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Abstract

Binary embedding is a nonlinear dimension re-
duction methodology where high dimensional
data are embedded into the Hamming cube while
preserving the structure of the original space.
Specifically, for an arbitrary N distinct points
in SP~!, our goal is to encode each point us-
ing m-dimensional binary strings such that we
can reconstruct their geodesic distance up to
0 uniform distortion. Existing binary embed-
ding algorithms either lack theoretical guaran-
tees or suffer from running time O(mp). We
make three contributions: (1) we establish a
lower bound that shows any binary embedding
oblivious to the set of points requires m =
Q(&i2 log N) bits and a similar lower bound for
non-oblivious embeddings into Hamming dis-
tance; (2) we propose a novel fast binary embed-
ding algorithm with provably optimal bit com-
plexity m = 0(5% log N ) and near linear run-
ning time O(plogp) whenever logN < §,/p,
with a slightly worse running time for larger
log N; (3) we also provide an analytic result
about embedding a general set of points K C
SP—! with even infinite size. Our theoretical find-
ings are supported through experiments on both
synthetic and real data sets.

1. Introduction

Low distortion embeddings that transform high-
dimensional points to low-dimensional space have played
an important role in dealing with storage, information re-
trieval and machine learning problems for modern datasets.
Perhaps one of the most famous results along these lines
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is the Johnson-Lindenstrauss (JL) lemma Johnson &
Lindenstrauss (1984), which shows that N points can be
embedded into a 0(6*2 log N ) -dimensional space while
preserving pairwise Euclidean distance up to §-Lipschitz
distortion. This 62 dependence has been shown to be
information-theoretically optimal Alon (2003). Significant
work has focused on fast algorithms for computing the
embeddings, e.g., (Ailon & Chazelle, 2006; Krahmer &
Ward, 2011; Ailon & Liberty, 2013; Cheraghchi et al.,
2013; Nelson et al., 2014).

More recently, there has been a growing interest in design-
ing binary codes for high dimensional points with low dis-
tortion, i.e., embeddings into the binary cube (Weiss et al.,
2009; Raginsky & Lazebnik, 2009; Salakhutdinov & Hin-
ton, 2009; Gong & Lazebnik, 2011; Yu et al., 2014). Com-
pared to JL embedding, embedding into the binary cube
(also called binary embedding) has two advantages in prac-
tice: (i) As each data point is represented by a binary code,
the disk size for storing the entire dataset is reduced consid-
erably. (ii) Distance in binary cube is some function of the
Hamming distance, which can be computed quickly using
computationally efficient bit-wise operators. As a conse-
quence, binary embedding can be applied to a large number
of domains such as biology, finance and computer vision
where the data are usually high dimensional.

While most JL. embeddings are linear maps, any binary em-
bedding is fundamentally a nonlinear transformation. As
we detail below, this nonlinearity poses significant new
technical challenges for both upper and lower bounds. In
particular, our understanding of the landscape is signifi-
cantly less complete. To the best of our knowledge, lower
bounds are not known; embedding algorithms for infinite
sets have distortion-dependence ¢ significantly exceeding
their finite-set counterparts; and perhaps most significantly,
there are no fast (near linear-time) embedding algorithms
with strong performance guarantees. As we explain below,
this paper contributes to each of these three areas. First, we
detail some recent work and state of the art results.
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Recent Work. A common approach pursued by several ex-
isting works, considers the natural extension of JL embed-
ding techniques via one bit quantization of the projections:

b(x) = sign(Ax), (1.1)

