
A Divide and Conquer Framework for Distributed Graph Clustering

Wenzhuo Yang A0096049@NUS.EDU.SG

Department of Mechanical Engineering, National University of Singapore, Singapore 117576

Huan Xu MPEXUH@NUS.EDU.SG

Department of Mechanical Engineering, National University of Singapore, Singapore 117576

1. Notations

Recall that the graph we analyzed contains n nodes and r clusters, and is generated according to the generalized stochastic
blockmodel. We let Ki be the size of the ith cluster, K be the minimum cluster size, i.e., K = mini Ki, and K∗ be the
size of the smallest cluster that contains at least one ordinary node. Therefore, edge (i, j) is present in the graph with
probability pij ≥ p for every pair of nodes i, j that belong to the same cluster, and edge (i, j) is present in the graph with
probability qij ≤ q for every pair of nodes i, j that are in different clusters. Note that the outliers in the graph do not belong
to any cluster.

Let UΣU⊤ be the singular value decomposition of Y∗ and PT (M) = UU⊤M + MUU⊤ − UU⊤MUU⊤ be the
projection of M onto the row and column spaces of Y∗, and let PT⊥(M) = M − PT (M). Let R be the support of
Y∗, i.e., R = {(i, j) : Y ∗

ij = 1}, C be the set of the edges connecting to the high confidence nodes, i.e., C = {(i, j) :

i or j is a high confidence node} and A be the support of A, i.e., A = {(i, j) : Aij = 1}. For a set of matrix indices Ω,
we let PΩ(M) be the matrix whose (i, j)th entry equals Mij if (i, j) ∈ Ω or 0 otherwise. We let E be the matrix whose
entries are all ones.

2. Proof of Theorem 1

For clarity, we let

λ =
c0√

max{n− s,K∗} log n
, cA =

√
1− t

t
, cAc =

√
t

1− t
, τ = min{τ1, τ2}.

In other words, “cA” and “cAc” in Equation (1) are replaced by λcA and λcAc , respectively. Recall that K = mini Ki and
K∗ = min{Ki : cluster i contains at least one ordinary node}. If all the nodes are high confident, we let K∗ = K without
loss of generality. Clearly, K∗ > K means that there exist some clusters whose nodes are all high confident. We denote the
set of the nodes in these clusters by N . Let H = {(i, j) : i or j ∈ N}. Obviously, H ⊆ C. Let E = {(i, i) : i = 1, · · · , n}
be the set of the diagonal entries. We first explore the sufficient conditions such that the true adjacent matrix Y∗ is the
unique optimal solution of (1). In the proofs, the constants may vary from line to line.

Lemma A-1. For any matrix X ∈ Rn×n, PHcPTPHX = 0 and PHPTPHcX = 0.

Proof. We need to show that support(PTPHX) ⊆ H and support(PTPHcX) ⊆ Hc. Recall that PT (M) = UU⊤M +

MUU⊤ − UU⊤MUU⊤, since H is “symmetric”, namely, (i, j) ∈ H implies (j, i) ∈ H, we only need to show that

A Divide and Conquer Framework for Distributed Graph Clustering

support(UU⊤PHX) ⊆ H and support(UU⊤PHcX) ⊆ Hc. For any (i, j) ̸∈ H, suppose that i, j belong to clusters R(i)

and R(j), respectively. From the definition of H, we know that R(i), R(j) ̸⊆ H, which implies that (k, j) ̸∈ H for all k
such that (i, k) ∈ R(i). Thus, we have

(UU⊤PHX)ij =
∑

k:(i,k)∈R(i)

(UU⊤)ik(PHX)kj = 0, for (i, j) ̸∈ H.

Similarly, we can prove that (UU⊤PHcX)ij = 0 for all (i, j) ∈ H.

