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Abstract
Uniform sampling of training data has been com-
monly used in traditional stochastic optimization
algorithms such as Proximal Stochastic Mirror
Descent (prox-SMD) and Proximal Stochastic D-
ual Coordinate Ascent (prox-SDCA). Although
uniform sampling can guarantee that the sampled
stochastic quantity is an unbiased estimate of the
corresponding true quantity, the resulting estima-
tor may have a rather high variance, which neg-
atively affects the convergence of the underlying
optimization procedure. In this paper we study s-
tochastic optimization, including prox-SMD and
prox-SDCA, with importance sampling, which
improves the convergence rate by reducing the
stochastic variance. We theoretically analyze the
algorithms and empirically validate their effec-
tiveness.

1. Introduction
Stochastic optimization has been extensively studied in the
machine learning community (Zhang, 2004; Rakhlin et al.,
2011; Shamir & Zhang, 2013; Duchi & Singer,
2009; Luo & Tseng, 1992; Mangasarian & Musicant,
1999; Hsieh et al., 2008; Shalev-Shwartz & Tewari,
2011; Lacoste-Julien et al., 2012; Nesterov, 2012b;
Shalev-Shwartz & Zhang, 2012a; 2013; 2012b). At every
step, a traditional stochastic optimization method will
sample one training example or one dual coordinate uni-
formly at random from the training data, and then update
the model parameter using the sampled example or dual
coordinate. In this paper we focus on Proximal Stochastic
Mirror Descent (prox-SMD) (Duchi & Singer, 2009;
Duchi et al., 2010) and Proximal Stochastic Dual Coor-
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dinate Ascent (prox-SDCA) (Shalev-Shwartz & Zhang,
2012b) methods.

For prox-SMD, the traditional algorithms such as Stochas-
tic Gradient Descent (SGD) sample training examples u-
niformly at random during the entire learning process,
so that the stochastic gradient is an unbiased estimation
of the true gradient (Zhang, 2004; Rakhlin et al., 2011;
Shamir & Zhang, 2013; Duchi & Singer, 2009). However,
the variance of the resulting stochastic gradient estimator
may be large since the stochastic gradient can vary signif-
icantly over different examples. In order to improve con-
vergence, this paper proposes a sampling distribution and
the corresponding unbiased importance weighted gradien-
t estimator that minimizes the variance. To this end, we
analyze the relationship between the variance of stochas-
tic gradient and the sampling distribution. We show that
to minimize the variance, the optimal sampling distribution
should be roughly proportional to the norm of the stochas-
tic gradient. To simplify computation, we also consider the
use of upper bounds for the norms. Our theoretical analysis
shows that under certain conditions, the proposed sampling
method can significantly improve the convergence rate, and
our results include the existing theoretical results for uni-
formly sampled prox-SGD and SGD as special cases.

Similarly for prox-SDCA, the traditional approach
such as Stochastic Dual Coordinate Ascent (SD-
CA) (Shalev-Shwartz & Zhang, 2013) picks a coordinate
to update by sampling the training data uniformly at
random (Luo & Tseng, 1992; Mangasarian & Musicant,
1999; Hsieh et al., 2008; Shalev-Shwartz & Tewari,
2011; Lacoste-Julien et al., 2012; Nesterov, 2012b;
Shalev-Shwartz & Zhang, 2012a; 2013; 2012b). It was
shown recently that the SDCA and prox-SDCA algorithms
with uniform random sampling converge much faster than
a fixed cyclic ordering (Shalev-Shwartz & Zhang, 2013;
2012b). However, this paper shows that if we employ
an appropriately defined importance sampling strategy,
the convergence can be further improved. To optimize
sampling distribution, we analyze the connection between
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the expected increase of dual objective and the sampling
distribution, and obtain the optimal solution that depends
on the smoothness or Lipschitz constants of the loss
functions. Our analysis shows that under certain condi-
tions, the proposed sampling method can significantly
improve the convergence rate. In addition, our theoretical
results include the existing results for uniformly sampled
prox-SDCA and SDCA as special cases.

The rest of this paper is organized as follows. Section 2 re-
views the related work. In section 3, we will study stochas-
tic optimization with importance sampling. Section 4 gives
our empirical evaluations. Section 5 concludes the paper.
The detailed proofs of the theoretical results can be found
in the full version of the paper (Zhao & Zhang, 2014).

2. Related Work
After finishing the work, we noticed that Needell et al.
(2014) also considered importance sampling for stochas-
tic gradient descent, where they suggested ideas similar to
ours. Moreover Strohmer & Vershynin (2009) proposed a
variant of the Kaczmarz method (an iterative method for
solving systems of linear equations) which selects rows
with probability proportional to their squared norms. It was
pointed out in (Needell et al., 2014) that this algorithm is
actually a SGD algorithm with importance sampling. Our
paper studies importance sampling for more general com-
posite objectives and the more general proximal stochastic
mirror descent method, covering their algorithms as spe-
cial cases. Our paper also studies prox-SDCA with impor-
tance sampling, which is not covered by previous studies.
Another related work is (Xiao & Zhang, 2014), where the
authors studied importance sampling for the prox-SVRG
procedure, and obtained results similar to those of prox-
SDCA considered in this work. The main concern of this
work is on the effectiveness of importance sampling, which
could be applied to many gradient based algorithms. There-
fore we include the study of the standard SGD procedure
for comparison, although for smooth and strongly convex
objective functions it does not achieve the linear rates of
SVRG, SDCA, and SAG (Roux et al., 2012).