where x € RP is input data point, A € R™*? is a projec-
tion matrix and b(«) is the embedded binary code. In par-
ticular, Jacques et al. (2011) shows when each entry of A is
generated independently from N (0, 1), with m > 5% log N
it with high probability achieves at most ¢ (additive) distor-
tion for N points. Work in Plan & Vershynin (2014) ex-
tend these results to arbitrary sets K C SP~! where | K|
can be infinite. They prove that the embedding with §-
distortion can be obtained when m > w(K)?/5° where
w(K) is the Gaussian Mean Width of K. It is unknown
whether the unusual 6—% dependence is optimal or not.
Despite provable sample complexity guarantees, one bit
quantization of random projection as in (1.1), suffers from
O(mp) running time for a single point. This quadratic de-
pendence can result in a prohibitive computational cost for
high-dimensional data. Analogously to the developments
in “fast” JL embeddings, there are several algorithms pro-
posed to overcome this computational issue. Work in Gong
et al. (2013) proposes a bilinear projection method. By set-
ting m = O(p), their method reduces the running time
from O(p?) to O(p'-3). More recently, work in Yu et al.
(2014) introduces a circulant random projection algorithm
that requires running time O (plogp). While these algo-
rithms have reduced running time, to the best of our knowl-
edge, the measurement complexities of the two algorithms
are still unknown. Another line of work considers learn-
ing binary codes from data by solving certain optimiza-
tion problems (Weiss et al., 2009; Salakhutdinov & Hin-
ton, 2009; Norouzi et al., 2012; Yu et al., 2014). Unfor-
tunately, there is no known provable bits complexity result
for these algorithms. It is also worth noting that Raginsky
& Lazebnik (2009) provide a binary code design for pre-
serving shift-invariant kernels. Their method suffers from
the same quadratic computational issue compared with the
fully random Gaussian projection method.

Another related dimension reduction technique is locality
sensitive hashing (LSH) where the goal is to compute a dis-
crete data structure such that similar points are mapped into
the same bucket with high probability (see, e.g., Andoni &
Indyk (2006)). The key difference is that LSH preserves
short distances, but binary embedding preserves both short
and far distances. For points that are far apart, LSH only
cares that the hashings are different while binary embed-
ding cares how different they are.

Contributions of this paper. In this paper, we address
several unanswered problems about binary embedding:

1. We provide two lower bounds for binary embeddings.

The first shows that any method for embedding and
for recovering a distance estimate from the embed-
ded points that is independent of the data being em-
bedded must use Q(&i2 log N) bits. This is based on
a bound on the communication complexity of Ham-
ming distance used by (Jayram & Woodruff, 2013)
for a lower bound on the “distributional” JL embed-
ding. Separately, we give a lower bound for arbitrarily
data-dependent methods that embed into (any func-
tion of) the Hamming distance, showing such algo-
rithms require m = Q(m log N). This bound
is similar to Alon (2003) which gets the same result
for JL, but the binary embedding requires a different
construction.

2. We provide the first provable fast algorithm with
optimal measurement complexity O(35log N).
The proposed algorithm has running time
O(% log +log® Nlog plog® log N +plog p) thus has
almost linear time complexity when log N < d,/p.
Our algorithm is based on two key novel ideas. First,
our similarity is based on the median Hamming
distance of sub-blocks of the binary code; second, our
new embedding takes advantage of a pair-wise inde-
pendence argument of Gaussian Toeplitz projection
that could be of independent interest.

3. For arbitrary set K C SP~! and the fully random
Gaussian projection algorithm, we prove that m =
O(w(K™*)?/5%) is sufficient to achieve § uniform dis-
tortion. Here KT is an expanded set of K. Although
in general K C K™ and hence w(K) < w(K™),
for interesting K such as sparse or low rank sets, one
can show w(K*) = O(w(K)) < p. Therefore ap-
plying our theory to these sets results in an improved
dependence on ¢ compared to a recent result in Plan
& Vershynin (2014). See Section 3.3 for a detailed
discussion.

Discussion. For the fast binary embedding, one sim-
ple solution, to the best of our knowledge not previously
stated, is to combine a Gaussian projection and the well
known results about fast JL. In detail, consider the strategy
b(x) = sign(AFz), where A is a Gaussian matrix and
F is any fast JL construction such as subsampled Walsh-
Hadamard matrix Rudelson & Vershynin (2008) or par-
tial circulant matrix Krahmer et al. (2014) with column
flips. A simple analysis shows that this approach achieves
measurement complexity O(5 log N) and running time
O((%4 log® N'log plog®log N + plog p) by following the
best known fast JL results. Our fast binary embedding al-
gorithm builds on this simple but effective thought. Instead
of using a Gaussian matrix after the fast JL transform, we
use a series of Gaussian Toeplitz matrices that have fast
matrix vector multiplication. This novel construction im-
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proves the running time by 62 while keeping measurement
complexity the same. In order for this to work, we need
to change the estimator from straight Hamming distance to
one based on the median of several Hamming distances.

