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1. Notations

Recall that the graph we analyzed contains n nodes and 7 clusters, and is generated according to the generalized stochastic
blockmodel. We let K; be the size of the ith cluster, K be the minimum cluster size, i.e., X = min; K;, and K* be the
size of the smallest cluster that contains at least one ordinary node. Therefore, edge (7, ;) is present in the graph with
probability p;; > p for every pair of nodes i, j that belong to the same cluster, and edge (i, j) is present in the graph with
probability g;; < g for every pair of nodes 7, j that are in different clusters. Note that the outliers in the graph do not belong
to any cluster.

Let USUT be the singular value decomposition of Y* and Pr(M) = UU'M + MUUT — UUTMUU be the
projection of M onto the row and column spaces of Y*, and let Py (M) = M — Pr(M). Let R be the support of
Y* ie, R = {(3,j) : ¥;j = 1}, C be the set of the edges connecting to the high confidence nodes, i.e., C = {(i,j) :
i or j is a high confidence node} and A be the support of A, i.e., A = {(¢,) : A;; = 1}. For a set of matrix indices €2,
we let Po(M) be the matrix whose (¢, j)th entry equals M;; if (¢, j) € Q or O otherwise. We let E be the matrix whose
entries are all ones.

2. Proof of Theorem 1

A= R {(r1.72).
= 7 = min{7, T
\/max{n—s K*Ylogn’ A= - b

In other words, “c 4” and “c 4-” in Equation (1) are replaced by Ac 4 and Ac 4, respectively. Recall that K = min; K; and

For clarity, we let

K* = min{ Kj : cluster 7 contains at least one ordinary node}. If all the nodes are high confident, we let K* = K without
loss of generality. Clearly, K* > K means that there exist some clusters whose nodes are all high confident. We denote the
set of the nodes in these clusters by N. Let H = {(4,7) : i or j € N'}. Obviously, H CC. LetE = {(¢,4) : i1 =1,--- ,n}
be the set of the diagonal entries. We first explore the sufficient conditions such that the true adjacent matrix Y* is the

unique optimal solution of (1). In the proofs, the constants may vary from line to line.

Lemma A-1. For any matrix X € R"*", Py PrPy X = 0 and Py PrPy-X = 0.

Proof. We need to show that support(Pr Py X) C H and support(PrPy<X) C H¢. Recall that Pr(M) = UU™M +
MUU' — UU'MUUT, since H is “symmetric”, namely, (i,j) € H implies (j,i) € H, we only need to show that
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support(UU T Py, X) C H and support(UU " Py, X) C H¢. For any (i,7) & H, suppose that i, j belong to clusters R(7)
and R(j), respectively. From the definition of #, we know that R(i), R(j) ¢ #, which implies that (k, j) ¢ H for all k
such that (i, k) € R(¢). Thus, we have

(UUTPyX)ij= > (UUT)(PyX)g; =0, for (i, ) ¢ H.
k:(i,k) € R(3)
Similarly, we can prove that (UU " P X);; = 0 for all (i, j) € H. O

Lemma A-2. (Y*, A —Y™) is the unique optimal solution of (1), if there exist matrices W1, Wy, and a positive number

€ < 0.5 such that (a) PyW1 = 0, Pye Wy = 0, (b) [[W1|| < 1,

| PrWsllse < fec and (d)

W2|| < %, (C) HPTW1||oo < %emin{)\cA,/\cAc,cc},

I (1—=€)Aca — Praancerne(UUT + W1) >0,
I —(1+e)cac — Praacncenns (UUT + W) >0,
111. —(1+ €e)Aca + Prenancense(W1) > 0,
IV. (1 —=e)Acac + Prenacncenne(W1) >0,
V. (1= €)ec — Proancome (UUT + W) >0,
VL. —(1+e€)cec — Praacncrne(UUT + W1) >0,
VII. —(1+ €)ee + Prenancnne(W1) >0,
VI (1 —¢€)ce + Prenacnenmns(W1) >0,
IX.  icc— Praann(UUT +Wy) >0,
X, —3cc— Praacrn(UUT + Wy) >0,
XI.  —3ce+ Prenann(W2) >0,
XII.  fce+ Prenacnn(Wa) >0,

Proof. When the conditions above are satisfied, we need to show that the following inequality holds for any Y and S such
that Y #Y*,0<Y <landY+S=A:

Opt £(|Y*||. 4+ Acal|PanceS*|[1 + Acae||PacnceS*||1 + cel|PeS* ||y
<||Yv||,.< + )\CAHPAOCCSHI + Ac_ACHPACﬂCCSHl + ccHPcS||1.

So we need to prove that

A2 [[[Y]l + AeallPanceSlt + Acac||PacneeS|1 + cel| PeS|1] —
(Y™« + Acal[PanceS™ [l1 + Acac || PacncS™ (|1 + cc || PeS™[|1]
= [ Y[« = [['Y"[l« + Aca([PanceS|l1 = [[PanceS™[|1)+
Acae([PacnceS|l — |PacnceS™[I1) + ce (|| PeSll — [ PeS™[|1)

=Xea ) (V=Yg Feas Y (Y- Y+

(i,j)€ANCe (i,5)€A°nCe
cc > (V=Y tce Y. Y=Y +IIY[.— Y[l >0
(i,7)€ANC (z,7)€AeNC

Let W = W, + Wy, then UUT + W — Pr(W) is a subgradient of f(X) = ||X||. at X = Y*, which implies that
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Y[« = Y*|l« > (UUT + W — Pr(W),Y — Y*). Hence we have

