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Abstract
We present a Markov mixed membership model
(Markov M3) for grouped data that learns a fully
connected graph structure among mixing com-
ponents. A key feature of Markov M3 is that
it interprets the mixed membership assignment
as a Markov random walk over this graph of
nodes. This is in contrast to tree-structured mod-
els in which the assignment is done according to
a tree structure on the mixing components. The
Markov structure results in a simple paramet-
ric model that can learn a complex dependency
structure between nodes, while still maintaining
full conjugacy for closed-form stochastic varia-
tional inference. Empirical results demonstrate
that Markov M3 performs well compared with
tree structured topic models, and can learn mean-
ingful dependency structure between topics.

1. Introduction
Mixed membership modeling is a statistical framework
for modeling grouped data where each group is repre-
sented as a unique mixture over a shared structure (Airoldi
et al., 2014). A wide range of data fall within the scope
of mixed membership models, including documents (Blei
et al., 2003), images (Li & Perona, 2005), and the genome
(Pritchard et al., 2000). Exchangeability assumptions can
be relaxed to extend mixed membership models to link
data (Airoldi et al., 2008), heterogeneous data (Chang &
Blei, 2009; Wang & Blei, 2011) and matrix factoriza-
tion (Mackey et al., 2010). In this paper, we focus on
the case where each group’s data is assumed i.i.d. given
its mixed membership mixing measure.

For discrete grouped data, the most basic mixed member-
ship model is latent Dirichlet allocaiton (LDA) (Blei et al.,
2003), which assumes a finite set of discrete distributions,
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and models each group as a mixture over these distributions
using a Dirichlet prior. The simple “flat” Dirichlet prior as-
sumes no structure among the atoms, and so the model can
overfit as the number of components increases beyond a
certain number. To capture finer resolution without over-
fitting, structure has been introduced to the atom relation-
ships, for example by modeling pairwise correlations (Blei
& Lafferty, 2007) or tree structures (Blei et al., 2010).

Among these models, the tree-structured model is espe-
cially interesting for the structure it can learn (Blei et al.,
2010; Li et al., 2012; Kim et al., 2012; Ahmed et al., 2013;
Paisley et al., 2015). Because the components are given
a strict parent/child relationship, tree models can discover
components of different granularities having top-down de-
pendencies. In topic modeling, this is natural since topics
can be more or less specific and the children of one topic
can further specify the more general content of the parent
topic that unites them.

To consider two Bayesian nonparametric instances, the
nested Chinese restaurant process (nCRP) (Blei et al.,
2010) and nested hierarchical Dirichlet process (nHDP)
(Paisley et al., 2015) are two tree-structured models that
select distributions on paths from a root node (see Figure
1). For example, the nCRP selects the atoms for a group by
following a path from root to leaf node; the nHDP gener-
alizes this by selecting a subtree of atoms for each group.
Still, in both models it is assumed that there is a clear tree-
structured relationship among nodes. In this paper, we ex-
plore a related modeling framework that allows for a more
flexible range of node connections by assuming a Markov
structure among the nodes.

To this end, we present the Markov mixed member-
ship model (Markov M3) for grouped data that learns
a fully connected graph structure among mixing compo-
nents. With respect to tree-structured models, our proposed
Markov model is straightforward in that, rather than im-
posing a tree-structured transition rule between nodes, we
model the nodes as a fully connected graph with a first-
order Markov rule for transitioning between nodes (see
Figure 1). We therefore refer to this as a graph-based
mixed membership model. In the context of topic models,
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(a) nCRP (b) nHDP

(c) Markov mixed membership model

Figure 1. Comparison between three path-based models. (a) The
tree-structured nested Chinese restaurant process (nCRP) selects
one path per group; (b) the tree-based nested hierarchical Dirich-
let process (nHDP) places high probability on a subtree for each
group; (c) the proposed graph-based Markov mixed membership
model selects one path per group using a Markov random walk
on the fully connected set of nodes (an example high-probability
connectivity is depicted in the background here).

this means that any topic can a priori transition to any other
topic, but using a sparse Dirichlet prior on transition distri-
butions we learn a meaningful dependence between topics
through posterior inference.

