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In this supplementary manuscript, we provide the proofs for the theoretical results appeared in our main paper. Proofs
about lower bounds are contained in Section A. We prove the results related to fast binary embedding in Section B. The
guarantee for embedding general set (Theorem 3.10) is proved in Section C. Several auxiliary lemmas are proved in Section
D.

A. Proofs about Lower Bounds
A.1. Proof of Data-Oblivious Lower Bound (Theorem 3.1)

The proof of the data-oblivious lower bound is based on a lower bound for one-way communication of Hamming distance
due to (Jayram & Woodruff, 2013).

Definition A.1 (One-way communication of Hamming distance). In the one-way communication model, Alice is given
a ∈ {0, 1}n and Bob is given b ∈ {0, 1}n. Alice sends Bob a message c ∈ {0, 1}m, and Bob uses b and c to output a
value x ∈ R. Alice and Bob have shared randomness.

Alice and Bob solve the (δ, ε) additive Hamming distance estimation problem if |x− dH(a, b)| ≤ δ with probability 1− ε.

The result proven in (Jayram & Woodruff, 2013) is a lower bound for the multiplicative Hamming distance estimation
problem, but their techniques readily yield a bound for the additive case as well:

Lemma A.2. Any algorithm that solves the (δ, ε) additive Hamming distance estimation problem must have m =
Ω((1/δ2) log(1/ε)) as long as this is less than n.

Proof. We apply Lemma 3.1 of (Jayram & Woodruff, 2013) with parameters α = 2, p = 1, b = 1, ε = δ, and δ = ε.
This encodes inputs from a problem they prove is hard (augmented indexing on large domains) to inputs appropriate for
Hamming estimation. In particular, for n′ = O( 1

δ2 log(1/ε)) it gives a distribution on (a, b) ∈ {0, 1}n′ × {0, 1}n′ that are
divided into “NO” and “YES” instances, such that:

• From the reduction, distinguishing NO instances from YES instances with probability 1 − ε requires Alice to send
m = Ω( 1

δ2 log(1/ε)) bits of communication to Bob.

• In NO instances, dH(a, b) ≥ 1
2 (1− δ/3).

• In YES instances, dH(a, b) ≤ 1
2 (1− 2δ/3).

First, suppose n = n′. Then since solving the additive Hamming distance estimation problem with δ/12 accuracy would
distinguish NO instances from YES instances, it must involve m = Ω( 1

δ2 log(1/ε)) bits of communication.

For n > n′, simply duplicate the coordinates of a and b bn/n′c times, and zero-pad the remainder. Less than half the
coordinates are then part of the zero-padding, so the gap between YES and NO instances remains at least δ/12 and a
protocol for the (δ/24, ε) additive Hamming distance estimation problem requires m = Ω( 1

δ2 log(1/ε)) as desired.

With this in hand, we can prove Theorem 3.1:
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Proof of Theorem 3.1. We reduce one-way communication of the (δ, ε) additive Hamming distance estimation problem to
the embedding problem. Let a, b ∈ {0, 1}p be drawn from the hard instance for the communication problem defined in
Lemma A.2. Linearly transform them to u,v ∈ Sp−1 via u = (2 · a − 1)/

√
p, v = (2 · b − 1)/

√
p. We have that

〈u,v〉 = 1− 2dH(a, b), so

d(u,v) = 1− arccos(〈u,v〉)
π

= 1− arccos(1− 2dH(a, b))

π

or
dH(a, b) =

1

2
(1− cos(π − πd(u,v)))

Given an estimate of d(u,v), we can therefore get an estimate of dH(a, b). In particular, since |cos′(x)| ≤ 1, if we learn
d(u,v) to ±δ then we learn dH(a, b) to ±δ π2 .

For now, consider the case of N = 2. Consider an oblivious embedding function f : Sp−1 → {0, 1}m and reconstruction
algorithm g : {0, 1}m × {0, 1}m → R that has

|g(f(u), f(v))− d(u,v)| ≤ δ 2

π

with probability 1−ε on the distribution of inputs (u,v). We can solve the one-way communication problem for Hamming
distance estimation by Alice sending f(u) to Bob, Bob learning d(u,v) ≈ g(f(u), f(v)), and then computing dH(a, b)
to ±δ. By the lower bound for this problem, any such f and g must have m = Ω( 1

δ2 log 1
ε ), proving the result for N = 2

(after rescaling δ).

For general N , we draw instances (u1,v1), (u2,v2), . . . , (uN/2,vN/2) independently from the hard instance for binary
embedding of N = 2 and ε′ = 4ε/N . Consider an oblivious embedding function f : Sp−1 → {0, 1}m and reconstruction
algorithm g : {0, 1}m × {0, 1}m → R that has for all i ∈ [N/2] that

|g(f(ui), f(vi))− d(ui,vi)| ≤ δ

with probability 1 − ε on this distribution. Define α to be the probability that |g(f(ui), f(vi))− d(ui,vi)| ≤ δ for any
particular i. Because f and g are oblivious and the different instances are independent, we have the probability that all
instances succeed is αN/2 ≥ 1− ε, so

α > (1− ε)2/N > 1− 4ε/N.