A>dea Y, (V5=Yi)+dea >, (Y —Yi)+

(i,5)€ANCe (i,j)€AenCe
cc Yy, (Y5-Yy)te Y, (Yy-YiH)+
(i,5)€ANC (i,j)€AenC

(UUT +W,Y - Y") + (—Pp(W),Y - Y")
By Lemma A-1 and Condition (d), we have

)\cAE (UUT + W), Parce(Y* = Y)) 4+ (=AcacE — (UUT + W), Paenee(Y* = Y))+
ccE— (UUT + W), Pgrc(Y* = Y)) + (—ccE — (UUT + W), Pgerc(Y* = Y))+
P( 1) = Pr(W2),Y = Y")
eACAE, Praance (Y = Y)) + (eAcAE, Preaance (Y — Y™)) + (eAcacE, Pragence (Y™ —Y))+

>(
(
(-
>
<€)\C_A<‘E Preaacnce(Y = Y* )) (eccB, Pracawe(Y* —Y)) + (eccE, Prencrue (Y — Y )+
<

ccE, Prou(Y" = Y)) + < ccE, Precp(Y = Y7)) + (—=Pr(W1) — Pr(W2), Y —Y")
:ﬁ)\CAHPAmca (Y = Y")[[s + eAcac|[Pacnee (Y = Y7) |1 + ecel| Perne (Y = Y7) |1+

Secll Pu(Y =)l + (~Pr(W2) — Pr(W2), Y — Y°)
>Xemin{ca, cae, cc | Pue(Y = Y7)[1 + %CC”PH(Y = Y)|1 = (Pr(W1), Y = Y*) = (Pr(W2),Y - Y")
=Aemin{ca, cac, ce | Pre (Y = Y7)[l1 + %CC”PH(Y = Y)|l1 = (Pr(W1), Pre(Y = Y7)) = (Pr(Wa2), Py (Y = Y7))
>(Aemin{ca, cac, cct — [[Pr(Wi)lloo) | Ppe (Y = Y7)[l1 + (%CC = [1Pr (Wa)lloo) [P (Y = Y™) 11

ZiAemm{CA,cAc7cc}HPHc(Y —Y")|:1+ ZCC”P'H(Y —Y")|; >0.

Hence we obtain this lemma. O

From the conditions in Theorem 1, we know that

)\ — Co cc = Co S Co — q c1
Vmax{n —s, K*}logn’ VKlogn — \/K*logn \/pl—q AK*
Lete = —/—=22— . ﬁ, we have the following two lemmas. For simplicity, we do not provide the explicit values for

t(1—t)
the constants c, cg, c1, ¢, 3, ¢+, cx used in the following proofs. One can easily verify that such constants exist, e.g.,

c3 > 512¢%, ¢, < W,C}( > %forc > 1.

1
Cc1 = 2000,02 = 1700 = 3048c2°

Lemma A-3. (@) t(1 — ) > 5% ()0 < e < 0.5, (c) (1+ €)= < (1-20) 15 (@) (1+ )7L < (1— )7L

Proof. Since %pj %q <t< %er iq, t(l—1t) > lrnin{t 1—1t} > é(p —q) > %\/p(l — q))\%* > é\/t(l — t)%,
(a) holds when 6}1 > c3. By choosing proper constants, e.g., - —2 < l , (b) follows from (a) directly. For (c), note that
—t > > /p(1 - q) g = 45p(1 — t)e. It can be eas11y verlﬁed that this implies (c) when £t > 32. Similarly,

t —q> p4 > op(1—t)e > 1g-t(1 — g)esince 1 — ¢ > 1(1 — ¢), which implies (d) when o2 32. O
Lemma A-4. p > 5% > c3 max{l‘;(i*", %}
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Proof. By Lemma A-3, p > t(1 — t) > 1555z > c3 max{ lc}?*", %} O

In the following parts, we will construct W; and Wy, to meet the conditions in Lemma A-2.

2.1. Construct W
We now construct W such that the conditions in Lemma A-2 are satisfied.

Step 1. Construct the dual certificate Wi: Welet Wi = Q1 + Q2 + Qs + Qq, where Q1, Q2, Q3, Q4 are defined as
follows:

—(UUY);;,  (i,j) e RNANHE
) SEUUT)y, () e RNCCNANHS
Qg = LouuT),, (,j) e RNCNANHE
0, otherwise
—(14+€)Acae, (3,7) ERNCNANHS
(14 eAeas, (6,§) ERNCTNANHE
Q2(4,5) = —(1+ €)ce, (i,j) e RNCNA°NHE
1;—1“(1+e)cc, (i,j) € RNCNANHE
0, otherwise
(14 €)Aca, (i,j) e RENCNANHENES
—E-(1+e)Aea, (6,5) € RENCENA NHENES
Qs(i,j) = (1+ e)ee, (i,j) € R°NCNANHE
—E2(1+e)ce,  (6,5) €RENCNANHE
0, otherwise
Quli.j) = (14+€e)rca, (i,j)eRNE

0, otherwise

It can be easily verified that E[Q;] = E[Q2] = E[Q3] = 0, and

1Qu(,7)] Q2 (i, j)| < max{

2)c e 2X
A 1 A 26@}.