For the primal coordinate descent procedures, some re-
searchers have recently considered non-uniform sampling
strategies (Nesterov, 2012a; Lee & Sidford, 2013). How-
ever their results cannot be directly applied to obtain
duality-gap convergence for proximal SDCA which we
are interested in here. In contrast, the primal-dual anal-
ysis of prox-SDCA in this paper is analogous to that of
(Shalev-Shwartz & Zhang, 2013), which directly bounds
the duality gap. The proof technique relies on the struc-
ture of the regularized loss minimization, which differ-
s from the traditional primal coordinate descent analysis.
The suggested distribution for the primal coordinate de-

scent is propositional to the smoothness constant of every
coordinate, while the distribution of prox-SDCA is propo-
sitional to a constant plus the smoothness constant of the
primal individual loss function. These two distributions are
quite different. In addition, we also provide an importance
sampling distribution when the individual loss functions
are Lipschitz. Finally we note that an accelerated version
of prox-SDCA was proposed by Shalev-Shwartz & Zhang
(2014). The procedure employs an inner-outer-iteration
strategy, where the inner iteration is the standard prox-
SDCA procedure. The importance sampling result of this
paper can be directly applied to the accelerated prox-SDCA
in that the convergence of inner iteration becomes faster
than that of the uniform sampling. Therefore in this paper
we only consider the unaccelerated prox-SDCA.

3. Stochastic Optimization with Importance
Sampling

Let ϕ1, ϕ2, . . . , ϕn be n vector functions from Rd to R. Our
goal is to find an approximate solution of the following op-
timization problem

min
w∈Rd

P (w) := f(w) + λr(w), (1)

where f(w) = 1
n

∑n
i=1 ϕi(w), λ > 0 is a regulariza-

tion parameter, and r is a regularizer. For example, giv-
en examples (xi, yi) where xi ∈ Rd and yi ∈ {−1,+1},
the Support Vector Machine problem is obtained by setting
ϕi(w) = [1 − yix

⊤
i w]+, [z]+ = max(0, z), and r(w) =

1
2∥w∥22. Regression problems also fall into the above. For
example, lasso is obtained by setting ϕi(w) = (yi−x⊤

i w)2

and r(w) = ∥w∥1.

Let w∗ be the optimal solution of (1). We say that a so-
lution w is ϵP -sub-optimal if P (w) − P (w∗) ≤ ϵP . We
analyze the convergence rates of the proposed algorithms
with respect to the number of iterations.

3.1. prox-SMD with Importance Sampling

In this subsection, we consider the proximal stochastic mir-
ror descent method with importance sampling. Proximal
Stochastic Mirror Descent works in iterations. At each it-
eration t = 1, 2, . . ., a sample it will be uniformly drawn
from {1, 2, . . . , n}, and the iterative solution will be updat-
ed by setting wt+1 as

argmin
w

[
⟨∇ϕit(wt),w⟩+ λr(w) +

1

ηt
Bψ(w,wt)

]
, (2)

where Bψ is a Bregman divergence and ∇ϕit(wt) denotes
an arbitrary (sub-)gradient of ϕit . Intuitively, this method
works by minimizing a first-order approximation of the
function ϕit at the current iterate wt plus the regularizer
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λr(w), and forcing the next iterate wt+1 to lie close to wt.
The step size ηt is a trade-off between these two objectives.

We assume that the exact solution of the above optimiza-
tion (2) can be efficiently obtained. For example, when
ψ(w) = 1

2∥w∥22, we have Bψ(u,v) = 1
2∥u − v∥22, and

the above optimization will produce the t+ 1-th iterate as:
wt+1 = proxηtλr (w

t − ηt∇ϕit(wt)), where proxh(x) =

argminw

(
h(w) + 1

2∥w − x∥22
)

. Furthermore, it is al-
so assumed that the proximal mapping of ηtλr(w), i.e.,
proxηtλr(x), is easy to compute. For example, when
r(w) = ∥w∥1, the proximal mapping of λr(w) is the
shrinkage operation proxλr(x) = sign(x) ⊙ [|x| − λ]+,
where ⊙ is the element-wise vector product.

A disadvantage of this method is that the randomness in-
troduces variance - this is caused by the fact that ∇ϕit(wt)
equals the gradient ∇f(wt) in expectation, but ∇ϕi(wt)
varies with i. In particular, if the stochastic gradient has
a large variance, then the convergence will become slow.
This paper studies prox-SMD with importance sampling to
reduce the variance of stochastic gradient. The idea of im-
portance sampling can be described as follows: at the t-th
step, we assign each i ∈ {1, . . . , n} a probability pti ≥ 0
such that

∑n
i=1 p

t
i = 1; we then sample it from {1, . . . , n}

based on the probability pt = (pt1, . . . , p
t
n)

⊤. If we adopt
this distribution, then proximal SMD with importance sam-
pling is obtained by setting wt+1 as the solution of

min
w

[
⟨∇ϕit(w

t)

nptit
,w⟩+ λr(w) +

1

ηt
Bψ(w,wt)

]
, (3)

which is another unbiased estimation of the optimization
problem for prox-MD (or composite objective mirror de-
scent), because E[(nptit)

−1∇ϕit(wt)|wt] = ∇f(wt).