In particular, this means f and g solve the hard instance of binary embedding and N = 2, ε′ = 4ε/N . By the above lower
bound for N = 2, this means

m = Ω(
1

δ2
log(N/ε))

as desired.

A.2. Proof of Data-Dependent Lower Bound (Theorem 3.3)

We need a few ingredients to show the lower bound. First, we define a matrix that is close to identity matrix.

Definition A.3. ((δ1, δ2)-near identity matrix) Symmetric matrix M ∈ Rp×p is called a (δ1, δ2)-near identity matrix if it
satisfies both of the following conditions:

1− δ1 ≤Mi,i ≤ 1,∀ i ∈ [p],∣∣Mi,j

∣∣ ≤ δ2,∀ i 6= j ∈ [p].

Next we give a lower bound on the rank of (δ1, δ2)-near identity matrix.

Lemma A.4. Suppose positive semidefinite matrix M ∈ Rp×p is a (δ1, δ2)-near identity matrix with rank d, and 0 <
δ1, δ2 < 1. Then we have

d ≥ p(1− δ1)2

1 + (p− 1)δ2
2

.
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Proof. We postpone the proof to Appendix D.2.

The above result is weak when it is applied to show our desired lower bound. We still need to make use of the following
combinatorial result.

Lemma A.5. Suppose matrix M ∈ Rp×p has rank d. Let P (x) be any degree k polynomial function. Consider matrix
N ∈ Rp×p defined as N := P (M), where the Ni,j = P (Mi,j). We have

rank(N) ≤
(
k + d

k

)
.

Proof. See Lemma 9.2 of (Alon, 2003) for a detailed proof.

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let ei denote the i’th natural basis of RN , i.e., the i’th coordinate is 1 while the rest are all zeros.
Consider N points {e1, e2, ..., eN} and their opposite vectors {−e1,−e2, ...,−eN}. For any binary embedding algorithm
f , we let

bi := f(ei), ∀ i ∈ [N ],

ci := f(−ei), ∀ i ∈ [N ].

Under the condition that f solves the general binary embedding problem with link function L, we have∣∣dH(bi, ci)− L
(
d(ei,−ei)

)∣∣ ≤ δ, ∀ i ∈ [N ]. (A.1)

As d(ei,−ei) = 1, we have
L(1) + δ ≥ dH(bi, ci) ≥ L(1)− δ. (A.2)

Similarly, note that

d(ei, ej) = d(ei,−ej) = d(−ei,−ej) =
1

2
, ∀ i 6= j,

we have ∀ i 6= j

L(1/2)− δ ≤ dH(bi, bj) ≤ L(1/2) + δ, (A.3)

L(1/2)− δ ≤ dH(ci, cj) ≤ L(1/2) + δ, (A.4)

L(1/2)− δ ≤ dH(bi, cj) ≤ L(1/2) + δ. (A.5)

From now on, we treat binary strings bi, ci as vectors in Rm. Let B denote the matrix with rows bi and C denote the
matrix with rows ci. Consider the outer product of the difference between B and C, namely

M = (B−C)(B−C)>.

Note that ∀ i ∈ [N ],
Mi,i = ‖bi − ci‖22 = 4m · dH(bi, ci) ≥ 4m

(
L(1)− δ

)
.

The last inequality follows from (A.2). For ∀ i 6= j, we have

Mi,j =
〈
bi − ci, bj − cj

〉
=
〈
bi, bj

〉
+
〈
ci, cj

〉
−
〈
bi, cj

〉
−
〈
bj , ci

〉
= 2m

(
dH(bi, cj) + dH(bj , ci)− dH(bi, bj)− dH(ci, cj)

)
,

where the third equality follows from

dH(b, c) =
1

4m

(
‖b‖22 + ‖c‖22 − 2

〈
b, c
〉)
∀ b, c ∈ {−1, 1}m
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By using (A.3) to (A.5), we have ∣∣Mi,j

∣∣ ≤ 8δm.

Therefore, 1
4m·(L(1)+δ)M is actually a

(
2δ
L(1) ,

2δ
L(1)

)
-near identity matrix. Consider degree k polynomial P (z) = zk. Let

N = P
( 1

4m · L(1)
M
)
.

It is easy to observe that N is a (γ1, γ2)-near identity matrix where

γ1 = 1− (1− 2δ

L(1)
)k,

and
γ2 =

( 2δ

L(1)

)k
.

Under the condition δ
L(1) ≤

1
4 , we have

γ1 = 1− (1− δ

L(1)
)k ≤ 1− (

1

2
)k.

By setting k = 1
2

logN

log
L(1)
2δ

, we have

γ2 ≤
√

1

N
.