1
< ) 52CC ) Q3 7’7] < max )
= b 1Qu(i. )] < max{ A

Note that 7 = min{7, 72} > % and ¢ < ¢ < p, by simple calculation, we have

Var[Qu (i, )] < ot < i, (i,5) € €
Var[Qu (i, 5)] < 2G5, (i,j)ec
Var[Qu(i, j)] < Peaclion) ¢ Wcae 0D - (j j) ¢ ce
Var[Qa (i, 5)] < 8¢z(1 —7), (i,j) €C
Var[Qs (i, j)] < At < Mreal, (i,j) € C°
Var[Qs(i, j)] < 8¢2(1—7), (i,j)ec
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Step 2. Bound ||W||: From Lemma A-5, the following inequalities hold with high probability:

1 on(l — —
Qi) < e Ogn*\/n( Ll Svlog”]

pK* K*Q pK*Z

2Xc e 4X2c3%,(1—t
Q2] < ¢ max{%,Qcc}logn—F \/871(%(1 -7)+(n— S)CAP() -y/logn

2\ 4X2c%t
Qs <c max{li_c’;ﬂcc}logn + \/Snc%(l —7)+ (n— s)% -y/logn
* _ Cco _ — Co -
Recall that K* > K > cglogn, A = o K*}logn, 1-7< CT o and c¢ N TR From Lemma A-4,
p > eyl %22, which implies that ¢ max{ 10§f7 log 21} < 7. On the other hand, p > c3 m , S0 C 2"1((1*27) + p@(_ﬁz .

v logn <c CK logn c3 log,n \/IOE - 16 Hence HQl”

Acac 1 /_t 1 A2 K* 1 _ co logn
To bound [|Qa, note that 252 = AL\ /3t < Ao < MIE < s and celogn = NCTTT

cmax{%,?c Hogn < {=. We also have (n — s)w = (n— s)% i (1 —t) < (n—s)A? < o
andnci(1—7) < COC’ which implies c\/SncC 1—=7)+(n-— )M Viogn < {5, so that [|Qz| < §. Similarly,
we can prove that ||Q3H < &. For [|Q4]|, note that (1 + €)Acq < 2Xcq = 2Xy /15 < 2)\\/t = < sbgn < - Hence

W< [Qull + 11Qall + 1Qsl + 1Qull < 3

Step 3. Bound || PrW 1 ||oo: Since [|[PrWi|loo = [[UUTW; + W, UUT —UU'W,UU | o, <3|[UUTW{||o0, we
only need to bound |[UUT W ||.. By Lemma A-6, the following inequalities hold with high probability

V@s(1 = 7)/E? 1 (n - 5)/(pK*?)) logn , logn

.
(UU Q)| <c o DI

2(1 — 4 _ 2 2F 1— 1 .
(UUTQy)y| < ¢ (\/(8566( 7)+4(n Kf)/\ i (1 —1t)/p)logn —|—max{2>\cA 20} - logn>

|(UUTQ3)ij| <e <\/(850g(1 —7)+4(n ;{f))@ci‘ct/(l —q))logn —|—maX{2)\CA,QCc} . logn>

We now show that these upper bounds are less than %e min{Ac4, Acqe,cc}. Since c¢c > A and min{ca,cqe} < 1,

%e min{Aca, Acge, cc} = %e min{Ac4, Ac 4 }. Note that

Co 1 1—-t¢ Co C2
>\ = )\. . . = > s
e t(1—t) AK* t tK* = K*
1 t
Acge =\ ——2 e 2

. . = > .
Jil—n A V1=t (-pk* = K

We now verify that all the terms in [(UU T Q1 );;], [(UU T Qz);;] and |(UU T Q3);;] are less than

* 2cclogn logn 2c¢ c s(1—71)
and K ZchKlogn,wehaveT—\/ = e S B o S F

2s(1—7)logn/K*? 2¢, \/S.scc 1—7)logn \/SCOCT co
that K- < K*3 < 18K* d K* S K* S 18K **

Since1—7 < ch

GK*'

e and scg(1—7) < 1 0;’ which implies
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For |(UUTQ1)U|,

logn logn 1 Co

= <
pK*2 — C3logn K*2 CgK* — 18K*7

\/(n—s)logn/(pK*2) - V/(n = s)logn/(cs(n — s)logn) _ 1 e
K~ = K JGK* = 18K+
For |(UUTQy)y;l,
Acaelogn Aoz t 1 /\logn 1 )\logn N2K*2 ~ Mlogn < 2 < _C
ol Aoy s S H1— 1) cs | a3 — yJeaK® ~ 18K*
17
\/(n—s)/\%Ac(l—t)logn/p \/)‘ (n—s)logn - ¢ - 5 < Az(n—s)logn< C _ _C
K* K* - K* - K* ~ 18K*’
For |(UUTQ3)U‘|,
Acglogn \o 1—1¢ 1 )\logn 1 )\logn NEK*2 A2logn < c? Co
ACAS T n- =
(1-qK* 8N T - 9K t1—1) cs Ve - JaKr - BBKY
-t ¢t
V(n—s)X2c%tlogn/(1 —q) - \/)‘Q(n_s)IOg”’T’Tq - A2(n —s)logn <l @
K* - K+ - K* - K* T 18K*’

For |(UU " Qy);;/, we know that |(UU T Qy);;| = 0. Hence we conclude that || PrW||oo < Semin{Aca, Acae, cc}.

Step 4. Verify Condition (c): From the construction of W, we know that the inequalities (IDIID(VI)(VIID) hold. We
now show that the other inequalities also hold. From Lemma A-3(c),

—-p

))\CAC(l_p)

1+l cao9l=t 14 < (1-2)\ea.