An interesting point of comparison is Ailon & Rauhut
(2014), which considers “RIP-optimal” distributions that
give JL embeddings with optimal measurement complexity
O(45 log N) and running time O(plogp). They show the
existence of such embeddings whenever log N < §2p!/2—7
for any constant v > 0, which is essentially no better than
the bound given by the folklore method of composing a
Gaussian projection with a subsampled Fourier matrix. In
our binary setting, we show how to improve the region of
optimality by a factor of 4. It would be interesting to try
and translate this result back to the JL setting.

Notations. We use [n] to denote set {1,2,...,n}. We use
a7 to denote the sub-vector of  with index set Z C [n].
We denote entry-wise vector multiplication as  ©® y =
(x1Y1, T2y2, . - ., TnYn) ' . For two random variables X, Y,
we denote the statement that X and Y are independent as
X_L1Y. For two binary strings a,b € {0,1}™, we use
dy(a,b) to denote the normalized Hamming distance, i.e.,

d;'-[ ((1, b) = Zm (ai 7’5 bl)

2. Problem Setup and Preliminaries

In this section, we state our problem formally, give some
key definitions and present a simple (known) algorithm that
sets the stage for the main results of this paper.

2.1. Problem Setup

Given a set of p-dimensional points, our goal is to find a
transformation f : R? ~— {0, 1} such that the Hamming
distance (or other related, easily computable metric) be-
tween two binary codes is close to their similarity in the
original space. We consider points on the unit sphere SP~!
and use the normalized geodesic distance (occasionally,
and somewhat misleadingly, called cosine similarity) as the
input space similarity metric. For two points «,y € R?, we
use d(x, y) to denote the geodesic distance, defined as

d(,y) = 2@/l y/llyll2)

™

where Z(-,-) denotes the angle between two vectors. For
xz,y € SP~L, the metric d(z,y) is proportional to the
length of the shortest path connecting «, y on the sphere.

Given the success of JL. embedding, a natural approach is
to consider the one bit quantization of a random projection:

b = sign(Ax), 2.1

where A is some random projection matrix. Given two
points x,y with embedding vectors b, and ¢, we have

b; # c¢; if and only if <Ai, m><Ai, y> < 0. The tradi-
tional metric in the embedded space has been the so-called
normalized Hamming distance defined as

da *%i {s1gn A7,a:>) 31gn(<Ai,y>)}.
= 2.2)

Definition 2.1. (4-uniform Embedding) Given a set K C
SP~1 and projection matrix A € R™*P, we say the em-
bedding b = sign(Ax) provides a -uniform embedding
for points in K if

|da(z,y) —d(z.y)| <6, Voye K. (23)
Note that unlike for JL, we aim to control additive error in-
stead of relative error. Due to the inherently limited resolu-
tion of binary embedding, controlling relative error would
force the embedding dimension m to scale inversely with
the minimum distance of the original points, and in partic-

ular would be impossible for any infinite set.

2.2. Uniform Random Projection

Algorithm 1 Uniform Random Projection

input Finite number of points K = {x; }

SP~!, embedding target dimension m.

1: Construct matrix A € R™*? where each entry A; ; is
drawn independently from N(0, 1).

1 where K C

2: fori=1,2,...,|K| do
3 b; « sign(Axz;).
4: end for

output {b;},_ | Kl

Algorithm 1 presents (2.1) formally, when A is an i.i.d.
Gaussian random matrix, i.e., A; ~ N(0,1,), Vi € [m].
It is easy to observe that for two fixed points &,y € SP~!
we have

E(]l{ sign ((As,z)) # sign (<Ai,y>)}) — d(a.y).

2.4)
The above equality has a geometric explanation: each A;
actually represents a uniformly distributed random hyper-
plane in RP. Then sign (<Ai,:1:>) = sign (<Ai,y>) holds
if and only if hyperplane A; intersects the arc between
@ and y. In fact, da(x,y) is equal to the fraction of
such hyperplanes. Under such uniform tessellation, the
probability with which the aforementioned event occurs is
d(x,vy). Applying Hoeffding’s inequality and probabilistic
union bound over N pairs of points, we have the following
straightforward guarantee.