The main question is: what choice of pt can optimally re-
duce the variance of the stochastic gradient. To answer this
question, we first prove a lemma that establishes a relation-
ship between pt and the convergence rate of prox-SMD
with importance sampling.
Lemma 1. Define wt+1 by the update (3). Assume that
ψ(·) is σ-strongly convex with respect to a norm ∥ · ∥ (its
dual norm is ∥ · ∥∗), and f is µ-strongly convex and (1/γ)-
smooth with respect to ψ. If r(w) is convex and ηt ∈ (0, γ],
then wt+1 satisfies the following inequality for any t ≥ 1,

E[P (wt+1)− P (w∗)]≤ 1

ηt
E[Bψ(w∗,wt)−Bψ(w∗,wt+1)]

−µEBψ(w∗,wt) +
ηt
σ
EV
(
(nptit)

−1∇ϕit(wt)
)
,

where the variance is defined as V((nptit)
−1∇ϕit(wt)) =

E∥(nptit)
−1∇ϕit(wt)−∇f(wt)∥2∗, and the expectation is

taken with the distribution pt.

From the above analysis, we can observe that the smaller
the variance, the more reduction on objective function we

have. In the next subsection, we will study how to adopt
importance sampling to reduce the variance. This observa-
tion will be made more rigorous below.

3.1.1. ALGORITHM

According to Lemma 1 , in order to maximize the reduction
on the objective value, we should choose pt as the solution
of the following optimization

min
pt∈△n

V(
∇ϕit(wt)

nptit
) ⇔ min

pt∈△n

1

n2

n∑
i=1

∥∇ϕi(wt)∥2∗
pti

, (4)

where △n is the n-dimensional simplex. It is easy to verify,
that the solution of the above optimization is

pti =
∥∇ϕi(wt)∥∗∑n
j=1 ∥∇ϕj(wt)∥∗

, ∀i ∈ {1, 2, . . . , n}. (5)

Although, this distribution can minimize the variance of
the t-th stochastic gradient, it requires the calculation of
n derivatives at each step, which is clearly inefficient. To
solve this issue, a potential remedy is to calculate the n
derivatives at some steps and then keep it for use for a rel-
atively long time period. In addition, the true derivatives
will changes every step, and thus it is beneficial to add a
small constant to the sampling probability. Another prac-
tical solution is to relax the previous optimization (4) as
follows

min
pt∈△n

1

n2

n∑
i=1

∥∇ϕi(wt)∥2∗
pti

≤ min
pt∈△n

1

n2

n∑
i=1

G2
i

pti
(6)

by introducing upperbounds

Gi ≥ ∥∇ϕi(wt)∥∗, ∀t.

Using this approach, we can approximate the distribution
in (5) by solving the the right hand side of (6) as

pti =
Gi∑n
j=1Gj

, ∀i ∈ {1, 2, . . . , n},

which is independent of t.

Based on the above solution, we will suggest distributions
for two kinds of loss functions - Lipschitz functions and
smooth functions. First, if each ϕi(w) is Li-Lipschitz w.r.t.
∥ · ∥∗, then ∥∇ϕi(w)∥∗ ≤ Li for any w ∈ Rd, and the
suggested distribution is

pti =
Li∑n
j=1 Lj

, ∀i ∈ {1, 2, . . . , n}.

Second, if ϕi(w) is (1/γi)-smooth and ∥wt∥ ≤ R for any
t (this is possible when the feasible domain is bounded),
then ∥∇ϕi(wt)∥∗ ≤ R/γi, and the distribution becomes

pti =

1
γi∑n
j=1

1
γj

, ∀i ∈ {1, 2, . . . , n}.
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Finally, we can summarize the proposed Proximal SMD
with importance sampling in Algorithm 1.

Algorithm 1 Proximal Stochastic Mirror Descent with Im-
portance Sampling (Iprox-SMD)

Input: λ ≥ 0, the learning rates η1, . . . , ηT > 0.
Initialize: w1 = 0, pi = Li∑

j Lj
or pi =

1/γi∑
j 1/γj

, ∀i.
for t = 1, . . . , T do

Sample it from {1, . . . , n} based on p;

wt+1 = argmin
w

[⟨
(npit)

−1∇ϕit(wt),w
⟩
+ λr(w)

+
1

ηt
Bψ(w,wt)

]
;

end for

3.1.2. ANALYSIS

Before presenting the results, we make some general as-
sumptions: r(0) = 0, and r(w) ≥ 0, for all w. It is
easy to see that these two assumptions are generally satis-
fied by most of the well-known regularizers.