Lemma A-2. (Y∗, A−Y∗) is the unique optimal solution of (1), if there exist matrices W1,W2 and a positive number
ϵ < 0.5 such that (a) PHW1 = 0, PHcW2 = 0, (b) ∥W1∥ ≤ 1

2 , ∥W2∥ ≤ 1
2 , (c) ∥PTW1∥∞ ≤ 1

2ϵmin{λcA, λcAc , cC},
∥PTW2∥∞ ≤ 1

4cC and (d)

I. (1− ϵ)λcA − PR∩A∩Cc∩Hc(UU⊤ +W1) ≥ 0,

II. −(1 + ϵ)λcAc − PR∩Ac∩Cc∩Hc(UU⊤ +W1) ≥ 0,

III. −(1 + ϵ)λcA + PRc∩A∩Cc∩Hc(W1) ≥ 0,

IV. (1− ϵ)λcAc + PRc∩Ac∩Cc∩Hc(W1) ≥ 0,

V. (1− ϵ)cC − PR∩A∩C∩Hc(UU⊤ +W1) ≥ 0,

VI. −(1 + ϵ)cC − PR∩Ac∩C∩Hc(UU⊤ +W1) ≥ 0,

VII. −(1 + ϵ)cC + PRc∩A∩C∩Hc(W1) ≥ 0,

VIII. (1− ϵ)cC + PRc∩Ac∩C∩Hc(W1) ≥ 0,

IX. 1
2cC − PR∩A∩H(UU⊤ +W2) ≥ 0,

X. − 3
2cC − PR∩Ac∩H(UU⊤ +W2) ≥ 0,

XI. − 3
2cC + PRc∩A∩H(W2) ≥ 0,

XII. 1
2cC + PRc∩Ac∩H(W2) ≥ 0,

Proof. When the conditions above are satisfied, we need to show that the following inequality holds for any Y and S such
that Y ̸= Y∗, 0 ≤ Y ≤ 1 and Y + S = A:

Opt ≜∥Y∗∥∗ + λcA∥PA∩CcS∗∥1 + λcAc∥PAc∩CcS∗∥1 + cC∥PCS
∗∥1

<∥Y∥∗ + λcA∥PA∩CcS∥1 + λcAc∥PAc∩CcS∥1 + cC∥PCS∥1.

So we need to prove that

∆ ≜ [∥Y∥∗ + λcA∥PA∩CcS∥1 + λcAc∥PAc∩CcS∥1 + cC∥PCS∥1]−

[∥Y∗∥∗ + λcA∥PA∩CcS∗∥1 + λcAc∥PAc∩CcS∗∥1 + cC∥PCS
∗∥1]

= ∥Y∥∗ − ∥Y∗∥∗ + λcA(∥PA∩CcS∥1 − ∥PA∩CcS∗∥1)+

λcAc(∥PAc∩CcS∥1 − ∥PAc∩CcS∗∥1) + cC(∥PCS∥1 − ∥PCS
∗∥1)

= λcA
∑

(i,j)∈A∩Cc

(Y ∗
ij − Yij) + λcAc

∑
(i,j)∈Ac∩Cc

(Yij − Y ∗
ij)+

cC
∑

(i,j)∈A∩C

(Y ∗
ij − Yij) + cC

∑
(i,j)∈Ac∩C

(Yij − Y ∗
ij) + ∥Y∥∗ − ∥Y∗∥∗ > 0

Let W = W1 + W2, then UU⊤ + W − PT (W) is a subgradient of f(X) = ∥X∥∗ at X = Y∗, which implies that