Proposition 2.2. Given a set K C SP—! with finite size
| K|, consider Algorithm 1 with m > ¢(1/6?%)log |K| for
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some absolute constant c. Then with probability at least
1 — 2exp(—d%m), we have

|da(z,y) —d(z,y)| <6, Vo,y € K.

Three important questions remain unanswered: (i) Lower
Bounds — is the performance guaranteed by Proposition
2.2 optimal? (ii) Fast Embedding — whereas Algorithm 1
is quadratic (depending on the product mp), fast JL algo-
rithms are nearly linear in p; does something similar ex-
ist for binary embedding? (iii) Infinite Sets — proposition
2.2 requires |K| is finite; what guarantee can we get for
| K| = 0o? The rest of the paper focuses on the three prob-
lems.

3. Main Results

We now present our main results on lower bounds, on fast
binary embedding, and finally, on a general result for infi-
nite sets.

3.1. Lower Bounds

We offer two different lower bounds. The first shows
that any embedding technique that is oblivious to the in-
put points must use Q((Si2 log N) bits, regardless of what
method is used to estimate geodesic distance from the
embeddings. This shows that uniform random projection
and our fast binary embedding achieve optimal bit com-
plexity (up to constants). The bound follows from results
by (Jayram & Woodruff, 2013) on the communication com-
plexity of Hamming distance.

Theorem 3.1. Consider any distribution on embedding
functions f : SP~' — {0,1}™ and reconstruction algo-
rithms ¢ : {0,1}™ x {0,1}"* — R such that for any
x1,...,xy € SP! we have

|9(f (2), f(x))) — d(wi, ;)| < 0

for all 4,5 € [N] with probability 1 — e. Then m =
Q(5z log(N/e)).

One could imagine, however, that an embedding could use
knowledge of the input point set to embed any specific set
of points into a lower-dimensional space than is possible
with an oblivious algorithm. In the Johnson-Lindenstrauss
setting, Alon (2003) showed that this is not possible be-
yond (possibly) a log(1/4) factor. We show the analogous
result for binary embeddings. Relative to Theorem 3.1, our
second lower bound works for data-dependent embedding
functions but loses a log(1/d) and requires the reconstruc-
tion function to depend only on the Hamming distance be-
tween the two strings. This restriction is natural because an
unrestricted data-dependent reconstruction function could
simply encode the answers and avoid any dependence on 4.

With the scheme given in (2.1), choosing A as a fully ran-
dom Gaussian matrix yields da (z,y) ~ d(x,y). How-
ever, an arbitrary binary embedding algorithm may not
yield a linear functional relationship between Hamming
distance and geodesic distance. Thus for this lower bound,
we allow the design of an algorithm with arbitrary link
function L.

Definition 3.2. (Data-dependent binary embedding prob-
lem)

Let £ : [0,1] — [0, 1] be a monotonic and continuous func-
tion. Given a set of points 1, T2, ..., £y € SP~1, we say a
binary embedding mapping f solves the binary embedding
problem in terms of link function £, if for any 7, j € [N],

|da(f(24), f(x5)) — L(d(2s,25))| < 6. 3.1

Although the choice of L is flexible, note that for the same
point, we always have dy (f(x;), f(x;)) = d(x;, x;) =0,
thus (3.1) implies £(0) < §. We can just let £(0) = 0.
In particular, we let £, = £(1). We have the following
lower bound:

Theorem 3.3. There exist 2N points x1, s, ..., Tay €
SN=1 such that for any binary embedding algorithm f on
{z;}27,, if it solves the data-dependent binary embedding
problem defined in 3.2 in terms of link function £ and any
5 € (0, ﬁﬁmax), it must satisfy

1 (Luax\” logN
m > .
T 128¢\ 5 ) log Lmex

Remark 3.4. We make two remarks for the above result.
(1) When L.« is some constant, our result implies that for
general N points, any binary embedding algorithm (even
data-dependent ) must have Q(m log N) number of
measurements. This is analogous to Alon’s lower bound
in the JL setting. It is worth highlighting two differences:
(1) The JL setting considers the same metric (Euclidean
distance) for both the input and the embedded spaces. In
binary embedding, however, we are interested in showing
the relationship between Hamming distance and geodesic
distance. (ii) Our lower bound is applicable to a broader
class of binary embedding algorithms as it involves arbi-
trary, even data-dependent, link function £. Such an ex-
tension is not considered in the lower bound of JL. (2) The
stated lower bound only depends on £, and does not de-
pend on any curvature information of £. The constraint
Lmax > 164/€0 is critical for our lower bound to hold, but
some such restriction is necessary because for L, < 6,
we are able to embed all points into just one bit. In this
case dy (f(x;), f(x;)) = 0for all pairs and condition (3.1)
would hold trivially.