An advantage of our proposed framework is that it avoids
the combinatorial issues encountered during inference by
models such as the nCRP (Wang & Blei, 2009), and does
not require complicated pruning procedures such as re-
quired by the nHDP (Paisley et al., 2015). In contrast,
Markov M3 is a fully conjugate-exponential family model
that allows for closed-form updates that doesn’t require the
complicated procedures of the nCRP or nHDP. As with
those two models, our model is easily learned with stochas-
tic variational inference allowing for processing of large
data sets (Hoffman et al., 2013).

In Section 2 we present Markov M3 and show the nCRP
to be the nonparametric limiting case of the model. We
present a closed-form stochastic variational inference algo-
rithm for the model in Section 3. In Section 4 we present
experiments on two large grouped discrete data sets.

2. Model Description
Mixed membership models are applicable to data sets
where the observations are grouped, i.e., where viewing the
data on the instance-level results in subsets of the data. For
example, each document in a set can be represented as a

Algorithm 1 Generative process for Markov M3

Global variables
Draw an initial-state distribution π ∼iid Dir(α0

K 1K).
for each atom k ∈ {1, 2, · · · ,K} do

1. Draw parameter βk ∼iid µ.
2. Draw transition distribution θk ∼iid Dir(α0

K 1K).
end for

Local variables
for each document d ∈ {1, 2, · · · , D} do

1. Draw a Markov chain of atoms zd ∼ MC(π,θ).
2. Draw a distribution on atoms, νd ∼ GEM(γ0).
for each word n in document d do

1. Draw assignment `dn ∼iid Disc(νd).
2. Draw observation wdn ∼ f(βzd,`dn ).

end for
end for

group of words. Mixed membership models assume that
the groups share an data generating (global) structure, but
with different distributions to account for group-level (lo-
cal) differences. For example, topic models share the same
set of distributions on words, but mix over them differently
for each group.

A common assumption made by mixed membership mod-
els is that the data is exchangeable within and across
groups. In this case, where there exists a random mixed
membership measure (i.e., De-finitte’s measure) that re-
sults in i.i.d. generation of the data. LDA is an exam-
ple of an exchangeable mixed membership model both
within/across groups, whereas dynamic topic models as-
sume partial exchangeability since the order of documents
matters (Blei & Lafferty, 2006). We present a fully ex-
changeable model in which each group mixes on paths se-
lected from a fully connected graph according to a Markov
random walk.

2.1. Markov mixed membership models

We define the generative process for the Markov mixed
membership model. The following procedure is also sum-
marized in Algorithm 1. Let wd be the set of data for group
d. We model this data as an i.i.d. set drawn from a mixture
Gd with mixing distribution νd ∼ GEM(γ0) and a group-
specific sequence of atoms (β̂1, β̂2, . . . ). We can draw from
the GEM stick-breaking distribution by sampling,

udi
iid∼ Beta(1, γ0), νdi = udi

i−1∏
j=1

(1− udi). (1)

We use the mixture Gd =
∑∞
i=1 νdiδβ̂i

to generate group
wd = (wd1, . . . , wdn) by sampling

`dn ∼ Discrete(νd), wdn|`dn ∼ f(β̂`dn). (2)
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The distribution f is problem-specific. In this paper we
take f to be a discrete distribution and β̂ a V -dimensional
probability vector. Assuming we have K atoms, β̂i ∈ β =
{β1, . . . , βK}, in this paper we let

βk
iid∼ Dir(β01V ). (3)

In the nCRP (Blei et al., 2010), the sequence of β̂i is se-
lected by following a path from the root node to the leaf
node of a tree. Instead, we assume a first order Markov
structure for this sequence. We construct a Markov transi-
tion distribution on β by drawing

θk
iid∼ Dir(α0/K, . . . , α0/K) (4)

for each k. The distribution on the sequence β̂d is then
P (β̂i = βj′ |β̂i−1 = βj |θ) = θj,j′ . The variable zd
shown in Algorithm 1 and used for inference indexes this
sequence: zdi = j′ if β̂i = βj′ . We assume the same
Dirichlet prior on the initial state distribution π as well.