A Divide and Conquer Framework for Distributed Graph Clustering

∥Y∥∗ − ∥Y∗∥∗ ≥ ⟨UU⊤ +W − PT (W),Y −Y∗⟩. Hence we have

∆ ≥ λcA
∑

(i,j)∈A∩Cc

(Y ∗
ij − Yij) + λcAc

∑
(i,j)∈Ac∩Cc

(Yij − Y ∗
ij)+

cC
∑

(i,j)∈A∩C

(Y ∗
ij − Yij) + cC

∑
(i,j)∈Ac∩C

(Yij − Y ∗
ij)+

⟨UU⊤ +W,Y −Y∗⟩+ ⟨−PT (W),Y −Y∗⟩

By Lemma A-1 and Condition (d), we have

∆ ≥⟨λcAE− (UU⊤ +W), PA∩Cc(Y∗ −Y)⟩+ ⟨−λcAcE− (UU⊤ +W), PAc∩Cc(Y∗ −Y)⟩+

⟨cCE− (UU⊤ +W), PA∩C(Y
∗ −Y)⟩+ ⟨−cCE− (UU⊤ +W), PAc∩C(Y

∗ −Y)⟩+

⟨−PT (W1)− PT (W2),Y −Y∗⟩

≥⟨ϵλcAE, PR∩A∩Cc(Y∗ −Y)⟩+ ⟨ϵλcAE, PRc∩A∩Cc(Y −Y∗)⟩+ ⟨ϵλcAcE, PR∩Ac∩Cc(Y∗ −Y)⟩+

⟨ϵλcAcE, PRc∩Ac∩Cc(Y −Y∗)⟩+ ⟨ϵcCE, PR∩C∩Hc(Y∗ −Y)⟩+ ⟨ϵcCE, PRc∩C∩Hc(Y −Y∗)⟩+

⟨1
2
cCE, PR∩H(Y∗ −Y)⟩+ ⟨1

2
cCE, PRc∩H(Y −Y∗)⟩+ ⟨−PT (W1)− PT (W2),Y −Y∗⟩

=ϵλcA∥PA∩Cc(Y −Y∗)∥1 + ϵλcAc∥PAc∩Cc(Y −Y∗)∥1 + ϵcC∥PC∩Hc(Y −Y∗)∥1+
1

2
cC∥PH(Y −Y∗)∥1 + ⟨−PT (W1)− PT (W2),Y −Y∗⟩

≥λϵmin{cA, cAc , cC}∥PHc(Y −Y∗)∥1 +
1

2
cC∥PH(Y −Y∗)∥1 − ⟨PT (W1),Y −Y∗⟩ − ⟨PT (W2),Y −Y∗⟩

=λϵmin{cA, cAc , cC}∥PHc(Y −Y∗)∥1 +
1

2
cC∥PH(Y −Y∗)∥1 − ⟨PT (W1), PHc(Y −Y∗)⟩ − ⟨PT (W2), PH(Y −Y∗)⟩

≥(λϵmin{cA, cAc , cC} − ∥PT (W1)∥∞)∥PHc(Y −Y∗)∥1 + (
1

2
cC − ∥PT (W2)∥∞)∥PH(Y −Y∗)∥1

≥1

2
λϵmin{cA, cAc , cC}∥PHc(Y −Y∗)∥1 +

1

4
cC∥PH(Y −Y∗)∥1 > 0.

Hence we obtain this lemma.

From the conditions in Theorem 1, we know that

λ =
c0√

max{n− s,K∗} log n
, cC =

c0√
K log n

≥ c0√
K∗ log n

and
p− q√
p(1− q)

≥ c1
λK∗ .

Let ϵ = c2√
t(1−t)

· 1
λK∗ , we have the following two lemmas. For simplicity, we do not provide the explicit values for

the constants c, c0, c1, c2, c3, cτ , cK used in the following proofs. One can easily verify that such constants exist, e.g.,
c1 = 200c, c2 = 1, c0 = 1

2048c2 , c3 ≥ 512c2, cτ ≤ 1
4096c2 , cK ≥ 1

8 for c ≥ 1.

Lemma A-3. (a) t(1− t) ≥ c3
λ2K∗2 ; (b) 0 < ϵ < 0.5; (c) (1 + ϵ) 1−p

p ≤ (1− 2ϵ) 1−t
t ; (d) (1 + ϵ) q

1−q ≤ (1− ϵ) t
1−t .

Proof. Since 1
4p+

3
4q ≤ t ≤ 3

4p+
1
4q, t(1− t) ≥ 1

2 min{t, 1− t} ≥ 1
8 (p− q) ≥ 1

8

√
p(1− q) c1

λK∗ ≥ 1
8

√
t(1− t) c1

λK∗ ,

(a) holds when c21
64 ≥ c3. By choosing proper constants, e.g., c22

c3
≤ 1

4 , (b) follows from (a) directly. For (c), note that
p − t ≥ p−q

4 ≥
√

p(1− q) c1
4λK∗ ≥ c1

4c2
p(1 − t)ϵ. It can be easily verified that this implies (c) when c1

c2
≥ 32. Similarly,

t− q ≥ p−q
4 ≥ c1

4c2
p(1− t)ϵ ≥ c1

16c2
t(1− q)ϵ since 1− t ≥ 1

4 (1− q), which implies (d) when c1
c2

≥ 32.