We apply Lemma A.4 by setting δ1, δ2, p in the statement to be γ1, γ2, N respectively. We get

rank(N) ≥
N( 1

4 )k

1 + (N − 1)/N
≥ 1

2
(
1

4
)kN ≥ (

1

8
)kN. (A.6)

On the other hand, 1
4m·L(1)M has rank at most m. By applying Lemma A.5 we get

rank(N) ≤
(
m+ k

k

)
≤
(e(m+ k)

k

)k
.

Applying the above result and (A.6) directly yields that

(N)1/k ≤ 8e
m+ k

k
.

When k = 1
2

logN

log
L(1)
2δ

as we set, N1/k ≥ (L(1)
2δ )2. Therefore we have

m ≥ 1

32e

(L(1)

δ

)2
k − k ≥ 1

64e

(L(1)

2δ

)2
k =

1

128e

(L(1)

δ

)2 logN

log L(1)
2δ

,

where the second inequality holds when
(L(1)

2δ

)2 ≥ 64e.

B. Proofs about Fast Binary Embedding Algorithm
B.1. Proof of Lemma 3.7

Proof. It suffices to prove X⊥Y ′. One can check similarly that the proof holds for the remaining three results. Note
that X,Y ′ are binary random variables with values {−1, 1}. It is easy to observe both of them are balanced, namely
Pr(X = 1) = Pr(Y ′ = 1) = 1/2. If X⊥Y ′, then we have Pr(X = Y ′) = 1/2. In the reverse direction, suppose
Pr(X = Y ′) = 1/2. First we have

Pr(X = 1) = Pr(X = 1, Y ′ = 1) + Pr(X = 1, Y ′ = −1) = 1/2, (B.1)
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Pr(Y ′ = 1) = Pr(X = 1, Y ′ = 1) + Pr(X = −1, Y ′ = 1) = 1/2. (B.2)

Combining the above two results, we have Pr(X = 1, Y ′ = −1) = Pr(X = −1, Y ′ = 1). Using Pr(X = 1, Y ′ = −1) +
Pr(X = −1, Y ′ = 1) = Pr(X 6= Y ′) = 1−Pr(X = Y ′) = 1

2 , we thus have Pr(X = 1, Y ′ = −1) = Pr(X = −1, Y ′ =
1) = 1/4. Plugging the above result into (B.1) and (B.2) we have Pr(X = 1, Y ′ = 1) = Pr(X = −1, Y ′ = −1) = 1/4.
Thus we have shown

Pr(X = v
∣∣Y ′ = u) =

Pr(X = v, Y ′ = u)

Pr(Y ′ = u)
= Pr(X = v), ∀ u, v ∈ {−1, 1},

which leads to X⊥Y ′.

Using the above arguments, we show that X⊥Y ′ if and only if

Pr(X = Y ′) = 1/2.

Recalling the definition of X,Y ′, the above condition holds if and only if

Pr

{〈
ξ � ζ,x

〉
·
〈
ξ′ � ζ,y

〉︸ ︷︷ ︸
Z

≥ 0

}
=

1

2
.

Next we prove Z has symmetric distribution around 0. Let I = [1, n], I ′ = [1, n −∆], I0 = [2n −∆, 2n − 1] for some
natural number ∆ < n. Without loss of generality, we assume ξ = gI and ξ′ = [gI0 ; gI′ ]. We split I into T = d n∆e
consecutive disjoint subsets I1, I2, . . . , IT each of which has size ∆ except |IT | = n − (T − 1)∆ ≤ ∆. Also, let I ′T−1

contain the first n− (T − 1)∆ entries of IT−1. Then we have

Z =

( T∑
i=1

〈
gIi � ζIi ,xIi

〉)
·
( T−2∑
i=1

〈
gIi � ζIi+1 ,yIi+1

〉
+
〈
gI′T−1

� ζIT ,yIT
〉

+
〈
gI0 � ζI1 ,yI1

〉)
. (B.3)

We now let ĝ be such random vector that is identical to g except that for any i ∈ {0} ∪ [T ]

ĝIi = −gIi , if i mod 2 = 0

Let ζ̂ be such random vector that is identical to ζ except that for any i ∈ {0} ∪ [T ]

ζ̂Ii = −ζIi , if i mod 2 = 1.

Replacing g, ζ in (B.3) with ĝ, ζ̂ yields

Ẑ

=

( T∑
i=1

〈
ĝIi � ζ̂Ii ,xIi

〉)
·
( T−2∑
i=1

〈
ĝIi � ζ̂Ii+1

,yIi+1

〉
+
〈
ĝI′T−1

� ζ̂IT ,yIT
〉

+
〈
ĝI0 � ζ̂I1 ,yI1

〉)

=

(
−

T∑
i=1

〈
gIi � ζIi ,xIi

〉)
·
( T−2∑
i=1

〈
gIi � ζIi+1

,yIi+1

〉
+
〈
gI′T−1

� ζIT ,yIT
〉

+
〈
gI0 � ζI1 ,yI1

〉)
=− Z.