Under the above assumptions, we first prove a convergence
result for Proximal SMD with importance sampling using
the previous Lemma 1.
Theorem 1. Assume that ψ(·) is σ-strongly convex with
respect to a norm ∥ · ∥, f is µ-strongly convex and (1/γ)-
smooth with respect to ψ, r(w) is convex and ηt = 1

α+µt

with α ≥ 1/γ − µ. If we further assume ϕi(w) is (1/γi)-
smooth, ∥wt∥ ≤ R for any t, and the distribution is set
as pti =

R/γi∑n
j=1 R/γj

, then the following inequality holds for
any T ≥ 1,

1

T

T∑
t=1

EP (wt+1)− P (w∗) ≤ O

[
(
∑n
i=1 R/γi)

2

σµn2

ln(α+ µT )

T

]
.

In addition, if µ = 0, the above bound is invalid, howev-
er if ηt is set as

√
σBψ(w∗,w1)/(

√
T

∑n
i=1 R/γi
n ), we can

prove the following inequality for any T ≥ 1,

1

T

T∑
t=1

EP (wt+1)− P (w∗) ≤ 2

√
Bψ(w∗,w1)

σ

∑n
i=1 R/γi

n

1√
T
.

Remark: If ψ(w) = 1
2∥w∥22 and r(w) = 0, then

Bψ(u,v) = 1
2∥u − v∥22, and the proposed algorithm be-

comes SGD with importance sampling. Under these as-
sumptions, it is known that one may get rid of the lnT fac-
tor in the convergence bound, when the objective function
is strongly convex. For simplicity, we do not provide the
details.

Remark. If the uniform distribution is adopted, it is easy
to observe that the variance of stochastic gradient is bound-

ed by
∑n
i=1(R/γi)

2

n . Hence Theorem 1 results in an up-
per bound for 1

T

∑T
t=1 EP (wt+1) − P (w∗) of the form

O
(∑n

i=1(R/γi)
2

σµn
ln(α+µT )

T

)
for strongly convex f , and of

the form 2

√
Bψ(w∗,w1)

σ

∑n
i=1(R/γi)

2

n
1√
T

for general convex
f . According to the Cauchy-Schwarz inequality,∑n

i=1(R/γi)
2

n
/

(∑n
i=1 R/γi

n

)2

=
n
∑n
i=1(R/γi)

2

(
∑n
i=1 R/γi)2

≥ 1.

It implies that importance sampling always improves the
convergence rate, especially when (

∑n
i=1 R/γi)

2∑n
i=1(R/γi)

2 ≪ n.

If f is convex, we can provide the following convergence
results using the analysis of (Duchi et al., 2010).
Theorem 2. Assume that ψ(·) is σ-strongly convex with
respect to a norm ∥ · ∥, f and r(w) are convex, and ηt = η.
If we further assume ϕi(w) is (1/γi)-smooth, ∥wt∥ ≤ R

for any t, and the distribution is set as pti = R/γi∑n
j=1 R/γj

,

then when ηt is set as
√
2σBψ(w∗,w1)/(

∑n
i=1 R/γi
n

√
T ),

the following inequality holds for any T ≥ 1,

1

T

T∑
t=1

EP (wt)− P (w∗) ≤
√

Bψ(w∗,w1)
2

σ
(

∑n
i=1 R/γi

n
)

1√
T
.

If ϕi(w) is Li-Lipschitz, and the distribution is set
as pi = Li/

∑n
j=1 Lj , ∀i, then when ηt is set as√

2σBψ(w∗,w1)/(
∑n
i=1 Li
n

√
T ), the following inequality

holds for any T ≥ 1,

1

T

T∑
t=1

EP (wt)− P (w∗) ≤
√

Bψ(w∗,w1)
2

σ
(

∑n
i=1 Li

n
)

1√
T
.

Remark: If the uniform distribution is adopted, it is
easy to observe that the variance of stochastic gradient is
bounded by

∑n
i=1(R/γi)

2

n for smooth ϕi(·), and bounded

by
∑n
i=1(Li)

2

n for Lipschitz ϕi(·). Theorem 2 results in an
upper bound for 1

T

∑T
t=1 EP (wt) − P (w∗) of the form√

2Bψ(w∗,w1)
∑n
i=1(R/γi)

2

σnT for smooth ϕi, and of the for-

m
√

2Bψ(w∗,w1)
∑n
i=1(Li)

2

σnT for Lipschitz ϕi. However, ac-
cording to the Cauchy-Schwarz inequality,

n
∑n
i=1(R/γi)

2

(
∑n
i=1R/γi)

2
≥ 1,

n
∑n
i=1 L

2
i

(
∑n
i=1 Li)

2
≥ 1,

implies that importance sampling improves the conver-
gence bound, especially when (

∑n
i=1 R/γi)

2∑n
i=1(R/γi)

2 ≪ n, and

when (
∑n
i=1 Li)

2∑n
i=1(Li)

2 ≪ n.