3.2)
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3.2. Fast Binary Embedding

In this section, we present a novel fast binary embedding
algorithm. We then establish its theoretical guarantees.
There are two key ideas that we leverage: (i) instead of
normalized Hamming distance, we use a related metric,
the median of the normalized Hamming distance applied
to sub-blocks; and (ii) we show a key pair-wise indepen-
dence lemma for partial Gaussian Toeplitz projection, that
allows us to use a concentration bound that then implies
nearness in the median-metric we use.

3.2.1. METHOD

Our algorithm builds on sub-sampled Walsh-Hadamard
matrix and partial Gaussian Toeplitz matrices with ran-
dom column flips. In particular, an m-by-p partial Walsh-
Hadamard matrix has the form

®:=P-H-D. (3.3)
The above construction has three components. We char-
acterize each term as follows: Term D is a p-by-p diag-
onal matrix with diagonal terms {(;}?_; that are drawn
from i.i.d. Rademacher sequence, i.e, for any ¢ € [p],
Pr(¢; = 1) = Pr(¢; = —1) = 1/2. Term H is a p-by-
p scaled Walsh-Hadamard matrix such that H'H = I,
Term P is an m-by-p sparse matrix where one entry of each
row is set to be 1 while the rest are 0. The nonzero coor-
dinate of each row is drawn independently from uniform
distribution. In fact, the role of P is to randomly select p
rows of H - D.

An m-by-n partial Gaussian Toeplitz matrix has the form

v:=P-T.-D. (34
We introduce each term as follows: Term D a is n-by-n di-
agonal matrix with diagonal terms {¢;}?_; that are drawn
from i.i.d. Rademacher sequence. Term T is a n-by-n
Toeplitz matrix constructed from (2n—1)-dimensional vec-
tor g such that T; ; = g;_;4, for any 4, j € [n]. In partic-
ular, g is drawn from N (0,I5,_1). Term P is an m-by-n
sparse matrix where P; = e for any i € [m]. Equiv-
alently, we use P to select the first m rows of TD. It’s
worth to note we actually only need to select any distinct
M TOWS.

With the above constructions in hand, we present our fast
algorithm in Algorithm 2. At a high level, Algorithm 2
consists of two parts: First, we apply column flipped par-
tial Hadamard transform to convert p-dimensional point
into n-dimensional intermediate point. Second, we use B
independent (m/B)-by-n partial Gaussian Toeplitz matri-
ces and sign operator to map an intermediate point into
B blocks of binary codes. In terms of similarity com-
putation for the embedded codes, we use the median of

each block’s normalized Hamming distance. In detail, for
b,c € {0,1}™, B-wise normalized Hamming distance is
defined as

B-1
dy (b, ¢; B) := median ({dq.[ (bTi7 cTi)} ) (3.5)

=0
where T; = [i + 1,...,i+m/B].

It is worth noting that our first step is one construction of
fast JL transform. In fact any fast JL transform would work
for our construction, but we choose a standard one with real
value: based on Rudelson & Vershynin (2008); Cheraghchi
et al. (2013); Krahmer & Ward (2011), it is known that
withm = O (6’2 log N log plog®(log N)) measurements,
a subsampled Hadamard matrix with column flips becomes
an e-JL matrix for N points.

The second part of our algorithm follows framework (2.1).
By choosing a Gaussian random vector in each row of U,
from our previous discussion in Section 2.2, the probability
that such a hyperplane intersects the arc between two points
is equal to their geodesic distance. Compared to a fully
random Gaussian matrix, as used in Algorithm 1, the key
difference is that the hyperplanes represented by rows of ¥
are not independent to each other; this imposes the main
analytical challenge.