Thus, for (i,7) e RNANCNHS,

CAc(l—p) 1
D pK*

1
(UUT + W), = E(UUT)U + (14 €)X

Recall that e\c 4 >

2 K* , hence (I) holds. From Lemma A-3(d),

(1+e)1fq§(1—e) — 1+ )A%> —(1— )Acae,

1-t¢

which implies (IV). Since € < 0.5,
_ . o5
2 2y/Klogn = K*

On the other hand, since 7 > %, for (i,7) e RNANCNHE,

(1—e)ee >

5 3 5) 15 5

1—7
T .. P e —
(U + W)y < g (0t ee—— < pmtgee < g + i = oo
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and for (¢,7) € R°NA°NCNHS,
Wi(i,5)+ (1 —€)ece > (1—c¢
so (V) and (VIII) hold.

2.2. Construct Wy,

Yee — (14 €)ce L

Step 1. Construct the dual certificate Wo: We let Wy = Q3 4+ Q2 + Qgs, where Q1, Q2, Qg are defined as follows:

Qi (i, j) =

Q2(i,j) =

Q3(Za.])

—(UUM)y;,  (i,J) ERNANH
=n(UU)y, (,j) eRNANH
O’ (Z7J) EHC
—3cc,  (i,j) ERNANH
Moo, (i,j) ERNANH
0, (i,5) € H®
Sce, (i,j) ERENANH
~30-me (i,5) € RENATNH
0, (i,5) € H¢

It can be easily verified that E[Q;] = E[Q2] = E[Q3] = 0, and

1
Qi) < 2 1Q2(i, )] < 2ec, |Qs(4, )] < 2ec,

2(1—1)
2

Var[Qu (i5)] < =

Step 2. Bound |W3| and || PrW3||oc: From Lemma A-5, the following inequalities hold with high probability:

1Quf < e

1Qafl < ¢

1Qs] < ¢

Recall that 1 — 7 < CT%, K > cklogn and c¢

, Var[Qa(ij)] < 5cg (1 —7), Var[Qs(ij)] < 5cg(1— 7).

-logn
K

2n(1 — 7)logn
K2

2cc logn + \/Emcg(l -7) logn}

2cc logn + \/5716%(1 —7)log n}

Co

VKlogn”®

Thus, [W < [Qu] + [Qall + 1Qs]l < 3.

Since

|PrWslloo = [UUTW3 + W,oUU'" — UU W,LUU ' ||, < 3[[UUTW3||4, we only need to bound |[UU T W || .
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By Lemma A-6, the following inequalities hold with high probability

2n(1 —7)logn  logn
K? + K?

(UUTQu)y < ¢ (

5nci(l —7)logn  2cclogn
|(UUTQ2)”| <ec <\/ C(K ) + CK )

2(1 —
(UUT Qg < ¢ (V el - rlogn , e }(g”)

(UUTQ1)l, [(UUTQy);| and |(UU T Qs);;] are all less than +cc when c is large enough.

Since K > ck logn,

Step 3. Verify Condition (d): From the construction of W5, we know that the inequalities (X)(XI) hold. We now show
that the other inequalities also hold. Observe that

1 Co

5
g = ————— > —.
2¢¢ 2y/Klogn — K

On the other hand, since 7 > 2, for (i,j) e RN ANH,

(UUT +W),;; <

Son < _ 7
SIE T8 S Ik Tk T R

13 1-7 5 3 515 5
K2
and for (i,7) € R°NA°NH,

1 3 1—71 1 3 1
W1j+200 26@ 26c =2 2CC SCC 8CC707

so (IX) and (XII) hold.

2.3. The “Outlier-free” Case

The proofs in this setup are almost the same as above. Recall that K; is the size of the ¢th cluster and s; is the number of
high confidence nodes in the ith cluster. In this case, we just need to let

Co

A= .
\/max{K*,maxi{Zj#(Ki —si)}}logn
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For the dual certificate W1, we let W1 = Q1 + Q2 + Q3, where Q1, Q2, Q3 are defined as follows:

—(UU");;,  (i,j) e RNANHE
) SEUUT)y, () e RNCTNANHS
Q)= LnuuT)y, (ij) e RNCNANHS
0, otherwise
—(I+e)Acae, (4,4) e RNCNANHe
1;fi_”(l—i—e)/\cAc, (i,7j) eRNCNANHE
Qa(i,j) = —(1+ €)ce, (i,j) eRNCNANHE
1;—}(1+e)cc, (i,j) e RNCNANHE
0, otherwise
(1+€)Aea, (i,j) e RENCNANHE
—1‘1” (14+€)Aca, (5,5) e RENCENASNHSE
Qs(i,j) = (1+e)cc, (i,j) ERENCNANHE
—1;—;2(1+e)cc, (i,7) € RE*NCN A NHE
0, otherwise

The only difference is that we remove Q4 since there are no outliers. Similar to Lemma A-5 and Lemma A-6, from the

matrix Bernstein inequality, the followings hold with probability at least 1 — n~19:

Qill <ec log n + \/2”(1 —7) n max; {K; — s;} \/@]

pK* K* 2 pK*Q

2Xc 4e 4N2c%.(1—t
Q2 < ¢ max{&,Qcc}logn + \/Sncg(l —7) +max{K; — sl}M -+/logn
p v p

2\eq 4N2c2t
Qs < ¢ max{ QCC}logn—l— 8nci(1—7) —l—max{z —55)} 1 fA -+/logn |,
L J#i 4
and
25(1 — 7)/K** + max;{K; — s;}/(pK**))logn  Jogn
worauy<e [ L1 - S
pK*
(8sca(1 — 4 K — st (1—t 1 2Xc ge 1
(UUTQ, ”<c<\/ sca(1 — 7) + 4max;{ st ( )/p) Ogn—f—max{ Aca et 0gn>
K* P K*
8sc2(1 —7) +dmax;i{}_ ., (K; — s;)}A\2c¢%.t/(1 — q)) logn 2\ 1
‘(UU Q3 lj‘ < c \/ ];éK* +max{17f2v2cc} ' O}’?*’n
Since max;{K; — s;} < max;{>_;,(K; — s;)}, the terms max;{K; — s;} in these inequalities can be replaced by

max;{>_,;(/; — s;)}. Then one can prove the desired result easily by following the same calculation in Section 2.1.