3.2. prox-SDCA with Importance Sampling

In this section, we study the Proximal Stochastic Dual
Coordinate Ascent method (prox-SDCA) with importance
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sampling. Prox-SDCA deals with the dual problem of (1):

max
θ
D(θ) :=

1

n

n∑
i=1

−ϕ∗i (−θi)− λr∗(
1

λn

n∑
i=1

θi). (7)

We assume that r∗(·) is continuously differentiable; the re-
lationship between the primal variable w and dual variable
θ is w = ∇r∗ (v(θ)) , v(θ) = 1

λn

∑n
i=1 θi. We also

assume that r(w) is 1-strongly convex with respect to a
norm ∥ · ∥P ′ , i.e., r(w +∆w) ≥ r(w) +∇r(w)⊤∆w +
1
2∥∆w∥2P ′ , which means that r∗(w) is 1-smooth with re-
spect to its dual norm ∥ · ∥D′ . Namely, r∗(v + ∆v) ≤
h(v;∆v), where h(v;∆v) := r∗(v) + ∇r∗(v)⊤∆v +
1
2∥∆v∥2D′ .

At the t-th step, the Proximal Stochastic Dual Coordinate
Ascent method (prox-SDCA) picks i ∈ {1, . . . , n} uni-
formly at random, and update the dual variable θt−1

i as:

θti = θt−1
i +∆θt−1

i ,

where ∆θt−1
i is the solution of

max
∆θi

[
−ϕ∗

i (−(θt−1
i +∆θi))−(wt−1)⊤∆θi−

1

2λn
∥∆θi∥2D′

]
,(8)

which is equivalent to maximizing a lower bound of the
following problem with vt−1 = 1

λn

∑n
i=1 θ

t−1
i

max
∆θi

[
− 1

n
ϕ∗i (−(θt−1

i +∆θi))− λr∗(vt−1 +
1

λn
∆θi)

]
.

However, the optimization (8) may not have a closed form
solution, and in prox-SDCA we may adopt other update
rules ∆θi = s(u − θt−1

i ) for an appropriately chosen step
size parameter s > 0 and any vector u ∈ Rd such that
−u ∈ ∂ϕi(w

t−1). Note that when r(w) = 1
2∥w∥22, prox-

SDCA is also known as SDCA.

In the following, we study prox-SDCA with importance
sampling, which is to allow the algorithm to randomly pick
i according to probability pi, which is the i-th element of
p ∈ Rn+,

∑
i pi = 1. Once we pick the coordinate i, θi is

updated as traditional prox-SDCA. The main question we
are interested in here is which p = (p1, . . . , pn)

⊤ can op-
timally accelerate the convergence rate of prox-SDCA. To
answer this question, we will introduce a lemma which will
state the relationship between p and the convergence rate
of prox-SDCA with importance sampling.
Lemma 2. Given a distribution p, if assume ϕi is (1/γi)-
smooth with norm ∥ · ∥P , then for any iteration t and any s
such that si = s/(pin) ∈ [0, 1], ∀i, we have

E[D(θt)−D(θt−1)]≥ s

n
E[P (wt−1)−D(θt−1)]− sGt

2λn2
, (9)

where Gt = 1
n

∑n
i=1(siR

2 − γi(1 − si)λn)E∥ut−1
i −

θt−1
i ∥2D, R = supu ̸=0 ∥u∥D′/∥u∥D, and −ut−1

i ∈
∂ϕi(w

t−1).

For many interesting cases, it is easy to estimate R =
supu ̸=0 ∥u∥D′/∥u∥D. For example, if p > r > 0, then
∥w∥p ≤ ∥w∥r ≤ d(1/r−1/p)∥w∥p for any w ∈ Rd.

3.2.1. ALGORITHM

According to Lemma 2, to maximize the dual ascent for the
t-th update, we should choose s and p as the solution of the
following optimization

max
s/(pin)∈[0,1],p∈△n

s

n
E[P (wt−1)−D(θt−1)]− s

n2
Gt

2λ
.

where △n is the n-dimensional simplex. However, because
this optimization problem is difficult to solve, we choose to
relax it as follows:

max
s
pin

∈[0,1],p∈△n

s

n
E[P (wt−1)−D(θt−1)]− s

n2
Gt

2λ

≥ max
s
pin

∈[0,
λnγi

R2+λnγi
],p∈△n

s

n
E[P (wt−1)−D(θt−1)]− s

n2
Gt

2λ

≥ max
s
pin

∈[0,
λnγi

R2+λnγi
],p∈△n

s

n
E[P (wt−1)−D(θt−1)].

where the last inequality has used Gt = 1
n

∑n
i=1(siR

2 −
γi(1−si)λn)E∥ut−1

i −θt−1
i ∥2D ≤ 0, since si = s/(pin) ≤

λnγi
R2+λnγi

. To optimize the final relaxation, we have the fol-
lowing proposition

Proposition 1. The solution to the optimization problem

max
s,p

s s.t. s/(pin) ∈ [0,
λnγi

R2 + λnγi
], p ∈ △n

is given by

s =
n

n+
∑n
i=1

R2

λnγi

, pi =
1 + R2

λnγi

n+
∑n
j=1

R2

λnγj

. (10)

We omit the proof since it is simple. Given that ϕi is (1/γi)-
smooth, ∀i ∈ {1, . . . , n}, the sampling distribution should
be set as in (10).