As each entry of g is symmetric random variable around 0, therefore ĝ and g has the same probability distribution. The
same fact also holds for ζ̂ and ζ. So we conclude that Z has symmetric distribution around 0, which implies Pr(Z > 0) =
1
2 and X⊥Y ′.

B.2. Proof of Theorem 3.8

Proof. Unspecified notations in this section are consistent with Algorithm 2. Using Lemma 3.6, we have

Pr

{
sup

i,j∈[N ]

∣∣d(yi,yj)− d(xi,xj)
∣∣ ≥ Cδ} ≤ 0.01. (B.4)
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Now consider the first-block binary codes generated from Gaussian Toeplitz projection. We focus on two intermediate
points y1 and y2. Consider the first block of binary codes generated from the second part of Algorithm 2. We let

u = sign
(
Ψ(1) · y1

)
,v = sign

(
Ψ(1) · y2

)
.

Suppose Ψ(1) contains Gaussian Toeplitz matrix T. For any i ∈ [m/B], we have

ui = sign
(〈

Ti � ζ, y1

〉)
= sign

(〈
Ti, y1 � ζ

〉)
.

vi = sign
(〈

Ti � ζ, y2

〉)
= sign

(〈
Ti, y2 � ζ

〉)
.

Since Ti is a Gaussian random vector, we have

Pr(ui 6= vi) = d(y1 � ζ, y2 � ζ) = d(y1, y2).

Let Zi = 1
(
ui 6= vi

)
,∀ i ∈ [m/B]. Following Lemma (3.7), we know that ∀ i 6= j

ui⊥uj , ui⊥vj , vi⊥vj , vi⊥uj .

Therefore {Zi}[m/B]
i=1 is a pair-wise independent sequence. By Markov’s inequality, we have

Pr

(∣∣ 1

m/B

m/B∑
i=1

Zi − E(Z1)
∣∣ ≥ δ) ≤ B

mV ar(Z1)

δ2
≤ 1

4

B

mδ2
≤ 1

4
. (B.5)

The last inequality holds by setting m
B ≥

1
δ2 . Therefore, we have

Pr

(∣∣dH(u,v)− d(y1,y2)
∣∣ ≥ δ) ≤ 1

4
.

Now consider total B block binary codes {ui}Bi=1 {vi}Bi=1 from y1 and y2 respectively. Let

Ei = 1
(
|dH(ui,vi)− d(y1,y2)| ≥ δ

)
, ∀ i ∈ [B].

From (B.5), we have Pr(Ei = 1) < 1
4 . If more than half of Ei are 0, then the median of {dH(ui,vi)}Bi=1 is within δ away

from d(y1,y2). Then we have

Pr

(
median

(
{dH(ui,vi)}Bi=1

)
− d(y1,y2)

∣∣ ≥ δ)
≤ Pr

( 1

B

B∑
i=1

Ei ≥
1

2

)
≤ Pr

( 1

B

B∑
i=1

Ei − E(Ei) >
1

4

)
≤ exp(−1

4
B).

In the second inequality, we use (B.5). The last step follows from Hoeffding’s inequality. Now we use a union bound for
N2 pairs

Pr

(
sup

i,j∈[N ]

∣∣dH(bi, bj)− d(yi,yj)
∣∣ ≥ δ) ≤ N2 exp(−1

4
B) ≤ exp(−1

8
B).

The last inequality holds by setting B ≥ 16 logN . Combing the above result and (B.4) using triangle inequality, we
complete the proof.

C. Proof of Theorem 3.10
For any set K ⊆ Sp−1, we use Nδ(K) to denote a constructed δ-net of K, which is a δ-covering set with minimum size.
In particular, by Sudakov’s theorem (e.g., Theorem 3.18 in Ledoux & Talagrand (1991))

logNδ(K) .
w(K)2

δ2
.

We first prove that for a fixed two dimensional space, m = O( 1
δ2 ) independent Gaussian measurements are sufficient to

achieve δ-uniform binary embedding.
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Lemma C.1. Suppose K is any fixed two-dimensional subspace in Sp−1. Let A ∈ Rm×p be a matrix with independent
rows Ai ∼ N (0, Ip), ∀i ∈ [m] . Suppose m ≥ 1

δ2 log 1
δ , then with probability at least 1− 3 exp(−δ2m),

sup
x,y∈K

∣∣dA(x,y)− d(x,y)
∣∣ ≤ Cδ. (C.1)

Here C is some absolute constant.

Proof. We postpone the proof to Appendix D.3.

The next lemma shows that the normalized `1 norm of Ax provides decent approximation of ‖x‖2.

Lemma C.2. Consider any set K ⊆ Rp. Let A be an m-by-p matrix with independent rows Ai ∼ N (0, Ip) for any
i ∈ [m] . Consider

Z = sup
x∈K

∣∣∣∣ 1

m

m∑
i=1

∣∣〈Ai,x
〉∣∣−√ 2

π
‖x‖2

∣∣∣∣.
We have

Pr
{
Z ≥ 4

w(K)√
m

+ t
}
≤ 2 exp

(
− mt2

2d(K)2

)
, ∀ t > 0.

where d(K) = maxx∈K ‖x‖2.