We observe that if we were to set `dn = n, we would assign
wdn to atom β̂n and the result would be a standard hidden
Markov model (HMM). What differentiates our model, and
reintroduces group-level exchangeability, is that each word
chooses which of the selected states it belongs to i.i.d. νd.
The analogy to the HMM can be pursued by thinking of
the words of a document first being partitioned into ordered
sets according to νd, and then drawing each group accord-
ing to an HMM. We will see how this way of considering
the model leads to variational inference that builds on in-
ference for the HMM (Beal, 2003).

2.2. Relationship to tree-structured models

As Figure 1 illustrates, the major different between graph-
based and tree-based mixed membership models is the de-
pendence structure between nodes. Where models such as
the nCRP impose a strict parent/child hierarchy, Markov
M3 in a sense captures the potential for each node to be
the parent of all others (which simply results from a shift
of perspective about Markov chains). The limited model-
ing ability of the nCRP is primarily due to the rigid sin-
gle path allowed per group. In topic modeling, this forces
each selected topic to be a strict subset of those previ-
ously selected. This assumption was relaxed by recent
tree-structured alternatives (Kim et al., 2012; Ahmed et al.,
2013; Paisley et al., 2015). For example, as Figure 1 indi-
cates, the nHDP allows for multiple paths per document, so
two general topics can be combined in a single document
by allowing words to select paths in different directions.

As seen in Figure 1, Markov M3 in one sense returns to the
one path per group structure of the nCRP, but allows for
exploration of the entire space like the nHDP. This provides

another remedy to the rigidness of the nCRP. It also offers
modeling capabilities not found in the nHDP, since in that
model, the presence of two subtrees is not causally linked
according to the prior—the presence of one subtree says
nothing about the presence of another. With Markov M3,
there is a causal connection between two atoms according
to the Markovian generative structure (which we observe is
not symmetric). Markov M3 is again like the nCRP in that,
once it selects its path of atoms, it mixes on them using a
probability vector drawn from a stick-breaking distribution.

The Markov mixed membership model can be viewed as a
possible parametric version of the nested Chinese restau-
rant process, in that we can show that the nCRP is the
limiting process of the model in Algorithm 1 as K goes
to infinity. To roughly sketch this, consider the marginal
probability measure GKm =

∑K
k=1 θmkδβk

constructed for
the mth node. Ishwaran & Zarepour (2002) proved that
limK→∞GKm = Gm ∼ DP(α0µ). In the limit K → ∞,
θmk = 0 with probability one, while

∑
k θmk = 1. In this

case, the nonzero probability can be shown to be on a dis-
joint set of atoms for eachGm with probability one, despite
the fact that they share atoms in the finite approximation
GKm. Practically speaking, this means that a state transi-
tion sequence sampled from the infinite limit of Markov
M3 will never return to the same node twice, and so the
model can equivalently be thought of as selecting a path in
a tree. We formally state this in the following Proposition.

Proposition 1 As K goes to infinity, the Markov mixed
membership model recovers the underlying mixing measure
of the nested Chinese restaurant process.

2.3. Related work

Graph-based mixed membership models have been applied
to grouped data in other settings. For example, mixed
membership models have been applied to graph data, where
instances are linked as a graph, and stochastic block mod-
els (Airoldi et al., 2008) have been proposed to model the
links between instances through clustering. Mixed mem-
bership models have also been applied to collaborative fil-
tering (Mackey et al., 2010; Wang & Blei, 2011) and link
prediction (Chang & Blei, 2009). Exploring exchangeable
structures in graphs has also received recent theoretical in-
terest (Orbanz & Roy, 2015).

