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Appendix

A. Notation

N ={1,2,.., N} =: [N] is the whole set of data points. i, j € N denote points. d;; := D(x;, ;). D is the number of
data sets. Ty C N denotes the set of points in the d-th dataset, i.e. U(?Zﬂfi = N. N4 = |Tq| is the number of points in
Dataset d. d(i) € [D] denotes the dataset index of Point . M C N is the set of medoids. k,! € M denote clusters and
themselves are medoids. Sy is the set of points in Cluster k. Ny = |S/| is the number of points in Cluster k. M (i) € M
denotes the cluster/representative of Point . Let D, C [D] denote the data sets contained or partially contained in Cluster
k. Denote Sk,d := 8, N Tg ford € Dy,. Thus Udekak,d = Sy.. Denote Nk,d = |Sk.,d‘ for d € Dy,.

B. Proof of Theorem 1

Theorem 1 is a direct corollary of Theorem 2, by setting § = 0.

C. Proof of Theorem 2

First, the convex program (6) has same set of optimal solutions with the following linear program

wijz%lxigi,pfj szmw” +QZZCCLJ +)\Z§]

11_71 d=1 j=1

w;j < Caj, Vi € Tg
Wi j < gj, Vi € [N]

The KKT condition of the linear programming can be written as

dij — a; — Bi + 75 + 05 =0 (15)
0:§:@j (16)
1€Ta

A= % (17)

bij(wij — Caj) = (18)
Yij(wij — &) = (19)
aijwi; =0 (20)

ai; >0 Q1)
Yij = 0 (22)
5;; > 0. (23)

Our goal is to find a structure of d;;, for which there exists a set of a5, 3;, Vi, 015, 0 and A satisfying the above conditions
(with a5, 7ij,0;; strictly positive for binding constraints). Then a clustering {Sy }xea With such structure will be an
unique solution to (14). We will discuss the cases entry-by-entry.

C.1. fj = ].7 Cdj = ].7 W5 = 1
J=M(),; pme) =0
Yi,m () T 0 Mm@y = Bi — di @y, Vi (24)
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C.2. gj = 1, Cdj = 1, wij = 0

J € M,but j # M(i)
815 =0,7; =0= a;; =di; — 3 >0, i.e.,

Bi < dij, Vi€ Mbutj# M(i)and Dj N Dy # 0.

Summary of Section C.1 and C.2

We can set v; a(5) = ﬁ() such that Eq. (17) holds and 6; ar¢;) =

__ 0
Nircay,d(i)
A 0

= +
Nay  Namgy,de

Bi + di M)
C.3. gj =1, Cdj =0, wy; =0
j e M. butj # M(i)
vij = 0 = ayj = dij — B; + 0;5 > 0. Now we have
0ij > Bi — dij
51-]- >0

Thus
0="> 65> (Bi—dij)y, Vd¢DjjeM

1€Tq 1€Tg

If we set 3; — d;; < ﬁ) Eq. (27) will be satisfied. That is

A 0

0
+ +di,M(i)_di'<7
Nary  Nary,de) !

Nag)

C4. fj = 0, Cdj = O, Wi = 0

In this case, we have a; = di; — B; + 0;5 + 7i; > 0, that s,

Vij > Bi — dij — 0y

A= Z%j > Z(ﬁz —dij —6ij)+, VigM

0=> 6y, Vde[D],Vj¢M

1€Tq

such that Eq. (16) holds. Thus,

(25)

(26)

27)

(28)

(29)

(30)

€29

To analyze this case, we divide ¢ € [N] into three parts. The first part is the points in the same cluster as j denoted by
Shr(j)- The second part is the points who have sister points (sister points mean they belong to the same dataset) in Sy ;)
but themselves are not in Sy;(;), denoted by S r7(;) = (UdepM(j)E) \ Shr(jy- The third part is all the points who don’t

have sister points in Sy/(;), denoted by Sy ps(;) := Ude[D]\DM(j)Ti

A> Z (Bi — dij — dij) +

1€5M(5)
+ Z (Bi — dij — 6ij)+

iGSLM(J')

+ Y (Bi—dij— i)+

1€52, M (j)

(32)
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In the following we will show our strategy to make this inequality hold.
If we set d;; to be

0= > 6|, VdeDuygy)Vji¢gM
iGSM(j)ﬁd
(5”‘ =0, Vie Sl’JV[(j),vj ¢ M
0 , .
(51']‘ = Nd(i), Vi € 527M(j)7vj ¢ M

such that Eq. (16) is satisfied.
Further more, if we can get the following equations satisfied,

Bi —dij — 65 =2 0, Vi € Sny)
Bi — dij — 6ij <0, Vi € 81 n(j)
57; — dij — (5”' <0, Vie SQJ\J(j)

the only thing we need to show is

A> > (B —dij — biy)

1€5M(j)
A
= Z (Nf + di vy — dij)
i€Sug M0
It is equivalent to
S diay < Y dij,
iESM(]') iESNI(j)

which is satisfied by medoid definition.
In the following, we analyze the conditions under which the three inequalities of Eq. (36) hold.