Proof. See the proof of Lemma 2.1 in Plan & Vershynin (2014).

In order to connect `1 norm to Hamming distance, we need the following result.

Lemma C.3. Consider finite number of points K ⊆ Sp−1. Let A be an m-by-p matrix with independent rows Ai ∼
N (0, Ip) for any i ∈ [m] . Suppose

m ≥ 1

δ2
log |K|,

then we have

sup
x∈|K|

1

m

m∑
i=1

1

{∣∣〈Ai,x
〉∣∣ ≤ δ} ≤ 2δ.

with probability at least 1− exp(−δ2m).

Proof. Let X ∼ N (0, 1). For any fixed point x ∈ K and any i ∈ [m], we have

Pr(
∣∣〈Ai,x

〉∣∣ ≤ δ) = Pr(|X| ≤ δ) ≤ δ.

Let Zi = 1(
∣∣〈Ai,x

〉∣∣ ≤ δ), ∀ i ∈ [m]. Then by using Hoeffding’s inequality,

Pr(
1

m

m∑
i=1

Zi − E(Z1) > δ) ≤ exp(−2δ2m).

As E(Z1) = Pr(
∣∣〈Ai,x

〉∣∣ ≤ δ) ≤ δ, we conclude that with probability at least 1− exp(−2δ2m),

1

m

m∑
i=1

Zi ≤ 2δ.

By applying union bound over |K| points and setting m ≥ 1
δ2 log |K|, we complete the proof.

Now we are ready to prove Theorem 3.10.
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Proof of Theorem 3.10. We construct a δ-net of K that is denoted asNδ . We assume m & 1
δ2 log |Nδ|. Applying Proposi-

tion 2.2 and setting K = Nδ , we have that

sup
x,y∈Nδ

∣∣dA(x,y)− d(x,y)
∣∣ ≤ δ (C.2)

with probability at least 1− 2 exp(−δ2m).

For any two fixed points x,y ∈ K, let x1,y1 be their nearest points in Nδ . Then we have

|d(x,y)− dA(x,y)| ≤ |d(x,y)− d(x1,y1)|+ |d(x1,y1)− dA(x,y)|
(a)

≤ |d(x1,y1)− dA(x,y)|+ 2δ ≤ |dA(x1,y1)− dA(x,y)|+ |d(x1,y1)− dA(x1,y1)|+ 2δ

(b)

≤ |dA(x1,y1)− dA(x,y)|+ 3δ ≤ |dA(x1,y1)− dA(x1,y)|+ |dA(x1,y)− dA(x,y)|+ 3δ

(c)

≤ dA(y1,y) + dA(x1,x) + 3δ, (C.3)

where (a) follows from

|d(x,y)− d(x1,y1)| ≤ |d(x,y)− d(x1,y)|+ |d(x1,y)− d(x,y1)| ≤ d(x,x1) + d(x1,y1) ≤ 2δ,

step (b) follows from (C.2), step (c) follows from the triangle inequality of Hamming distance. Therefore we have

sup
x,y∈K

∣∣dA(x,y)− d(x,y)
∣∣ ≤ 2 sup

x1∈Nδ
sup
x∈K

‖x−x1‖2≤δ

dA(x,x1) + 3δ. (C.4)

Next we bound the tail term
T := sup

x1∈Nδ
sup
x∈K

‖x−x1‖2≤δ

dA(x,x1).

Recall that
K+
δ := K

⋃{
z ∈ Sp−1 : z =

x− y
‖x− y‖2

, ∀ x,y ∈ K if δ2 ≤ ‖x− y‖2 ≤ δ
}
.

Now we construct a δ-net for K+
δ \K denoted asN ′δ . For two distinct points x,y ∈ N ′δ

⋃
Nδ , let C(x,y) denote the unit

circle spanned by x,y. We construct δ2-net Cδ2(x,y) for each circle C(x,y). For simplicity, we just let Cδ2(x,y) be the
set of points that uniformly split C(x,y) with interval δ2. We thus have |Cδ2(x,y)| . 1

δ2 . Let Gδ denote the union of all
circle nets Cδ2(x,y) spanned by points in N ′δ

⋃
Nδ , namely

Gδ :=
⋃

∀ x,y∈N ′δ
⋃
Nδ

Cδ2(x,y) ∪ {x,y}.

For any point x ∈ K, we can always find a point in Gδ that is O(δ2) away from x. To see why the argument is true,
we first let x1 be the nearest point to x in Nδ . If ‖x − x1‖2 ≤ δ2, then x1 is the point we want. Otherwise, we have
δ2 ≤ ‖x − x1‖2 ≤ δ. In this case, we have (x − x1)/‖x − x1‖ ∈ K+. Following the definition of K+

δ , we can always
find a point x′1 ∈ N ′δ

⋃
Nδ such that ∥∥x′1 − x− x1

‖x− x1‖2
∥∥

2
≤ δ, (C.5)

thereby ∥∥x− (‖x− x1‖2x′1 + x1

)︸ ︷︷ ︸
z

∥∥
2
≤ δ‖x− x1‖2 ≤ δ2.