When γi = 0, the above distribution in the equation (10) is
not valid. To solve this problem, we combine the facts

P (wt−1)−D(θt−1) ≥ D(θ∗)−D(θt−1) := ϵt−1
D ,

where θ∗ is the optimal solution of the dual problem
maxθD(θ), D(θt) − D(θt−1) = ϵt−1

D − ϵtD, and the in-
equality (9), to obtain

E[ϵtD] ≤ (1− s

n
)E[ϵt−1

D ] +
s

2λn2
Gt. (11)

According to this inequality, although every γi = 0, if we
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further assume every ϕi is Li-Lipschitz, then

Gt =
1

n

n∑
i=1

(siR
2 − γi(1− si)λn)E∥ut−1

i − θt−1
i ∥2D

≤ 4R2s

n2

n∑
i=1

1

pi
L2
i , (12)

where we use si = s/(npi), ∥ut−1
i ∥ ≤ Li and ∥θt−1

i ∥ ≤
Li, since −ut−1

i ,−θt−1
i ∈ ∂ϕi(w

t−1). Combining the
above two inequalities results in

E[ϵtD] ≤ (1− s

n
)E[ϵt−1

D ] +
s

2λn2
4R2s

n2

n∑
i=1

1

pi
L2
i . (13)

According to the above inequality, to minimize the t-th d-
uality gap, we should choose a proper distribution to opti-
mize the problem minp∈△n

∑n
i=1

1
pi
L2
i , for which the op-

timal distribution is obviously

pi = Li/

n∑
j=1

Lj .

Because si = s/(npi) ∈ [0, 1], the above distribution fur-
ther implies

s ∈
n∩
i=1

[0, npi] =

[
0,

nLmin∑n
j=1 Lj

]
:= [0, ρ],

where Lmin = min{L1, L2, . . . , Ln} and ρ ≤ 1.

In summary, prox-SDCA with importance sampling can be
described in Algorithm 2.

Algorithm 2 Proximal Stochastic Dual Coordinate Ascent
with Importance Sampling (Iprox-SDCA)

Input: λ > 0, R = supu ̸=0 ∥u∥D′/∥u∥D, norms ∥ · ∥D,
∥ · ∥D′ , γ1, . . . , γn > 0, or L1, . . . , Ln ≥ 0.

Initialize: θ0i = 0, w0 = ∇r∗(0), pi =
1+ R2

λnγi

n+
∑n
j=1

R2

λnγj

,

or pi = Li∑n
j=1 Lj

, ∀i ∈ {1, . . . , n}.
for t = 1, . . . , T do

Sample it from {1, . . . , n} based on p;

∆θt−1
it

=argmax
∆θit

[
−ϕ∗it(−(θt−1

it
+∆θit))−(wt−1)⊤∆θit

− 1

2λn
∥∆θit∥2D′

]
;

θtit = θt−1
it

+∆θt−1
it

;
vt = vt−1 + 1

λn∆θ
t−1
it

;
wt = ∇r∗(vt);

end for

3.2.2. ANALYSIS

Before presenting the theoretical results, we will make sev-
eral assumptions without loss of generality: a) for the loss
functions: ϕi(0) ≤ 1, and ∀w, ϕi(w) ≥ 0, and b) for the
regularizer: r(0) = 0 and ∀w, r(w) ≥ 0. Then, we have
the following theorem for the expected duality gap when
the loss functions are smooth.

Theorem 3. Assume ϕi is (1/γi)-smooth ∀i ∈ {1, . . . , n}
and set pi = (1 + R2

λnγi
)/(n +

∑n
j=1

R2

λnγj
), for al-

l i ∈ {1, . . . , n}. To obtain an expected duality gap of
E[P (wt) − D(θT )] ≤ ϵP for the proposed Proximal S-
DCA with importance sampling, it suffices to have a total
number of iterations of

T ≥ (n+

n∑
i=1

R2

λnγi
) log

(
(n+

n∑
i=1

R2

λnγi
)
1

ϵP

)
.

Remark: If we employ uniform sampling, i.e., pi =
1/n ∀i, then we have to use the same γ for all ϕi
by choosing γmin = min{γ1, . . . , γn}. By replac-
ing γi with γmin, the theorem recovers a related result
of (Shalev-Shwartz & Zhang, 2012b) under uniform sam-
pling, i.e., T ≥ (n+ R2

λγmin
) log

(
(n+ R2

λγmin
) 1
ϵP

)
. Since

n+ R2

λγmin

n+
∑n
i=1

R2

λγin

=
nλγmin +R2

nλγmin + R2

n

∑n
i=1

γmin
γi

≥ 1,

the bound for importance sampling is always better, espe-
cially when

∑n
i=1

γmin
γi

≪ n.

For non-smooth loss functions, the convergence rate for
Proximal SDCA with importance sampling is given below.