First part i € Sy;(;) In this part we try to let 3; — d;; — d;; > 0. As 6;; > 0, we require
ﬂi — dij > 0, Vi € S]VI(j)

That is, for Vi, j s.t. M (i) = M (j),
A + 4 +d >d
i, M (3) i
Nariy  Nwgiya !

Then we can always find a §;; such that 0 < d;; < 8; — d;;. To satisfy Eq. (33), we require

0< Y Bi—dij, VdeDyk=DM(3)

iGSk,d
Equivalently, we have
Ng
A> =5 N iy — dyy, Y € Dy, V) € Si, Y
Nk’d 1€Sk,q

Second parti € S ps(;y Assetin Eq. (34), §;; = 0, we require
61’ — dij <0, Vi € Sl,M(j)
That is, for Vi, j s.t. Dy N Dag(yy # 0 and M (i) # M(j)

A 9
Ny Namgiy,de

+ di,M(i) < dij.

This requirement also implies Eq. (25) will hold.

(33)

(34)

(35)

(36)

(37

(38)

(39)
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Third part i € S, 57(;) For this part,

0 .
57; — dij < m, Vi € SQ,M(]‘)

That is, for Vi, j s.t. Dys(sy N Dag(y) = 0,

A 1 1
+6 ( - ) + di,M(i) < d;j, (40)
N NuGoy,aey Ny ’
This requirement also implies Eq. (28) will hold. ]

D. Proof of Proposition 1
Given the conditions in the proposition, we have

Do Wi+ AW floc 1
Do Wy + A [[W3 e 1

Do W3 + X[ W5 loo 1
Do Wi + X[ W1 [loo 1

(41)

IN AN

So we have
DoW; <DoWy
DoWy <Do WS

And under the unique optimum assumption, we have W7 = Wy'.
For the rest of the proof, we first prove that ||IW*(\)||o0,1 i @ non-increasing function. From Eq. (41),

A2[[W3 lloo,1 = Atl[W5 floo,1 < A2lWilloor = AW oo
that is,
(A2 = M) (W5 loor = W5 loo1) <0

Therefore, for any A1 < A9, we have |[W5||co,1 < ||[Wi|lco,1. Now for any A € [Aq, Ag], because ||[W*(A1)|co,1 =
[IW*(X2)]|o0,1, We have [[IW*(A)]|co,1 = ||W7||co,1, and further under the unique optimum assumption,

W*(A) = Wi

E. Proof of Proposition 2
According to Proposition 1, given ||W5||g = [|W1s]lg, we have W = W, and for any 6 € [01, 02], W*(A\1,0) = WSs.
Given ||[W5|oo,1 = [|Wis]lc0,1, We have, for any A € [A1, Ao], W* (A, 02) = Wi,

Now we prove for any (A, #) on the line between point (A1, ;) and point (e, 02) (defined by L12), W*(A, ) = W, We

can write

(A 0) = (1 = a)(A1,01) + a(A2,02)
= ()\1 +C¥()\27)\1),91+C((02701)) (42)

where « € [0, 1].
Define

fla, W) =DoW +0,[[Wllg + A [[W]lec 1
+a (b = 0)[Wllg + (A2 = A)[[Wlo.1)

If we see (2 — 61)|[W]lg + (A2 — A1)||W]|co,1 as the new regularization term, according to Proposition 1 and
argminy, f (0, W) = argminy, f(1, W), we have for any « € [0, 1], argminy, f (o, W) = W7
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So now we proved that the optimal solutions corresponding to the regularization parameters on the line £12 are identical.
For any

()\,9) € Conv (()\1, 6‘1), ()\1, 92)7 ()\2, 92)) s

we can find two points: one is A := (), f3) on the line between point (A1, 62) and (A2, 62); the otheris B := (A, /\’\22:/\’\1 01+
A’\2__>:\11 >) which is on the line £15. Similarly, we obtain that the optimal solutions corresponding to any points on the line
between points A and B are identical. Therefore, we finish the proof. |