Note that ‖z‖2 is very close to 1 because

δ4 ≥ ‖x− z‖22 ≥ ‖z‖22 − 2
〈
z,x

〉
+ 1 ≥ ‖z‖22 − 2‖z‖2 + 1 = (‖z‖2 − 1)2.
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We thus have ∥∥x− z/‖z‖2∥∥2
≤ ‖x− z‖2 +

∥∥z − z/‖z‖2∥∥2
= ‖x− z‖2 +

∣∣‖z‖2 − 1
∣∣ ≤ 2δ2.

Note that z is in the unit circle C(x,x′1) spanned by x and x′1, thereby there exists u ∈ Cδ2(x1,x
′
1) such that ‖u−x‖2 ≤

δ2. Point u thus satisfies
‖x− u‖ ≤ ‖x− z‖2 + ‖z − u‖2 ≤ 3δ2. (C.6)

So for any x ∈ K and its nearest point x1 ∈ Nδ , we define u as

u :=

{
x1, ‖x− x1‖2 ≤ δ2;
argminv∈Cδ2 (x1,x′1) ‖x− v‖2, otherwise.

where x′1 ∈ Nδ
⋃
N ′δ and satisfies (C.5). Based on (C.6), we always have ‖u−x‖2 ≤ 3δ2 and ‖u−x1‖2 ≤ ‖u−x‖2 +

‖x− x1‖2 ≤ 2δ.

By triangle inequality of Hamming distance,

dA(x,x1) ≤ dA(x,u) + dA(u,x1).

We thus have

T ≤ sup
x1∈Nδ

sup
x∈K
‖x−x1‖2

dA(x,u) + dA(u,x1)

≤ sup
u∈Gδ

sup
x∈K

‖x−u‖2≤3δ2

dA(x,u)

︸ ︷︷ ︸
T1

+ sup
x,y∈Nδ

⋃
N ′δ

sup
u,v∈C(x,y)
‖u−v‖2≤2δ

dA(u,v)

︸ ︷︷ ︸
T2

.

Next we bound term T1 and T2 respectively.

Term T1. For a fixed point u ∈ Gδ , using Lemma C.2 by setting (K, t) in the statement to be K ′ = (K − {u})
⋂
{u ∈

Rp : ‖u‖2 ≤ 3δ2} and δ2 respectively yields that

Pr

{
sup
x∈K

‖x−u‖2≤3δ2

∣∣∣∣ 1

m

m∑
i=1

∣∣〈Ai,x− u
〉∣∣−√ 2

π
‖x− u‖2

∣∣∣∣ ≥ 4w(K ′)√
m

+ δ2

}

≤2 exp
(
− mδ4

2d(K ′)2

)
≤ 2 exp(−m/18).

Then with probability greater than 1− 2 exp(−m/18),

sup
x∈K

‖x−u‖2≤3δ2

1

m

m∑
i=1

∣∣〈Ai,x− u
〉∣∣ ≤ 3

√
2

π
δ2 + 4w(K ′)/

√
m+ δ2 ≤ 5δ2,

where the last inequality follows from the fact that w(K ′) . w(K) and our assumption m & w(K)2/δ4. We define event

E :=

{
sup
u∈Gδ

sup
x∈K

‖x−u‖2≤3δ2

1

m

m∑
i=1

∣∣〈Ai,x− u
〉∣∣ ≤ 5δ2

}
.

Applying union bound over all points in Gδ , we have

Pr(Ec) ≤ 2|Gδ| exp(−m/18) ≤ 2 exp(−m/36),

where the last inequality holds with m & log |Gδ|. Under condition event E happens, we have

sup
u∈Gδ

sup
x∈K

‖x−u‖2≤3δ2

1

m

m∑
i=1

1

{∣∣〈Ai,u− x
〉∣∣ ≤ 5δ

}
≥ 1− δ. (C.7)
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If sign
(
〈Ai,u

〉)
6= sign

(
〈Ai,x

〉)
, we must have

∣∣〈Ai,u
〉∣∣ ≤ ∣∣〈Ai,u− x

〉∣∣. We then have

T1 ≤ sup
u∈Gδ

sup
x∈K

‖x−u‖2≤3δ2

1

m

m∑
i=1

1

{∣∣〈Ai,u
〉∣∣ ≤ ∣∣〈Ai,u− x

〉∣∣}

≤ sup
u∈Gδ

1

m

m∑
i=1

1

{∣∣〈Ai,u
〉∣∣ ≤ 5δ

}
+ δ,

where the last inequality follows from (C.7). Using Lemma C.2 by setting K and δ in the statement to be Gδ and 5δ
respectively, we have that, when m ≥ c 1

δ2 log |Gδ| with some absolute constant c, the following inequality

sup
u∈Gδ

1

m

m∑
i=1

1

{∣∣〈Ai,u
〉∣∣ ≤ 5δ

}
≤ 10δ

holds with probability at least 1−exp(−25δ2m). Putting all ingredients together, we have T1 ≤ 11δ with high probability.