We also observe that mixed membership models can be ap-
plied to the more traditional use of hidden Markov mod-
els for sequential data. For example Paul (2014) considers
a similarly named process for the fundamentally different
problem of nonexchangeable sequence modeling.
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3. Scalable Variational Inference
We derive a variational inference algorithm for learning an
approximate posterior of all model variables shown in Al-
gorithm 1. We can factorize the joint distribution of our
model as

p(w,β,θ, z,u, `, π) = p(β)p(θ)p(π) ×∏
d p(wd|β, zd, `d)p(zd|θ, π)p(`d|ud)p(ud). (5)

We apply mean-field variational inference to approximate
the posterior p(β,θ, z,u, `|w) by defining a factorized q
distribution on these variables and locally maximizing the
variational objective function

L = Eq[ln p(w,β,θ, z,u, `)]− Eq[ln q]

using coordinate ascent, which approximately minimizes
the KL-divergence between the true posterior and q. We
restrict q to the following factorized form

q(β,θ, π, z,u, `) = q(β)q(θ)q(π)q(z)q(u)q(`), (6)

which we further factorize as

q(β)q(θ)q(π) = q(π|απ)
K∏
k=1

q(βk|λk)q(θk|αk),

q(z)q(u) =
∏
d

q(zd|ϕd)
∏
i

q(udi|adi, bdi),

q(`) =
∏
d

∏
n

q(`dn|φdn). (7)

We select all q distributions to be in the same family as the
prior defined in Algorithm 1.In the following, we use coor-
dinate ascent to optimize the variational objective, with re-
spect to the variational parameters. We first discuss the up-
date of local variables zd,ud, `d, which are only dependent
on a single instance. Then we discuss the global variables
β,θ, π that depends on multiple instances. Though we
have proposed a parametric model in the size of the graph,
K, we have defined the Markov chain for each group to be
infinite in length. For inference, we introduce a truncation
of this stick-breaking construction to level T , as is typically
done (Blei & Jordan, 2006). We note that truncation-free
methods are a possible remedy (Wang & Blei, 2012).

3.1. Local variables

The most complex part of inference is in learning the
Markov sequence zd that selects atoms for group d. We
can derive the explicit form of its posterior from

q(zd) ∝ exp
(∑

i

E[ln p(zdi|zd,i−1,θ)︸ ︷︷ ︸
pairwise potential

]

+
∑
i

∑
n

φdn(i)E[ln p(wd|`d, zdi,β)︸ ︷︷ ︸
single potential

]
)
. (8)

In Eq. (8) we can break q(zd) into single potentials and
pairwise potentials as indicated. We can then solve us-
ing the forward-backward algorithm to infer the posterior
joint marginals. In fact, this is exactly the procedure for
learning the state transitions of an HMM with the impor-
tant difference that the emission at step i is not predefined,
but instead the soft clustering of data in wd induced by
the variational parameters of `d (which is changing with
each iteration). Thus, a simple modification can be made to
the forward-backward algorithm that accounts for the new
emission process.1 Below, the variational parameters ϕdi
are the result of forward-backward, and correspond to the
distribution on atoms for the ith state of group d. Given
these vectors, the updates for the remaining variational pa-
rameters are more straightforward.

The data allocation variable `dn has multinomial varia-
tional parameter φdn as found by calculating

φdn(i) ∝ exp
(
E[ln νdi] +

∑
k ϕdi(k)E[lnβk,wdn

]
)
, (9)

We observe that the last term sums over atom assignments
for the ith value in the Markov sequence. The first expec-
tation is from the stick-break construction

E[ln νdi] = E[lnudi] +
∑i−1
j=1 E[ln(1− udj)] (10)

These expectations frequently arise in variational infer-
ence. For example, E[lnβkv] = ψ(λkv) − ψ(

∑
v′ λkv′),

where ψ(·) denotes the digamma function.