Lemma A-4. p ≥ c3
λ2K∗2 ≥ c3 max{ logn

K∗ , (n−s) logn
K∗2 }.

A Divide and Conquer Framework for Distributed Graph Clustering

Proof. By Lemma A-3, p ≥ t(1− t) ≥ c3
λ2K∗2 ≥ c3 max{ logn

K∗ , (n−s) logn
K∗2 }.

In the following parts, we will construct W1 and W2 to meet the conditions in Lemma A-2.

2.1. Construct W1

We now construct W1 such that the conditions in Lemma A-2 are satisfied.

Step 1. Construct the dual certificate W1: We let W1 = Q1 +Q2 +Q3 +Q4, where Q1,Q2,Q3,Q4 are defined as
follows:

Q1(i, j) =


−(UU⊤)ij , (i, j) ∈ R ∩Ac ∩Hc

1−pij

pij
(UU⊤)ij , (i, j) ∈ R ∩ Cc ∩ A ∩Hc

1−τ1
τ1

(UU⊤)ij , (i, j) ∈ R ∩ C ∩ A ∩Hc

0, otherwise

Q2(i, j) =



−(1 + ϵ)λcAc , (i, j) ∈ R ∩ Cc ∩ Ac ∩Hc

1−pij

pij
(1 + ϵ)λcAc , (i, j) ∈ R ∩ Cc ∩ A ∩Hc

−(1 + ϵ)cC , (i, j) ∈ R ∩ C ∩ Ac ∩Hc

1−τ1
τ1

(1 + ϵ)cC , (i, j) ∈ R ∩ C ∩ A ∩Hc

0, otherwise

Q3(i, j) =



(1 + ϵ)λcA, (i, j) ∈ Rc ∩ Cc ∩ A ∩Hc ∩ Ec

− qij
1−qij

(1 + ϵ)λcA, (i, j) ∈ Rc ∩ Cc ∩ Ac ∩Hc ∩ Ec

(1 + ϵ)cC , (i, j) ∈ Rc ∩ C ∩ A ∩Hc

− 1−τ2
τ2

(1 + ϵ)cC , (i, j) ∈ Rc ∩ C ∩ Ac ∩Hc

0, otherwise

Q4(i, j) =

 (1 + ϵ)λcA, (i, j) ∈ Rc ∩ E

0, otherwise

It can be easily verified that E[Q1] = E[Q2] = E[Q3] = 0, and

|Q1(i, j)| ≤
1

pK∗ , |Q2(i, j)| ≤ max{2λcA
c

p
, 2cC}, |Q3(i, j)| ≤ max{2λcA

1− q
, 2cC}.

Note that τ = min{τ1, τ2} ≥ 4
5 and q ≤ t ≤ p, by simple calculation, we have

Var[Q1(i, j)] ≤ 1−p
pK∗2 ≤ 1

pK∗2 , (i, j) ∈ Cc

Var[Q1(i, j)] ≤ 2(1−τ)
K∗2 , (i, j) ∈ C

Var[Q2(i, j)] ≤ 4λ2c2Ac (1−p)
p ≤ 4λ2c2Ac (1−t)

p , (i, j) ∈ Cc

Var[Q2(i, j)] ≤ 8c2C(1− τ), (i, j) ∈ C

Var[Q3(i, j)] ≤ 4λ2c2Aq
1−q ≤ 4λ2c2At

1−q , (i, j) ∈ Cc

Var[Q3(i, j)] ≤ 8c2C(1− τ), (i, j) ∈ C

A Divide and Conquer Framework for Distributed Graph Clustering

Step 2. Bound ∥W1∥: From Lemma A-5, the following inequalities hold with high probability:

∥Q1∥ ≤ c

[
log n

pK∗ +

√
2n(1− τ)

K∗2
+

n− s

pK∗2
·
√
log n

]

∥Q2∥ ≤ c

max{2λcA
c

p
, 2cC} log n+

√
8nc2C(1− τ) + (n− s)

4λ2c2Ac(1− t)

p
·
√
log n


∥Q3∥ ≤ c

max{2λcA
1− q

, 2cC} logn+

√
8nc2C(1− τ) + (n− s)

4λ2c2At

1− q
·
√

log n


Recall that K∗ ≥ K ≥ cK log n, λ = c0√

max{n−s,K∗} logn
, 1 − τ ≤ cτ

K
n and cC = c0√

K logn
. From Lemma A-4,

p ≥ c3
logn
K∗ , which implies that cmax{ logn

pK∗ ,
logn
K } ≤ 1

16 . On the other hand, p ≥ c3
(n−s) logn

K∗2 , so c
√

2n(1−τ)
K∗2 + n−s

pK∗2 ·
√
log n ≤ c

√
cτ

cK logn + 1
c3 logn ·

√
log n ≤ 1

16 . Hence ∥Q1∥ ≤ 1
8 .

To bound ∥Q2∥, note that λcAc

p = λ 1
p

√
t

1−t ≤ λ 1√
t(1−t)

≤ λ2K∗

c3
≤ 1

c3 logn and cC log n =
√

c0 logn
K , so

cmax{ 2λcAc

p , 2cC} log n ≤ 1
16 . We also have (n − s)

λ2c2Ac (1−t)
p = (n − s)λ

2

p · t
1−t · (1 − t) ≤ (n − s)λ2 ≤ c0

logn

and nc2C(1−τ) ≤ c20cτ
logn which implies c

√
8nc2C(1− τ) + (n− s)

4λ2c2Ac (1−t)

p ·
√
log n ≤ 1

16 , so that ∥Q2∥ ≤ 1
8 . Similarly,

we can prove that ∥Q3∥ ≤ 1
8 . For ∥Q4∥, note that (1 + ϵ)λcA ≤ 2λcA = 2λ

√
1−t
t ≤ 2λ 1√

t(1−t)
≤ 2

c3 logn ≤ 1
8 . Hence

∥W∥ ≤ ∥Q1∥+ ∥Q2∥+ ∥Q3∥+ ∥Q4∥ ≤ 1
2 .

Step 3. Bound ∥PTW1∥∞: Since ∥PTW1∥∞ = ∥UU⊤W1 +W1UU⊤ −UU⊤W1UU⊤∥∞ ≤ 3∥UU⊤W1∥∞, we
only need to bound ∥UU⊤W1∥∞. By Lemma A-6, the following inequalities hold with high probability

|(UU⊤Q1)ij | ≤ c


√
(2s(1− τ)/K∗2 + (n− s)/(pK∗2)) log n

K∗ +
log n

pK∗2


|(UU⊤Q2)ij | ≤ c

(√
(8sc2C(1− τ) + 4(n− s)λ2c2Ac(1− t)/p) log n

K∗ +max{2λcA
c

p
, 2cC} ·

log n

K∗

)

|(UU⊤Q3)ij | ≤ c

(√
(8sc2C(1− τ) + 4(n− s)λ2c2Act/(1− q)) log n

K∗ +max{2λcA
1− q

, 2cC} ·
log n

K∗

)

We now show that these upper bounds are less than 1
6ϵmin{λcA, λcAc , cC}. Since cC ≥ λ and min{cA, cAc} ≤ 1,

1
6ϵmin{λcA, λcAc , cC} = 1

6ϵmin{λcA, λcAc}. Note that

ϵλcA = λ · c2√
t(1− t)

· 1

λK∗ ·
√

1− t

t
=

c2
tK∗ ≥ c2

K∗ ,

ϵλcAc = λ · c2√
t(1− t)

· 1

λK∗ ·
√

t

1− t
=

c2
(1− t)K∗ ≥ c2

K∗ .