Algorithm 2 Fast Binary Embedding

input Finite number of points {x;}}Y, where each point

x; € SP~1, embedded dimension m, intermediate di-
mension 7, number of blocks B.

1: Draw a n-by-p sub-sampled Walsh-Hadamard matrix

@ according to (3.3). Draw B independent par-

tial Gaussian Toeplitz matrices {\Il(j)}f=1 with size
(m/B)-by-n according to (3.4).

2: {PartI: Fast JL}

3: fori=1,2,...,Ndo

5: end for

6: {Part II: Partial Gaussian Toeplitz Projection}
7: fori=1,2,...,N do

8: forj=1,2,...,Bdo

9: c; < sign (\I'(j) yl)

10:  end for

11: bi<—[clgc2;...;cB]

12: end for

output {b;}Y

3.2.2. ANALYSIS

We give the analysis for Algorithm 2. We first review a
well known result about fast JL transform. It can be proved
by combining Theorem 14 in Cheraghchi et al. (2013) and
Theorem 3.1 in Krahmer & Ward (2011).



Binary Embedding: Fundamental Limits and Fast Algorithm

Lemma 3.5. Consider the column flipped partial
Hadamard matrix defined in (3.3) with size m-
by-p. For N points i, To,....,zy € SP71, let
Yyi = VE®() @, ¥V i € [N]. For some absolute
constant ¢, suppose m > c6 2log N logplog3(log N),
then with probability at least 0.99, we have that

“|yz||2 — 1‘ < 4, forany i € [N]; (3.6)

llyi — yilla — lzi — ;2| < 6llws — )l 3.

for any ¢, € [N].

The above result suggests that the first part of our algorithm
reduces the dimension while preserving well the Euclidean
distance of each pair. Under this condition, all the pairwise
geodesic distances are also well preserved as confirmed by
the following result.

Lemma 3.6. Consider the set of embedded points {y; } ¥ ;
defined in Lemma 3.5. Suppose conditions (3.7)-(3.6) hold
with § > 0. Then for any 4, j € [INV],

|d(yi,y;) — d(x;, x;)| < C6 (3.8)

holds with some absolute constant C'.

The next result is our independence lemma, and is one of
the key technical ideas that make our result possible. The
result shows that for any fixed =, Gaussian Toeplitz pro-
jection (with column flips) plus sign(-) generate pair-wise
independent binary codes.

Lemma 3.7. Let g ~ N(0,I3,-1), ¢ = {¢}; be an
ii.d. Rademacher sequence. Let T be a random Toeplitz
matrix constructed from g such that T; ; = g;—;4,. Con-
sider any two distinct rows of T say &, &'. For any two
fixed vectors x,y € R", we define the following random
variables

X =sign(€0¢, @), X' =sign(¢'© ¢,z
Y =sign(€0¢, y), Y =sign(¢' o ¢y).

We have that X | X/, X 1Y YI1X' V1Y’

With these ingredients in hand, we are ready to prove the
following result.

Theorem 3.8. Consider Algorithm 2 with random matri-
ces @, W defined in (3.3) and (3.4) respectively. For finite
number of points {x; f\il, let b; be the binary codes of x;
generated by Algorithm 2. Suppose we set

B >clogN, n>m/B > " (1/6%),
and n > ¢/(1/6%)log N log plog®(log N)

Algorithm 3 Alternative Fast Binary Embedding

input Finite number of points {x;}}Y, where each point
x; € SP~1, embedded dimension m, intermediate di-
mension 7.

1: Draw a n-by-p sub-sampled Walsh-Hadamard ma-
trix ® according to (3.3). Construct m-by-n ma-
trix A where each entry is drawn independently from
N(0,1).

2: fort=1,2,...,Ndo

3 b « sign(APx;)

4: end for

output {b;},

with some absolute constants ¢, ¢’, ¢/, then with probability
at least 0.98, we have that for any ¢, j € [N]

|d7.£(bi,bj; B) — d(il:,,ilfj)‘ S 5

Similarity metric dy (-, -; B) is the median of normalized
Hamming distance defined in (3.5).

The above result suggests that the measurement complex-
ity of our fast algorithm is O (5% log N ) which matches the
performance of Algorithm 1 based on fully random ma-
trix. Note that this measurement complexity can not be im-
proved significantly by any data-oblivious binary embed-
ding with any similarity metric, as suggested by Theorem
3.1.