The final local variables are the stick-breaking proportions
ud. Given the allocation distributions q(`dn), the update of
the beta q distribution of udi is

adi = 1 +
∑
n

φdn(i), bdi = γ0 +
∑
n,i′>i

φdn(i
′). (11)

We can iterate several times updating the local variables for
each document before moving on to the global variables.

3.2. Global variables

The global variables include the Markov transition proba-
bilities and the atoms. The update to the variational param-
eters of the initial state and transition probabilities, π and
θ, are identical to the HMM,

απ,k =
α0

K
+
∑
d

ϕd1(k), (12)

αk,k′ =
α0

K
+
∑
d

∑
i>1

ϕd,i−1(k)ϕd,i(k
′). (13)

1We omit the full derivation for space. Please see the appendix
for details.
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Algorithm 2 An outline of batch variational inference

Local variables: For each document d,
Update q(zd) with forward-backward. Eq. (8)
Update each word allocation q(`dn). Eq. (9)
Update stick proportions q(udi). Eq. (11)

Global variables: For π and each atom k,
Update the initial state distribution q(π). Eq. (12)
Update the transition distribution q(θk). Eq. (13)
Update the atom distribution q(βk). Eq. (14)

For Dirichlet-distributed atoms β, the variational update to
the Dirichlet q distribution of βk is

λkv = β0 +
∑
d

∑
n

1(wdn = v)
∑
i

φdn(i)ϕdi(k). (14)

The right-most summation calculates the probability that
word wdn and topic βk are both be assigned to the same
point in the Markov sequence (zd1, zd2, . . . ), which is re-
quired for word wdn to belong to component βk.

3.3. Stochastic variational inference

Since Markov M3 is a conjugate-exponential family model,
it is immediately amenable to stochastic variational infer-
ence (SVI) (Hoffman et al., 2013). For models such as
tree-based models and the proposed graph-based model,
such large data extensions can help in learning the greater
level of structure defined by the model prior. As with other
mixed membership models, we can exploit the fact that the
variational objective function factorizes as

L = − Eq[ln q] + Eq[ln p(β,θ, π)] (15)

+
∑
d Eq[ln p(wd, zd,ud, `d|β,θ, π)].

Using SVI, we stochastically optimize L by restricting the
local calculations to a small subset Ct of the D groups at
iteration t. Given the subset Ct, SVI proceeds by (1) op-
timizing all local variables indexed by Ct, (2) forming the
global updates restricted to Ct, and (3) averaging these up-
dates with the current values. Let α̂π,k, α̂k,k′ and λ̂kv be
the coordinate ascent updates restricted to Ct. These are
calculated as in Eq. (12)–(14). Then the stochastic updates
to the true values are

α
(t+1)
π,k = (1− ρt)α(t)

π,k + ρt(D/|Ct|)α̂π,k

α
(t+1)
k,k′ = (1− ρt)α(t)

k,k′ + ρt(D/|Ct|)α̂k,k′

λ
(t+1)
kv = (1− ρt)λ(t)kv + ρt(D/|Ct|)λ̂kv (16)

The decaying learning rate ρt must satisfy
∑∞
t=1 ρt = ∞,∑∞

t=1 ρ
2
t < ∞ to ensure convergence (Bottou, 1998). We

set ρt = (τ0 + t)−κ, where τ0 > 0 and 0.5 < κ ≤ 1.

Table 1. Three datasets used for batch comparison.
Corpus # train # test # vocab # tokens
Huff Post 3.5K 589 6,313 907K
Science 4K 1K 4,403 1.39M
Nips 2.2K 300 14,086 3.3M

4. Experiments
Our experiments with Markov M3 focus on grouped dis-
crete data problems. We first consider topic modeling on
small and large scale problems. We then show qualita-
tive results on a music tagging problem, where the union
of quantized song features and user tags provides the dis-
crete grouping on a song level.