A Divide and Conquer Framework for Distributed Graph Clustering

3. Proof of Theorem 2

Recall that the graph has n nodes, r clusters and n — 22:1 K; outliers. K is the minimum cluster size, i.e., X = min; K.
For clarity, the constants may vary from line to line.

Step 1. The n nodes are uniformly randomly separated into m groups which form m small graphs {g1, - - , gm }. For each
i € [n] and j € [m], node i is assigned to graph g; with probability =. For g € {g1,*- , gm}, let K7 be the number of
the nodes in the ith cluster that are assigned to graph g and let n be the number of nodes in g. Clearly, K and n9 are two
random variables whose expected values are E[K?] = £i and E[n9] = 2, respectively. From the Hoeffding’s inequality,

2
PHK?—4MK?H>t]<2em><—§?).

%

For constant p < 1, lett = K, then we have

(1+p)m
Ke 1—p (1-p)K; (1-p)PK
K9 — =i > 717( <92 TP i) <9 =),
H 21+ p)m } =T ( 21+ p)Pm?) = " TP\ Ta(T+ p)Pm?
In other words, Q(iii‘)}m K; < K; 9 < (13-:_5an holds with probability at least 1 — 2exp (—%). Similarly,
ﬁn <n? <55 + ) n holds with probability at least 1 — 2 exp ( %). By the union bound, we have
1+3p 3+p 1+3p 3+p
— K, <K/< _——K,fori e € oo ygmrand ———n<nf < —————n A-1
2(1+p)m 21+ p)m "9 € {91 9m} 21+ p)m 21+ p)m (A-D)

andmr—|—1<m"+1<n

hold with probability at least 1 — 2(mr + 1) exp (—M) Since m < 4(1+p) logn

2(14p)?
(A-1) holds with probability at least 1 — n =6

Step 2. After all the subgraphs are generated, we perform algorithm 2[ on each subgraph g€ {91, - ,9m}. Let S, be

the set of the recovered clusters in g. Since 2l is A-workable and 5 (iii’;mK < K] <5 a +p)mK for i € [r] holds with

high probability, we know that when (p, q) is in €(n/m, Ki/m,--- ,K,/m, )\,I), S, satisfies that 1) for each i € Z,

there exists C; € S, such that C; a subset of the ith cluster and |C;| 2 MK > Qdii’))m N K, and 2) for each cluster

C € 8;\U,ez Ci, we have |C| < minjez pAi K] < QEO’frp”) min;c7 \; K;, with probability at least 1 —n~2. By the union

bound, with probability at least 1 — n~!, all of S, , - - - , Sy, satisfy these two properties.

For each

T ( 3p+p” Lisp
min;ez A K; 2(1+p)m? 2(1+p)m/*
Sy €{Sq,, -+, Sy, }, after breaking up the clusters in Sy whose size is less than T', S, becomes

83:UCZ»U{{U}:VuEC,VCeSg\UCZ}.

In the “breaking up small clusters” step, note that threshold 7" satisfies

€T icT
Then for each C; € Sg, C; is uniformly randomly divided into [ clusters, namely, {C},--- ,C!}. Since w.h.p
1+3
ICi| > #mm)\ K, Viel,
2(1+p)m

by the Hoeffding’s inequality and the union bound, one can easily verify that for all Sg € {Sg1 g

0 0
,ng} andC; € S,



A Divide and Conquer Framework for Distributed Graph Clustering

(143p) min;ez N K;

the following inequality holds with probability at least 1 — n~6 when | < % S(TTp)m log 1 orl=1:
1+3p . .
o R e MK, Viel kell.
|CZ|74(1—|—p)mlrjnel%l 185, Vi € L, e 1]

Therefore, after the “breaking up small clusters” step, S, becomes

Sy=J UUcrusine.
]

i€ ke[l ieT

For simplicity, we use S, instead of Sgl in the following parts.

Step 3. We now analyze the properties of the fused graph. We view each cluster ¢/; in [ J;"; Sy, as a super node V;. If
|U;] > 1, V; is added into the “high confidence node” set H, which means V; is a high confidence node in the fused graph.
Otherwise, V; is an ordinary node. For two nodes V; and V;, we say “V; and V; are in the same cluster” if the nodes in ;
and U/; belong to the same cluster. From the construction of the edge between V; and V;, we know that when V; and V; are
both ordinary nodes, E;; = 1 with probability at least p if V; and V; are in the same cluster or I/;; = 1 with probability at
most ¢ otherwise. If one of V; and V; is a high confidence node, we compute

£ ZuGZAi Zueu_,» Auy
u€eU; veU;

Welet X 2 E(V;, V;)and Z £ > ueut; Zueuj 1. Clearly, V; and V; being in the same cluster means that E[A,,,] > p for
any v € U; and v € U;, which implies that E[X| > p. From the Hoeffding’s inequality, we have

P[|X — E[X]| > 0] < 2exp (—226%) < 2exp (— 130 in )\iKZﬂ?) .

2(1 + p)ml ez

Thus, X > p — 6 holds with probability at least 1 — 2 exp (fﬁ min;cz /\iKlp?). Similarly, V; and V; being in

different clusters means E[A,,] < ¢ for any u € U; and v € U;, which implies that E[X] < ¢. From the Hoeffding’s

inequality, we have X < ¢ + 6 holds with probability at least 1 — 2 exp (—2(11172)/;” min;ez A; Ki92).