Term T2. There are at most |Nδ
⋃
N ′δ|2 different two-dimensional subspaces constructed from Nδ

⋃
N ′δ . Applying

Lemma C.1 and probabilistic union bound over all subspaces yields that

Pr

(
T2 ≥ (C + 2)δ

)
≤ 3
∣∣Nδ⋃N ′δ∣∣2 exp(−δ2m) ≤ 3 exp(−δ2m/2),

where the last inequality holds by setting m & 1
δ2 log |Nδ

⋃
N ′δ|.

Putting (C.4) and the upper bounds of term T together, we conclude that by choosing

m & max

{
w(K)2/δ4, log |Gδ|,

1

δ2
log |Nδ

⋃
N ′δ|
}
,

we have
sup

x,y∈K
|dA(x,y)− d(x,y)| . δ.

with probability at least 1− c1 exp(−c2δ2m) where c1, c2 are some absolute constants.

Using the fact that

|Gδ| .
1

δ2
|Nδ

⋃
N ′δ|

and
log |Nδ

⋃
N ′δ| .

1

δ2
w(Nδ

⋃
N ′δ)2 ≤ 1

δ2
w(K+

δ )2,

we complete the proof.

D. Proofs of Supporting Lemmas
D.1. Proof of Lemma 3.6

Proof. Recall that yi =
√

p
mΦ(ζ) · xi. We let

ŷi =
yi
‖yi‖2

, ŷj =
yj
‖yj‖2

.

From condition (3.6), we have
‖yi − ŷi‖2 ≤ δ, ‖yj − ŷj‖2 ≤ δ. (D.1)

Let θ = ∠(xi,xj), θ′ = ∠(ŷi, ŷj). Without loss of generality, we assume our set K = {xi}Ni=1 is symmetric, i.e., if
x ∈ K then −x ∈ K. Suppose we show for any two points xi,xj with

〈
xi,xj

〉
> 0, inequality (3.8) holds, then for

xi,xj with
〈
xi,xj

〉
< 0, we immediately have∣∣d(yi,yj)− d(xi,xj)

∣∣ =
∣∣1− d(yi,yj)−

(
1− d(xi,xj)

)∣∣ =
∣∣d(−yi,yj)− d(−xi,xj)

∣∣ ≤ Cδ.
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In the second equality, we use d(−x,y) + d(x,y) = 1, ∀ x,y ∈ Sp−1. In the last inequality, we use the fact that fast JL
transform

√
p
mΦ(ζ) is linear thus −yi =

√
p
mΦ(ζ)(−xi). Therefore, without loss of generality, we assume 〈xi,xj〉 ≥ 0

thus θ ≤ π
2 .

Now we turn to the following quantity∥∥ŷi − ŷj∥∥2
=
∥∥ŷi − yi + yi − yj + yj − ŷj

∥∥
2

≤
∥∥ŷi − yi∥∥2

+
∥∥ŷj − yj∥∥2

+
∥∥yi − yj∥∥2

≤ 2δ + ‖xi − xj‖2(1 + δ).

The last inequality follows from (D.1) and condition (3.7). Similarly, we also have∥∥ŷi − ŷj∥∥2
≥ ‖xi − xj‖(1− δ)− 2δ.

Using the fact that

sin
θ′

2
=

∥∥ŷi − ŷj∥∥2

2
, sin

θ

2
=

∥∥xi − xj∥∥2

2
,

we have ∣∣ sin θ′
2
− sin

θ

2

∣∣ =
∣∣∥∥ŷi − ŷj∥∥2

2
−
∥∥xi − xj∥∥2

2

∣∣ ≤ δ + δ

∥∥xi − xj∥∥2

2
≤ 2δ.

When δ <
√

3−
√

2
4 , we have

sin
θ′

2
≤ sin

θ

2
+

√
3−
√

2

2
≤
√

3

2
.

In the last inequality, we use sin θ
2 ≤

√
2

2 , ∀ θ ∈ [0, π/2]. So θ′/2 ∈ [0, π/3]. Using the fact that, for any two
θ, θ′ ∈ [0, π/3], there exists constant c such that∣∣ sin θ − sin θ′

∣∣ ≥ c∣∣θ − θ′∣∣,
we have that ∣∣θ

2
− θ′

2

∣∣ ≤ 1

c

∣∣ sin θ′
2
− sin

θ

2

∣∣ ≤ 2δ

c
.