4.1. Document modeling

Batch comparisons. We first apply our model to three
datasets easily learned with batch inference: Huffington
Post, Science and NIPS papers. The statistics from each
data set is shown in Table 1. We split each data set into a
training set and a test set, also shown in Table 1. For the
testing set we split each document into a 90/10 split and
learned local parameters on 90% of words in the document
and predicted 10% for prediction given the inferred topic
proportions. We present the quantitative performance us-
ing preplexity, which can be calculated as

perplexity = exp
(
−
∑
n∈wTS

log p(wn|wTR)
|wTS |

)
, (17)

where wTR, wTS represent training and test words in the
test set respectively.

We compare performance of our model with LDA, the cor-
related topic model (CTM) (Blei & Lafferty, 2007) and the
nested HDP (nHDP) (Paisley et al., 2015). The nHDP was
shown to give better predictive ability than the nCRP, and
so we do not compare with that algorithm. We have also
noted that when K goes to infinity, the Markov M3 re-
covers the nCRP mixed membership model and so perfor-
mance of our model tends to the nCRP.

The perplexity results using a different number of topic
are shown in Figure 2. For the nonparametric nHDP we
truncate its posterior topic number to 175, which is higher
than the maximum number of topics used by the paramet-
ric models. On all datasets, the Markov M3 consistently
performs better than other parametric models. The reason
is that Markov M3 can more flexibly model all pairwise
topic dependencies, while LDA only considers there to be a
slight negative correlation among topics, and CTM consid-
ers pairwise correlation without dependency information.
We observe that the best performance for Markov M3 is
better than nHDP, which gives evidence that a graph struc-
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Figure 2. Held-out perplexity results. The Markov transition model (Markov M3) overall achieves best performance among parametric
models. Its best performance is even better than the state-of-the-art nonparametric nHDP.
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Figure 3. Predictive performance for online Markov M3 and on-
line LDA. Markov M3 is consistantly better for various number
of topics through the entire learning process.

ture is preferable to a tree structure for modeling topic de-
pendencies.

Stochastic learning. For a large-scale problem, we train
our model using stochastic variational inference on the New
York Times dataset, which contains 1.8 million documents,
and compare its predictive performance on a held-out test
set with online LDA (Hoffman et al., 2010a). For both
models we use the same topic initialization. We also use a
learning rate of (10 + t)−0.75 for both models, and a batch
size of |Ct| = 500. For Markov M3, we truncate the path
length to 15 and set γ0 = 1.

In Figure 3, we show the predictive performance through-
out the learning process of both models, considering var-
ious number of topics. We see that the stochastic version
of Markov M3 performs better than online LDA, which is
consistent with the results on smaller scale problems.

Markov M3 learns a transition distribution over all topics.
In Fig. 5, we depict the most probable transitions from sev-
eral topics within the graph. We limit connections and di-
rections to those above a threshold for clarity and use size
to roughly indicate probability. As can be seen, most tran-
sition probabilities between topics are very low, thus are
not displayed on the graph. Among all the topics, a few of
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Figure 4. Topic paths selected by three documents. The size of
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them are general (e.g., topic 67 with top words ’say’, ’life’,
’man’), but most topics are more specific. Topics naturally
form small cliques, where the transition probability within
a cluster is significantly higher than transitions across clus-
ters. There are also connections between topics in different
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Figure 5. Selected topic subgraph from a 200-topic graph learned by online Markov M3 on New York Times dataset. The graph shows
Markov transitions with high probability among topics.

but similar domains. For example, there is a high transition
probability between a ”film” topic (18) to a ”music” topic
(46).

We further illustrate the Markov property by focusing on
the document level. Since each document learns a distribu-
tion on paths through the graph, we show the most prob-
able path found using the Viterbi algorithm. We show the
paths selected for three documents in Figure 4, where the
arrow indicates path direction and the size of the node indi-
cates the proportion for that topic. In general, Markov M3
tends to visit earlier topics with larger proportions, as is en-
couraged by the stick-breaking prior. The topics selected in
these examples are clearly interpretable, and the sequence
captures information about topics relations.