We now verify that all the terms in |(UU⊤Q1)ij |, |(UU⊤Q2)ij | and |(UU⊤Q3)ij | are less than c2
6K∗ . Since 1−τ ≤ cτ

K
n

and K∗ ≥ K ≥ cK log n, we have 2cC logn
K∗ =

√
logn
K · 2c0

K∗ ≤ c2
K∗ , s(1−τ)

K∗2 ≤ cτ
K∗ and sc2C(1 − τ) ≤ c20cτ

logn , which implies

that
√

2s(1−τ) logn/K∗2

K∗ ≤
√

2cτ
K∗3 ≤ c2

18K∗ and
√

8sc2C(1−τ) logn

K∗ ≤
√

8c20cτ
K∗ ≤ c2

18K∗ .

A Divide and Conquer Framework for Distributed Graph Clustering

For |(UU⊤Q1)ij |,
log n

pK∗2
≤ log n

c3 logn
K∗ ·K∗2

=
1

c3K∗ ≤ c2
18K∗ ,√

(n− s) log n/(pK∗2)

K∗ ≤
√
(n− s) log n/(c3(n− s) log n)

K∗ =
1

√
c3K∗ ≤ c2

18K∗ .

For |(UU⊤Q2)ij |,

λcAc log n

pK∗ = λ log n ·
√

t

1− t
· 1

pK∗ ≤ λ log n

K∗

√
1

t(1− t)
≤ λ log n

K∗

√
λ2K∗2

c3
=

λ2 log n
√
c3

≤ c20√
c3K∗ ≤ c2

18K∗ ,

√
(n− s)λ2c2Ac(1− t) log n/p

K∗ ≤

√
λ2(n− s) log n · t

1−t ·
1−t
p

K∗ ≤
√
λ2(n− s) log n

K∗ ≤ c0
K∗ ≤ c2

18K∗ .

For |(UU⊤Q3)ij |,

λcA log n

(1− q)K∗ = λ log n ·
√

1− t

t
· 1

(1− q)K∗ ≤ λ log n

K∗

√
1

t(1− t)
≤ λ log n

K∗

√
λ2K∗2

c3
=

λ2 logn
√
c3

≤ c20√
c3K∗ ≤ c2

18K∗ ,

√
(n− s)λ2c2At log n/(1− q)

K∗ ≤

√
λ2(n− s) log n · 1−t

t · t
1−q

K∗ ≤
√

λ2(n− s) log n

K∗ ≤ c0
K∗ ≤ c2

18K∗ .

For |(UU⊤Q4)ij |, we know that |(UU⊤Q4)ij | = 0. Hence we conclude that ∥PTW1∥∞ ≤ 1
2ϵmin{λcA, λcAc , cC}.

Step 4. Verify Condition (c): From the construction of W1, we know that the inequalities (II)(III)(VI)(VII) hold. We
now show that the other inequalities also hold. From Lemma A-3(c),

(1 + ϵ)
1− p

p
≤ (1− 2ϵ)

1− t

t
⇐⇒ (1 + ϵ)λ

cAc(1− p)

p
≤ (1− 2ϵ)λcA.

Thus, for (i, j) ∈ R ∩A ∩ Cc ∩Hc,

(UU⊤ +W1)ij =
1

p
(UU⊤)ij + (1 + ϵ)λ

cAc(1− p)

p
≤ 1

pK∗ + (1− 2ϵ)λcA

Recall that ϵλcA ≥ c2
tK∗ ≥ 1

pK∗ , hence (I) holds. From Lemma A-3(d),

(1 + ϵ)
q

1− q
≤ (1− ϵ)

t

1− t
⇐⇒ −(1 + ϵ)λ

cAq

1− q
≥ −(1− ϵ)λcAc ,

which implies (IV). Since ϵ < 0.5,

(1− ϵ)cC ≥ 1

2
cC =

c0

2
√
K log n

≥ 5

K∗ .