Therefore, ∣∣d(yi,yj)− d(xi,xj)
∣∣ =

1

π

∣∣θ − θ′∣∣ ≤ Cδ.
In the case δ >

√
3−
√

2
4 , trivially we have

∣∣d(yi,yj)− d(xi,xj)
∣∣ ≤ 2 ≤ Cδ with constant C = 8√

3−
√

2
.

D.2. Proof of Lemma A.4

Proof. For positive semidefinite matrix M ∈ Rp×p with rank d, let λ1, λ2, ...λd be its positive eigenvalues. Using the
definition of Frobenius norm, we have

‖M‖2F =

d∑
i=1

λ2
i =

∑
i,j∈[n]

(Mi,j)
2 ≤ p+ (p2 − p)δ2

2 .

On the other hand, considering the trace of M, we can obtain

d∑
i=1

λi = Trace(M) ≥ p(1− δ1). (D.2)

Using Cauchy-Schwarz inequality, we have

(

d∑
i=1

λi)
2 ≤ d

d∑
i=1

λ2
i . (D.3)

Plugging (D.2) and (D.3) into the above inequality yields

d ≥ p(1− δ1)2

1 + (p− 1)δ2
2

.
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D.3. Proof of Lemma C.1

Proof. Without loss of any generality, we assume K = {x ∈ Sp−1 : supp(x) ⊆ {1, 2}}. We begin with constructing a
δ-net denoted as Nδ for set K. For simplicity, we can just let Nδ(K) be the set of points that split the circle spanned by
{e1, e2} uniformly. Therefore |Nδ(K)| = O( 1

δ ). Applying Proposition 2.2 gives us

sup
x,y∈Nδ

|dA(x,y)− d(x,y)| ≤ δ, (D.4)

holds with probability at least 1− 2 exp (−δ2m) when m & 1
δ2 log( 1

δ ).

For any point x ∈ K,
〈
Ai,x

〉
only depends on the first two coordinates of Ai. Therefore, for simplicity, we let A′i =

Ai�(e1+e2)
‖Ai�(e1+e2)‖2 , ∀ i ∈ [m]. For any point say x1 ∈ Nδ , using the uniform distribution of A′i, we have

Pr(
∣∣〈A′i,x1

〉∣∣ ≤ δ) . Cδ,

holds with some absolute constant C. Using Hoeffding’s inequality and probabilistic union bound over all points in Nδ ,
we have

Pr

(
sup
x∈Nδ

1

m

m∑
i=1

1
{∣∣〈Ai,x

〉∣∣ ≤ δ} > (C + 1)δ

)
≤ |Nδ| exp(−2δ2m) ≤ exp(−δ2m). (D.5)

The last inequality holds when m & 1
δ2 log 1

δ .

Now we consider any point x ∈ K. Suppose x1 is the closest point to x in Nδ . We note that if sign
(〈

A′i,x
〉)
6=

sign
(〈

A′i,x1

〉)
, then there exists λ ∈ [0, 1] such that〈

A′i, λx+ (1− λ)x1

〉
= 0.

We thus have ∣∣〈A′i,x1

〉∣∣ = λ
∣∣〈A′i,x− x1

〉∣∣ ≤ λ‖x− x1‖2 ≤ δ.
Further we obtain that

sup
x1∈Nδ

sup
x∈K

‖x−x1‖2≤δ

dA(x,x1) = sup
x1∈Nδ

sup
x∈K

‖x−x1‖2≤δ

1

m

m∑
i=1

1(sign
(〈

A′i,x
〉)
6= sign

(〈
A′i,x1

〉)
)

≤ sup
x1∈Nδ

1

m

m∑
i=1

1
{∣∣〈Ai,x1

〉∣∣ ≤ δ}.
Combining the above result with (D.5), we obtain that, with probability at least 1− exp(−δ2m),

sup
x1∈Nδ

sup
x∈K

‖x−x1‖2≤δ

dA(x,x1) ≤ (C + 1)δ. (D.6)

For any points x,y ∈ K, let x1,y1 be their nearest points in Nδ . We have

|d(x,y)− dA(x,y)| ≤ |d(x,y)− d(x1,y1)|+ |d(x1,y1)− dA(x,y)|
(a)

≤ |d(x1,y1)− dA(x,y)|+ 2δ ≤ |d(x1,y1)− dA(x1,y1)|+ |dA(x1,y1)− dA(x,y)|+ 2δ

(b)

≤ |dA(x1,y1)− dA(x,y)|+ 3δ ≤ |dA(x1,y1)− dA(x1,y)|+ |dA(x1,y)− dA(x,y)|+ 3δ

(c)

≤ dA(y1,y) + dA(x1,x) + 3δ
(d)

≤ (2C + 5)δ,

where (a) follows from

|d(x,y)− d(x1,y1)| ≤ |d(x,y)− d(x1,y)|+ |d(x1,y)− d(x,y1)| ≤ d(x,x1) + d(x1,y1) ≤ 2δ,

step (b) follows from (D.4), step (c) follows from the triangle inequality of Hamming distance, step (d) is from (D.6).


