 − Σ̂

2

ij

2λ0

√
‖A‖2F ‖B‖

2
F − (Tr [ATB])

2
(S29)

Then, we obtain SRij

(SR)ij =

−e
√(
‖A‖2F ‖B‖

2
F − (Tr [ATB])

2
)(

λ20 ‖A‖
2
F ‖D·i‖22 − Σ̂

2

ij

)
− Tr

[
ATB

]
Σ̂ij

λ0 ‖A‖2F
(S30)

This ends of the proof.

E. Proof of Corollary 1

Proof. We first show the proof for Φij , which is equal to 0.5λmax
(
(SR)ij − (SC)ij

)
. Therefore, we need to minimize

Eq. (26) by setting e = −1. Here we need to consider two cases: Eq. (28) holds or does not. If Eq. (28) holds, the optimal
value for (SR)ij is ‖B‖F ‖D·i‖2. So the value for Φij is 0.5λ

(
‖B‖F ‖D·i‖2 − (SC)ij

)
. Otherwise, the optimal value

for (SR)ij is equal to

η =
Gij − Tr

[
ATB

]
Σ̂ij

λ0 ‖A‖2F
(S31)

As a result, the value for Φij is 0.5λ
(
η − (SC)ij

)
.

Next, we consider the proof for Ψij that is 0.5λmax
(
− (SR)ij + (SC)ij

)
. The proof is similar to the proof for Φij except

we need to set e = 1 in this case. This ends the overall proof.
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