Theorem 4. Consider the proposed proximal SDCA with
importance sampling. Assume that ϕi is Li-Lipschitz and
set pi = Li/

∑n
j=1 Lj , ∀i ∈ {1, . . . , n}. To obtain an

expected duality gap of E[P (w̄) − D(θ̄)] ≤ ϵP where
w̄ = 1

T−T0

∑T
t=T0+1 w

t−1 and θ̄ = 1
T−T0

∑T
t=T0+1 θ

t−1,
it suffices to have a total number of iterations of

T ≥ T0 + n/ρ+
4R2(

∑n
i=1 Li)

2

n2λϵP

≥ ω + n/ρ+
20R2(

∑n
i=1 Li)

2

n2λϵP
,

where ω = max(0, ⌈nρ log(
λn

ρ2R2(
∑n
i=1 Li)

2/n2 )⌉), and ρ =
nLmin∑n
i=1 Li

. Moreover, when t ≥ T0, we have dual sub-
optimality bound of E[D(θ∗)−D(θt)] ≤ ϵP /2.

Remark: If we replace all Li by Lmax =
max{L1, . . . , Ln}, the theorem is still valid, and
the sampling distribution becomes the unifor-
m distribution. In this case we recover a relat-
ed result of (Shalev-Shwartz & Zhang, 2012b), i.e.,
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T ≥ max(0, 2⌈n log( λn
2R2L2

max
)⌉) − n + 20R2(Lmax)

2

λϵP
.

However, the ratio of the leading terms is

(Lmax)
2

(
∑n
i=1 Li)

2/n2
= (

n∑n
i=1 Li/Lmax

)2 ≥ 1,

which again implies that the importance sampling bound
is always better, especially when (

∑n
i=1

Li
Lmax

)2 ≪ n2.

4. Experimental Results
4.1. Experimental Testbed and Setup
For simplicity, in the experiments we only consider the task
of optimizing squared hinge loss based SVM with ℓ2 reg-
ularization: minw

1
n

∑n
i=1

(
[1− yiw

⊤xi]+
)2

+ λ
2 ∥w∥22.

Moreover we set ψ = 1
2∥ · ∥

2
2. In this case, we compare im-

portance sampling versus the standard uniform sampling
using Pegasos of Shalev-Shwartz et al. (2007)) for SGD,
and using SDCA (Shalev-Shwartz & Zhang, 2013).

For Iprox-SGD, using the inequality P (w∗) = D(θ∗), we
can get ∥w∗∥2 ≤ 1/

√
λ. Thus the theoretical analysis is

still valid if we project the iterative solutions onto {w ∈
Rd|∥w∥2 ≤ 1/

√
λ} using Euclidean distance. Setting

ϕi(w) =
(
[1− yiw

⊤xi]+
)2

+ λ
2 ∥w∥22 so that ∇ϕi(w) =

−2[1−yiw⊤xi]+yixi+λw. Because ∥∇ϕi(w)∥2 ≤ 2(1+
∥xi∥2/

√
λ)∥xi∥2 +

√
λ, according to our analysis, the op-

timal distribution is pi = 2(1+∥xi∥2/
√
λ)∥xi∥2+

√
λ∑n

j=1[2(1+∥xj∥2/
√
λ)∥xj∥2+

√
λ]

.

Finally, r(w) = 0 and proxλr(x) = x.

For Iprox-SDCA, we set r(w) = 1
2∥w∥22, which is 1-

strongly convex with ∥ · ∥P ′ = ∥ · ∥2; we also have
ϕi(w) =

(
[1− yiw

⊤xi]+
)2, which is (2∥xi∥22)-smooth

with respect to ∥ · ∥P = ∥ · ∥2. As a result, the optimal
distribution for proximal SDCA with importance sampling
should be pi = (1 +

2∥xi∥2
2

λn )/(n +
∑n
j=1

2∥xj∥2
2

λn ), where
we used the fact R = supu ̸=0 ∥u∥D′/∥u∥D = 1. It can be
derived that the dual function of ϕ(·) is

ϕ∗
i (−θ) =

{
−α+ α2/4 θ = αyixi, α ≥ 0
∞ otherwise .

The Iprox-SDCA method may employ the closed-form so-
lution: ∆θi = max

(
1−yiw⊤xi−αi/2
1/2+∥xi∥2

2/(λn)
, −αi

)
yixi.

To evaluate the performance of our algorithms, the
experiments were performed on several real world
datasets downloaded from the LIBSVM website
www.csie.ntu.edu.tw/˜cjlin/libsvmtools/.
The dataset characteristics are provided in the Table 1.

Table 1. Datasets used in the experiments.
Dataset Dataset Size Features
ijcnn1 49990 22

kdd2010(algebra) 8407752 20216830
w8a 49749 300

For fair comparison, all algorithms use the same setup in

our experiments. In particular, the regularization parame-
ter λ of SVM is set to 10−4, 10−6, 10−4 for ijcnn1, kd-
d2010(algebra), and w8a, respectively. For prox-SGD and
Iprox-SGD, the step size is set to ηt = 1/(λt) for all the
datasets.