In Algorithm 2, we set E;; = 1if X > ¢ or E;; = 0 otherwise. Hence from the analysis above, we know that E;; = 1

1+3p 7 mingez A K (p — t)2> if V; and V; are in the same cluster, while E;; = 1

with probability at least 1 — 2 exp (fm

with probability at most 2 exp (—% min;ez N K (t — q)z) if V; and Vj are in different clusters. Recall that ¢ €

1 3 3 1 . 1+p)mllog 2%
(dp+ 34, 3p+ 1q). Since p — g > e2\/ o2 f g, we have

1+3 K
Tél—Qexp( R/ min/\iKi(p—q)2> >1—c—,
n

3201 + p)yml iez

where ¢ and ¢, are universal constants. Then we have

E;; = 1 with probability at least p if V; and V; are ordinary and in the same cluster;

E;; = 1 with probability at most ¢ if V; and V; are ordinary and in different clusters;

E;; = 1 with probability at least 7 if V; or V; is high confident and they are in the same cluster;

E;; = 1 with probability at most 1 — 7 if V; or V} is high confident and they are in different clusters;

Step 4. We perform the graph clustering algorithm (1) on the fused graph G = (V, £). From the analysis above, we know
that the number of the high confidence nodes in G is at least ml|Z|, the size of the smallest cluster in G that contains no
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ordinary nodes is at least ml, the total number of the ordinary nodes in G is at most n — ieT \; K;, and the total number
of the nodes is at least mr. Let 7 be the set {i € Z : A; # 1}, then the size of the smallest cluster that contains at least one
ordinary node is at least S(m,!) = min{min;e 7{ml+ (1 — A\;) K;}, min;cz- K;}. From Theorem 1, if ml > ¢z logn and

_PT9 S oax V(=3 ez AiKi)logn [ logn
N . S(m, 1) "\ S, 1) [

then the clusters in graph G can be correctly recovered with probability at least 1 — (mr) =10,

K

4(1+/’) logn and

Overall, if cglogn < m <

p—q>max{01 rl_q)max{\/(n—%i(eni,)ggfﬁ)logn’ Sl(orile)}jcz\/( (1+p)n?llog% }

1+ 3p) min;ez A K;

hold, Algorithm 1 outputs the true clusters w.h.p. By minimizing the right hand side over /, we obtain this theorem.

4. Proof of Theorem 3

We use the same notation as that in the proof of Theorem 2.
Step 1. This step is similar to Step 1 in the proof of Theorem 2. The n nodes are uniformly randomly separated into m
groups which form m subgraphs {¢1, - - , g }- As shown above, we can prove that

143 3 143 3
+ P K <i[( forle[]ge{gl’...7gm}and ( + 14 9 < +p (A-z)

—_— ——n<nd < ——n
21+ p)m 21+ p)m 20+pm — T 2(1+pm

K
4(1+p) logn*

hold with probability at least 1 — n =6 since m <
Step 2. After the subgraphs are obtained, we perform algorithm 2( on each subgraph g € {g1,--- , gm }. Let S, be the set of
the recovered clusters in g. Since algorithm 2l is (X, Z, €)-pseudo-workable and z(ﬁi[))mK <K} < 50 +p)mK fore €
[r] holds with high probability, when (p, q) is in €(n/m, K1/m,--- , K,./m,X,Z,€), we know that with probability at
least 1 — n~2, S, satisfies that 1) for each i € Z, there exists C; € S, so that C; contains at least \; K7 nodes in the ith
cluster and at most €; K; 7 nodes not in the ith cluster, which implies that |C;| > \; K f > 1+3p N K, 2) for each cluster

2(14+p)m
Ces, \ U,z Ci» we have |C| < min;ez pA; K7 < 2?&%% min;e7 A; K;. By the union bound, with probability at least
1—n"tallof Sy, - ,S,, satisfy these two properties.

€ (0 ati), and each C; € S, is divided into |

C; are broken up to single nodes. By the Hoeffding’s inequality and

In the “breaking up small clusters” step, note that
clusters {C}, - -- ,C!} while the clusters in S, \

T
min;ez A\ K;

ieT
the union bound, we have forall S, € {S,,, -+, S,,. }and C; € S,
1+3p
crl > 7AK1,\1 €Lkell A3

holds with probability at least 1 — n =6 when [ < \/ % or [ = 1. Then after this step, S, becomes

= Uck {{u}:VueC,VCeSg\UCZ}.

i€L kel i€l

Step 3. In the “building the fused graph” step, we view each cluster ¢; in |J]*, S,, as a super node V. If [U4;] > 1, V;
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is added into the “high confidence node” set H, which means V; is a high confidence node. Otherwise, V; is an ordinary
node. For two nodes V; and V}, from the construction of the edge between V; and V;, we know that if V; and V; are both
ordinary nodes, then F;; = 1 with probability at least p if V; and V; are in the same cluster while E;; = 1 with probability
at most ¢ if V; and V} are in different clusters. If one of V; and V; is high confident, we compute

Zueui Zveuj A
ZuGMﬁ, ZUGU_]’ 1

E(VHVJ) =

Note that because 2 is (A, Z, €)-pseudo-workable, U; may contain some outliers when |{;| > 1. We denote the inlier and
outlier nodes in ¢; by U; and U, respectively. Suppose that the inlier nodes belong to the kth cluster, then from Inequality

(A-2) and (A-3), we know that |2/;| > _I+30 N\ K, and |L?Z| < €, K, hold with high probability.