Sensitivity analysis. We empirically analyze the effect
of the truncation level of the Markov chain and the stick-
breaking concentration parameter in our model. The trun-
cation level indicates the number of topics we allow to each
document. When the truncation level is too small, each
document can only explore very limited number topics.2

As Figure 6 shows, the model is less accurate in this case.

2We recall that the nCRP restricted each document to 3 topics,
not counting the shared root topic.
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Figure 6. Sensitivity analysis for (left) the truncation level of
sticks, and (right) the stick-breaking concentration parameter. Re-
sults are shown in terms of average log likelihood on a test set.

However, when the length of Markov random walk become
too large, performance also decreases. This is because the
update to the transition distributions θk treat the entire se-
quence of each document equally. If there are many empty
topics in the Markov sequence, as indicated by the q dis-
tributions on udi, the information in the q distributions of
the transition matrix can become less informative. In this
sense, truncation of the model is important and should be
set so that most available topics are used by a document.
The concentration parameter γ0 defines the smoothness for
the stick-breaking proportions. Figure 6 shows that choos-
ing a smooth prior can help improve performance.
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Figure 7. Markov transition paths learned from three songs without knowing their tags (the ground truth tags are marked in the paren-
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4.2. Million song dataset

We also experiment with Million Song Dataset (Bertin-
Mahieux et al., 2011). We first extract music audio fea-
tures from 371K songs and learn a codebook of size 512
using K-means. We represent each song as a vector that can
be split into two parts. The first part contains the vector-
quantized audio features using the codebook. This gives a
vector w ∈ NJ , where wk represents the counts of audio
frames that fall into cluster k for a particular song. The
remaining part is a user-applied bag-of-tags v ∈ {0, 1}L,
with a total of L = 561 tags. We set vl = 1 if tag l is
observed for the given song. Thus, the entire quantized
feature can be represented as [w,v], or a document with a
vocabulary size of 1,073.

Exploiting latent factors that generates audio waveforms
for tagging has been studied in recent years (Hoffman et al.,
2010b; Liang et al., 2013). The end goal we consider is the
problem of assigning semantic tags to a song by only ana-
lyzing its audio waveform using a model learned from the
weakly labeled songs (i.e., incomplete and noisy labeled).
We apply Markov M3 with 50 nodes (topics) to this prob-
lem to learn joint audio-tag topics–each factor is a distri-
bution over ”words”, which is a combination of the audio
codebook and the tags. In our problem set-up, we note that
the audio features dominate entire feature since the num-
ber of user-applied tags is much smaller than the number
of quantized audio features, and so the topics learned will
be audio-centered and the marginal tag distribution can be
viewed as a weak semantic label of music style captured by
that audio factor.

As with document modeling we learns a fully connected
graph over music factors, which we display here by show-
ing the path transitions for three held-out test songs. Again,

the model learns a distribution on paths, and we only show
the most probable path using Viterbi. For this testing prob-
lem, since we don’t have any tags, we feed the quantized
audio features into our model and to learn their Markov
transitions over factors. We then use the tagging portion
of the selected atoms to represent the path selected. From
Figure 7, we find that Markov M3 pulls out the correct, but
noisy tags (marked as red) with high probability, and also
discovers other possibly relevant tags.

5. Conclusions and Future Work
We proposed a Markov mixed membership model (Markov
M3) that explores a fully connected graph structure among
components. Markov M3 provides a new way of perform-
ing mixed membership modeling with structured distribu-
tions, and an alternative to similar tree-based models. We
showed how Markov M3 gives a new perspective on the
nCRP by showing nCRP to be a limiting case of Markov
M3. We showed the effectiveness of this modeling frame-
work on small and large datasets for discrete grouped data
such as documents and quantized music. In future work,
we are interested in exploring an Bayesian nonparametric
extension of Markov M3 that still allows its components
to be fully connected. Another direction is to develop ex-
tensions of Markov M3 to problems with nonexchangeable
data.
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