Running time: The first part of our algorithm takes time
O(plogp). Generating a single block of binary codes
from partial Toeplitz matrix takes time O(nlog(}))".
Thus the total running time is O(Bnlog 1 + plogp) =
O(4 log +log® Nlogplog®(log N) + plogp). By ig-
noring the polynomial loglog factor, the second term

O(p log p) dominates when log N < §,/p/ log %.

Comparison to an alternative algorithm: Instead of uti-
lizing the partial Gaussian Toeplitz projection, an alterna-
tive method, to the best of our knowledge not previously
stated, is to use fully random Gaussian projection in the
second part of our algorithm. We present the details in Al-
gorithm 3. By combining Proposition 2.2 and Lemma 3.5,
it is straightforward to show this algorithm still achieves the
same measurement complexity O(z log N). The corre-
sponding running time is O (3 log? N log plog®(log N) +
plogp), so it is fast when log N < (52\/]3. Therefore our
algorithm has an improved dependence on §. This improve-
ment comes from fast multiplication of partial Toeplitz
matrix and a pair-wise independence argument shown in
Lemma 3.7.

"Matrix-vector multiplication for m-by-n partial Toeplitz ma-
trix can be implemented in running time O(n log m).
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3.3. §-uniform Embedding for General K

In this section, we turn back to the fully random projection
binary embedding (Algorithm 1). Recall that in Proposi-
tion 2.2, we show for finite size K, m = O(3z log |K])
measurements are sufficient to achieve d-uniform embed-
ding. For general K, the challenge is that there might be an
infinite number of distinct points in K, so Proposition 2.2
cannot be applied. In proving the JL lemma for an infinite
set K, the standard technique is either constructing an e-
net of K or reducing the distortion to the deviation bound
of a Gaussian process. However, due to the non-linearity
essential for binary embedding, these techniques cannot be
directly extended to our setting. Therefore strengthening
Proposition 2.2 to infinite size K imposes significant tech-
nical challenges. Before stating our result, we first give
some definitions.

Definition 3.9. (Gaussian mean width) Let g ~ A(0,I,).
For any set K C SP—1! the Gaussian mean width of K is
defined as

w(K) =Eq4 21612 |{g,x)|.

Here, w(K)? measures the effective dimension of set K.
In the trivial case K = SP~!, we have w(K)? < p.
However, when K has some special structure, we may
have w(K)? < p. For instance, when K = {x €
SP=1 . |supp(x)| < s}, it has been shown that w(K) =
©(y/slog(p/s)) (see Lemma 2.3 in Plan & Vershynin
(2013)).

For a given ¢, we define K ;, the expanded version of K C
SP—1 as:
_ r—vY
K =K||{zeSP':iz= " "
KU o=yl

Ve,ye Kif 6> < |z —yl.<6}. (3.9

-0.1in In other words, K ;‘ is constructed from K by adding
the normalized differences between pairs of points in K
that are within § but not closer than 2. Now we state the
main result as follows.

Theorem 3.10. Consider any K C SP~!. Let A ¢
R™*P be an i.i.d. Gaussian matrix where each row A; ~
N(0,1,). For any two points ¢,y € K, da(z,y) is de-
fined in (2.2). Expanded set K ; is defined in (3.9). When

w(K )’
P

with some absolute constant ¢, then we have that

m > c

z,yc K

holds with probability at least 1 — ¢; exp(—co62m) where
c1, o are absolute constants.

Remark 3.11. We compare the above result to Theorem
1.5 from the recent paper (Plan & Vershynin, 2014) where
it is proved that for m > w(K)? /8%, Algorithm 1 is guar-
anteed to achieve J-uniform embedding for general K.
Based on definition (3.9), we have

w(EK) < w(KF) < ~w(K — K) < —w(K).