4(1+p)ml 2(1+p)m

We first consider the case that V; and V; are in the same cluster, e.g., V;, V; belong to the kth cluster. Then

Cuew, Yve, A Tuen Yoe, Auw (1 G 1) |L?i|dj>_

EV;, V) > ——usth =ve > v el
T (U] + ) () + ) A

(2 7 AT 7A

u| |t 2(3+p)  exl ee l
< q )\k | Uil . el < Oerl
Since [ mingez £¥, we have 06 ;] = 1+3p " e =

< 1, which implies that

~ 1 s v ’,Auv
BV V) > 2uetl; 2vell, (1 186kl> .

— — — max
|Z/{1||Z/{]| kel )\k

From the Hoeffding’s inequality, one can easily verify that E(V;, V; i) > (p—90) (1 — MaXkeT ekl) holds with probability

at least 1 — 2 exp (—m min;ez \; K;0 )

Similarly, when V; and V; are in different clusters, we have
S et 2overt; Auwo + UG+ UG | + 11U | X e Svers, Auo 18¢

B(V;,V;) < l ~ 177 < — + max
’ s[5 s[5 k€L A

186kl

From the Hoeffding’s inequality, we know that E(%, Vi) < ¢+ 0 + maxger holds with probability at least 1 —

2 exp (—% min;ez A\ K0 )

Let ¢ £ maxyer 186” . Since | < Bl minger —, p < 4(p q), which implies that the inequality 1p+3¢q+¢ < (3p+
4q)( ®) hold. Therefore there ex1sts t such that 4p+ 4q+g0 <t< (4p—|— 4q)(l —¢). In Algorithm 2, we set F;; = 1

if X > tor E;; = 0 otherwise. Hence F;; = 1 with probability at least 1 — 2 exp (_z(%i)pml min;ez A K;(p — ﬁﬁ)

if V; and V; are in the same cluster, while £;; = 1 with probability at most 2 exp ( (1173)% min;ez A K (6 —q — <p)2)
if V; and V; are in different clusters. Since %p + %q +p<t< (%p + %Q)(l — ), we have
3

Lor3e<c b <3 matpt 3g<i—e<3psl
“p+-qg< — < - an —c .
Prgas s gt e and gptgg UL

(14-p)mllog £

(143p) min; ez \; K;° we have

Whenp — q > co

1 K
TA12exp< +3p mln)\K(p q))ElcT,
n

32(1 + p)ml iez

where ¢, and ¢, are universal constants. Hence we have
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e [;; = 1 with probability at least p if V; and V}; are ordinary and in the same cluster;
e [;; = 1 with probability at most ¢ if V; and V; are ordinary and in different clusters;

e [;; = 1 with probability at least 7 if V; or V; is high confident and the inlier nodes of If; and U{; are in the same

cluster;

e [;; = 1 with probability at most 1 — 7 if V; or V; is high confident and the inlier nodes of {; and I{; are in different

clusters;

Step 4. We run the graph clustering algorithm (1) on the fused graph G = (V, £). From the analysis above, we know that
the number of the high confidence nodes in G is at least mi|Z|, the size of the smallest cluster in G that contains no ordinary
nodes is at least m/, the total number of the ordinary nodes in G is at most n—> ser Mil<;, and the total number of the nodes
is at least mr. Let J be the set {i € Z : A\; # 1}, then the size of the smallest cluster that contains at least one ordinary
node is at least S(m, ) = min{min;e 7{ml + [(1 — X)) Ki — 3" 7 ;2 €, K]+ }, max{min;eze K; — 3,7 €; K5, 11}

From Theorem 1, if ml > c3logn and

Vol —q) S(m,1) "\ S(m, 1)

then the clusters in graph G can be correctly recovered with probability at least 1 — (mr)~

P—7 > max{\/(nziﬂ)‘iKi)lOgn logn }7

10

Overall, if c3logn < m < =2, /XK and

4(1+p) \/ logn

Vi =>_  MK;i)logn logn (14 p)ymllog 7 €
PN N i= 72 max &
P q—mw{q M @m“{ S(m, 1) NS, ) [\ U+ 3p) mimgez MK, 0L A

hold, the output of Algorithm 1 contains at most Y .;_, €; K; misclassified nodes.

5. Proof of Corollary 1

Since algorithm 2 recovers clusters by solving (1) with C = ), we have that 2 is (1, [r])-workable with p = 0 and set €
defined by

c={(pq): p—q >c\/nlogn
g F

where K is the size of the smallest cluster in the graph and c; is a universal constant.

Then from Theorem 2,we know that in order to recover the true clusters, (p, ¢) should satisfy

pP—q > ¢ vmnlogn
2 cl .
V(1 —q) K

and
P — ¢ > min max {C1\/}ﬂmax { Vin— Z‘gi(izl)E;Ki)logn’ \/Sl(ongznl) } ,CQ\/( (1 + pymilog 7 }

1+ 3p) miniEI /\zKl
) (1+ p)mllog % [mlog 2=
= min ¢y - = o\ ——=.
I>i>1 (1 + 3p) min;ez M K; K

Hence we obtain Corollary 1.