Given these parameters, we estimated the ratios between
the constants in the convergence bounds for uniform sam-
pling and the proposed importance sampling strategies,
which are listed in Table 2. These ratios imply that the im-
portance sampling will be effective for SGD on kdd2010
and w8a, but not very effective for ijcnn1, which will be
verified by empirical results. In addition, these ratios im-
ply that importance sampling accelerates SDCA for all the
datasets, which will also be demonstrated empirically.

Table 2. Theoretical Constant Ratios for The Datasets.
Constant Ratio ijcnn1 kdd2010 w8a
n
∑n
i=1(Gi)

2

(
∑n
i=1Gi)

2 1.0643 1.4667 1.9236
nλγmin+R

2

nλγmin+
R2

n

∑n
i=1

γmin
γi

1.1262 1.1404 1.3467

All experiments were conducted by fixing five differen-
t random seeds for each dataset, and the reported results
were averaged over these five runs. We evaluated the learn-
ing performance by measuring the primal objective value
(P (wt)) for SGD, and the duality gap (P (wt) − D(θt))
for SDCA. In addition, to examine the generalization abil-
ity of the learning algorithms, we evaluated the test error
rates. Moreover, we report the variances of the stochastic
gradients of the two algorithms to check the effectiveness
of importance sampling. Finally, for Iprox-SGD and Iprox-
SDCA, the uniform sampling is adopted at the first epoch,
so that the performance is the same with SGD and SDCA
at the first epoch, respectively.

4.2. Evaluation on Iprox-SGD
Figure 1 summarizes results in terms of primal objective
values, test error rates and variances of the stochastic gra-
dients varying over the learning process on all the datasets
for SGD and Iprox-SGD. Epoch for the horizontal axis is
the number of iterations divided by dataset size.

First, the left column summarized the primal objective val-
ues of Iprox-SGD in comparison to SGD with uniform
sampling on all the datasets. On the last two datasets, the
proposed Iprox-SGD algorithm achieved the fastest con-
vergence rates. Because these two algorithms adopted the
same learning rates, this observation implies that the pro-
posed importance sampling does sampled more informative
stochastic gradient during the learning process. Second, the
central column summarized the test error rates of the two
algorithms, where Iprox-SGD achieves significantly small-
er test error rates than those of SGD on the last two dataset.
This indicates that the proposed importance sampling ap-
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Figure 1. Comparison between Pegasos with Iprox-SGD.

proach is effective in improving generalization ability. In
addition, the right column shows the variances of stochastic
gradients for the Iprox-SGD and SGD algorithms, where
we can observe Iprox-SGD enjoys much smaller variances
than SGD on the last two dataset. This again demonstrates
that the proposed importance sampling strategy is effective
in reducing the variance of the stochastic gradients. Final-
ly, on the first dataset, the proposed Iprox-SGD algorithm
achieved a convergence rate comparable to that of the tradi-
tional prox-SGD, which indicates that Iprox-SGD may de-
generate into the traditional prox-SGD when the variance
is not reduced.

4.3. Evaluation on Iprox-SDCA
Figure 2 summarizes experimental results in terms of dual-
ity gap values, test error rates and variances of the stochas-
tic gradients varying over the learning process on all the
datasets for SDCA and Iprox-SDCA.

We have several observations from these empirical results.
First, the left column summarized the dual gap values of
Iprox-SDCA in comparison to SDCA with uniform sam-
pling on all the datasets. According to the dual gap val-
ues on all the datasets, the proposed Iprox-SDCA algo-
rithm converges faster than the standard SDCA algorithm,
which indicates that the proposed importance sampling s-
trategy is more effective than uniform sampling. Second,
the central column summarized the test error rates of the
two algorithms, where the test error rates of Iprox-SDCA
is comparable with those of SDCA on all the dataset. The
results indicate that SDCA is quite fast at the first few e-
pochs so that the importance sampling does not improve
the test accuracy, although importance sampling can accel-
erate the minimization of duality gap. In addition, the right
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Figure 2. Comparison between SDCA with Iprox-SDCA.

column shows the variances of stochastic gradients for the
Iprox-SDCA and SDCA algorithms, where we can observe
Iprox-SDCA enjoys slightly smaller variances than those
of SDCA on all datasets. However the improvement is not
large enough to significantly reduce the test error. This is
because SDCA by itself is already a stochastic variance re-
duction gradient method (Johnson & Zhang, 2013). We be-
lieve if distributed prox-SDCA adopts this importance sam-
pling strategy, then the corresponding improvement can be
more significant.

5. Conclusion
This paper studies stochastic optimization with importance
sampling, including importance sampling strategies for
prox-SMD and prox-SDCA. For prox-SMD with impor-
tance sampling, our analysis shows that in order to re-
duce variance, the sample distribution should depend on
the norms of the gradients of the loss functions, which can
be relaxed to the smooth constants or the Lipschitz con-
stants of all the loss functions; for prox-SDCA with im-
portance sampling, our analysis shows that the sampling
distribution should rely on the smooth constants or Lips-
chitz constants of all the loss functions. Compared to the
traditional prox-SGD and prox-SDCA methods, we have
shown that the proposed importance sampling methods can
significantly improve the convergence rate under suitable
conditions. Finally, we performed a set of empirical exper-
iments to confirm the theoretical analysis.
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