5 ~ 52t
Thus in the worst case, Theorem 3.10 recovers the previous
result up to a factor 5%. More importantly, for many inter-
esting sets one can show w(K;) < w(K); in such cases,
our result leads to an improved dependence on §. We give
several such examples as follows:

e Low rank set. For some U € RP*" such that
U'U=1I,letKk ={xcSP1:2="Ue Vce¢
S™=1}. We simply have K = K; and w(K) < /r.
Our result implies m = O(r/§%).

e Sparse set. K = {z € SP~! : |supp(x)| < s}. In
this case we have K C {z € SP~! : |supp(zx)| <
2s}. Therefore w(K; ) = ©(y/slog(p/s)). Our re-
sult implies m = O(Sl%(f/s)).

o Set with finite size. |K| < oco. As w(K) <
Vlog|K] and |K; | < 2|K]|, our result implies m =
O(log|K|/d*). We thus recover Proposition 2.2 up

to factor 1/462.

Applying the result from Plan & Vershynin (2014) to the
above sets implies similar results but the dependence on §
becomes 1/85.

4. Numerical Results

In this section, we present the results of experiments we
conduct to validate our theory and compare the perfor-
mance of the following three algorithms we discussed: uni-
form random projection (URP) (Algorithm 1), fast binary
embedding (FBE) (Algorithm 2) and the alternative fast bi-
nary embedding (FBE-2) (Algorithm 3). We first apply
these algorithms to synthetic datasets. In detail, given pa-
rameters (NN, p), a synthetic dataset is constructed by sam-
pling N points from SP~! uniformly at random. Recall that
¢ is the maximum embedding distortion among all pairs of
points. We use m to denote the number of binary mea-
surements. Algorithm FBE needs parameters n, B, which
are intermediate dimension and number of blocks respec-
tively. Based on Theorem 3.8, n is required to be propor-
tional to m (up to some logarithmic factors) and B is re-
quired to be proportional to log N. We thus set n ~ 1.3m,
B ~ 1.8log N. We also set n ~ 1.3m for FBE-2. In ad-
dition, we fix p = 512. We report our first result showing
the functional relationship between (m, IV, d) in Figure 1.
In particular, panel 1(a) shows the the change of distortion
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Figure 2. Image retrieval results on Flickr-25600. Each panel presents the recall for specified number of measurements m. Black and
blue dot lines are respectively the recall of FBE-2 and URP with less number of measurements but the same running time as FBE.

0 over the number of measurements m for fixed N. We
observe that, for all the three algorithms, § decays with m
at the rate predicted by Proposition 2.2 and Theorem 3.8.
Panel 1(b) shows the empirical relationship between m and
log N for fixed 6. As predicted by our theory (lower bound
and upper bound), m has a linear dependence on log V.

A popular application of binary embedding is image re-
trieval, as considered in (Gong & Lazebnik, 2011; Gong
et al., 2013; Yu et al., 2014). We thus conduct an experi-
ment on the Flickr-25600 dataset that consists of 10k im-
ages from Internet. Each image is represented by a 25600-
dimensional normalized Fisher vector. We take 500 ran-
domly sampled images as query points and leave the rest
as base for retrieval. The relevant images of each query are
defined as its 10 nearest neighbors based on geodesic dis-
tance. Given m, we apply FBE, FBE-2 and URP to convert
all images into m-dimensional binary codes. In particular,
we set B = 10 for FBE and n ~ 1.3m for FBE and FBE-
2. Then we leverage the corresponding similarity metrics,
(3.5) for FBE and Hamming distance for FBE-2 and URP,
to retrieve the nearest images for each query. The perfor-
mance of each algorithm is characterized by recall, i.e., the
number of retrieved relevant images divided by the total
number of relevant images. We report our second result
in Figure 2. Each panel shows the average recall of all
queries for a specified m. We note that FBE-2, as a fast
algorithm, performs as well as URP with the same num-
ber of measurements. In order to show the running time
advantage of our fast algorithm FBE, we also present the
performance of FBE-2 and URP with fewer measurements
such that they can be computed with the same time as FBE.
As we observe, with large number of measurements, FBE-
2 and URP perform marginally better than FBE while FBE
has a significant improvement over the two algorithms un-
der identical time constraint.
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Figure 1. Results on synthetic datasets. (a) Each point, along with
the standard deviation represented by the error bar, is an average
of 50 trials each of which is based on a fresh synthetic dataset
with size N = 300 and newly constructed embedding mapping.
(b) Each point is computed by slicing at § = 0.3 in similar plots
like (a) but with the corresponding V.
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