Y
v
Y
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6. Proof of Corollary 2
Recall that algorithm 2 recovers clusters by solving (1) with C = (). For a graph containing n nodes and r clusters with
size {K1,-- -, K, }, we define

p(1—q)n

1—
u= c;),ilog2 n, and [ = C4M
p—

p—q
Let /C,, be the set of the clusters whose sizes are greater than or equal to u and C; be the set of the clusters whose sizes
are less than or equal to /. Let Y™ be the true adjacent matrix, then by Theorem 1 in (Ailon et al., 2013), if each cluster is
included in either XC,, or K, then (Y, A - Y) is an optimal solution of (1) with probability at least 1 — n =2, where Y is
defined as
(i) Y*(4,7), node i and j belongs to the same cluster in &,
nLJ) =
0, otherwise.
LetZ = {i : K; > u} and A be a vector whose entry A\; = 1if i € Z or 0 otherwise. The conditions above related to (p, q)
is denoted by €(n, K1, -+, K., A\, Z). Clearly, 2 is (A, Z)-workable with p = 0 and set €(n, K1, -+ , K., A\, Z).

From Theorem 2, in order to recover the true clusters, (p, ¢) should be in €(n, K1 /m, - -+ , K,/m, X, T), which means that
for all ¢ € [r], either K; > u or K; < [ where

1— 1—
g YPLZ DM o nd ) = o VP = O

p—q p—q

Besides, (p, ¢) should also satisfy

P —¢ = min max {clmmw { vin- %i(eéjgl(i) 1Ogn7 \/Slé)rifll) } >C2\/ hx p)@l o8 i¢ } ;

(14 3p) min;ez N\ K;
(A-4)
where S(m, 1) = min{min;cz.,21{ml + (1 — X;) K; }, min;eze K, }. Since 2 is (A, Z)-workable, (A-4) becomes

VS iere Kil 1 log 7
p_quaX{cl /7(1_qmax{ i€z (_)g”\/ ogn }’Cz\/m}

min;cze K min;ecze K, min;cz K;

.. K;logn 1 log &
maX{C1 p(IQ)max{\/zzezK & ,\/O[in},mﬂnzln;i};(i}

1-— . LKZI — — 2 11 .
K>max{61\/1)( 9) 2icze Kilogn  5p(1 Q)logn}jandm<(p ¢)° minez K

,C
p—q Y (p—q)? 3 log 7

which implies that

Besides, m should also satisfy c3logn < m < % . Hence, by combining these inequalities together, we obtain this

log n°
corollary.

7. Proof of Theorem 4

It requires O(f(;%)m) computation and O(g(.=)m) memory for 2 recovering the clusters in the subgraphs. From the
proof of Theorem 3, we know that the size of the fused graph is O(mri+n—3,_; A\;K;). Thus, recovering clusters in the
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fused graph by solving (1) needs O((mrl +n — Y, .7 \iK;)*) computation and O((mrl 4+ n — >, .7 X\;K;)?) memory.
Hence we obtain this theorem.

8. Useful Lemmas
The following two lemmas are derived from the matrix Bernstein inequality (Tropp, 2012).
Theorem A-1. (Matrix Bernstein, (Tropp, 2012)) Let X1, - - - , X,, be independent random matrices with common dimen-
sion di X do. Assume that each matrix has bounded deviation from its mean:
IXr — EXg|| < Rforeachk=1,---,n
Form the sum Z. = Zzzl Xy, and introduce a variance parameter

0® = max{||E[(Z — EZ)(Z — EZ)"]||, |[E[(Z - EZ) " (Z — EZ)]||},

then

—2/2
Pl|Z —EZ|| > t] < (d1 + d —_ .
12 - 521 > 1 < @ + d)exw (s )

Lemma A-5. Suppose W is a n X n random matrix whose entries are independent random variables satisfying that
E[W] =0 < b, Var[W;;] < oi for (i,j) € C and Var[W;;] < o} for (i, j) € CC, then the following inequality
holds with probability at least 1 — n~19:

W] <e¢ (blogn + \/(na(z) + (n — s)o?)log n)

where c is a universal constant.

Proof. Let e; be the ith standard basis vector, then

W EW Z Wz]ez ZXW

i,j

Thus, || X;;]| = |W;;| < bforall (4, j). Since the entries of W are independent,
[E[(W —EW)(W = H]EZW%Ze eje; |

<IE Y Wiee e/ | +E D W2ele eje] || < (n—s)o? + nos,
(i,5)€Ce (i,5)€C

where the last inequality follows from the definition of the high confidence nodes and the fact that the number of the high

confidence nodes is s. Then from the matrix Bernstein inequality, there exists a universal constant c such that

IW—-EW| <c <b10gn + \/(nag + (n — s)o?)log n)
holds with probability at least 1 — n =10, O

Lemma A-6. Suppose W is a n X n random matrix whose entries are independent random variables satisfying that 1)
E[W] = 0; 2) max;; |W;;| < by and Var[W;;] < o2 for (i,j) € C; 3) max;; |Wi;| < by and Var[W;;] < o% for
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(i,7) € CC, then the following inequality holds with probability at least 1 — n~10;

2
UUTW)..| < \/M;(Tgn + lfcégna all the nodes in R(i) are high confident
|( )Ul = \/(sag—i-(n—s)af)logn max{bo,b1} logn )
K~ + o , otherwise

where c is a universal constant and R(1) is the cluster that node i belongs to.

Proof. Suppose cluster R(7) contains K (i) nodes, then
1
UU' W), = —— Wi
3':(4,5")ER(3)
If all the nodes in cluster R(7) are high confident, then
Z E[Wizj,} = K(i)oj < nog.

3":(1,5")ER(?)

Otherwise, suppose that cluster R(7) contains ¢(¢) high confidence nodes, then
> EW3] = (K(i) - c(i)o? + c(i)og < sog + (n— s)oi.
J':(4,5")ER(3)

By the standard Bernstein inequality, we can obtain this theorem. O
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