On the other hand, since τ ≥ 4
5 , for (i, j) ∈ R ∩A ∩ C ∩Hc,

(UU⊤ +W)ij ≤
1

τK∗ + (1 + ϵ)cC
1− τ

τ
≤ 5

4K∗ +
3

8
cC ≤ 5

4K∗ +
15

4K∗ =
5

K∗ ,

A Divide and Conquer Framework for Distributed Graph Clustering

and for (i, j) ∈ Rc ∩ Ac ∩ C ∩ Hc,

W1(i, j) + (1− ϵ)cC ≥ (1− ϵ)cC − (1 + ϵ)cC
1− τ

τ
≥ 1

2
cC − 3

2
cC

1− τ

τ
≥ 1

8
cC ≥ 0,

so (V) and (VIII) hold.

2.2. Construct W2

Step 1. Construct the dual certificate W2: We let W2 = Q1 +Q2 +Q3, where Q1,Q2,Q3 are defined as follows:

Q1(i, j) =


−(UU⊤)ij , (i, j) ∈ R ∩Ac ∩H

1−τ1
τ1

(UU⊤)ij , (i, j) ∈ R ∩A ∩H

0, (i, j) ∈ Hc

Q2(i, j) =


−3

2cC , (i, j) ∈ R ∩Ac ∩H
3(1−τ1)

2τ1
cC , (i, j) ∈ R ∩A ∩H

0, (i, j) ∈ Hc

Q3(i, j) =


3
2cC , (i, j) ∈ Rc ∩ A ∩H

−3(1−τ2)
2τ2

cC , (i, j) ∈ Rc ∩ Ac ∩H

0, (i, j) ∈ Hc

It can be easily verified that E[Q1] = E[Q2] = E[Q3] = 0, and

|Q1(i, j)| ≤
1

K
, |Q2(i, j)| ≤ 2cC , |Q3(i, j)| ≤ 2cC ,

Var[Q1(ij)] ≤
2(1− τ)

K2
, Var[Q2(ij)] ≤ 5c2C(1− τ), Var[Q3(ij)] ≤ 5c2C(1− τ).

Step 2. Bound ∥W2∥ and ∥PTW2∥∞: From Lemma A-5, the following inequalities hold with high probability:

∥Q1∥ ≤ c

[
log n

K
+

√
2n(1− τ) log n

K2

]

∥Q2∥ ≤ c

[
2cC log n+

√
5nc2C(1− τ) log n

]
∥Q3∥ ≤ c

[
2cC log n+

√
5nc2C(1− τ) log n

]
Recall that 1 − τ ≤ cτ

K
n , K ≥ cK log n and cC = c0√

K logn
. Thus, ∥W∥ ≤ ∥Q1∥ + ∥Q2∥ + ∥Q3∥ ≤ 1

2 . Since
∥PTW2∥∞ = ∥UU⊤W2 +W2UU⊤ −UU⊤W2UU⊤∥∞ ≤ 3∥UU⊤W2∥∞, we only need to bound ∥UU⊤W2∥∞.

A Divide and Conquer Framework for Distributed Graph Clustering

By Lemma A-6, the following inequalities hold with high probability

|(UU⊤Q1)ij | ≤ c

(√
2n(1− τ) log n

K2
+

log n

K2

)

|(UU⊤Q2)ij | ≤ c

(√
5nc2C(1− τ) log n

K
+

2cC log n

K

)

|(UU⊤Q3)ij | ≤ c

(√
5nc2C(1− τ) log n

K
+

2cC log n

K

)

Since K ≥ cK log n, |(UU⊤Q1)ij |, |(UU⊤Q2)ij | and |(UU⊤Q3)ij | are all less than 1
4cC when cK is large enough.

Step 3. Verify Condition (d): From the construction of W2, we know that the inequalities (X)(XI) hold. We now show
that the other inequalities also hold. Observe that

1

2
cC =

c0

2
√
K log n

≥ 5

K
.

On the other hand, since τ ≥ 4
5 , for (i, j) ∈ R ∩A ∩H,

(UU⊤ +W)ij ≤
1

τK
+

3

2
cC

1− τ

τ
≤ 5

4K∗ +
3

8
cC ≤ 5

4K∗ +
15

4K∗ =
5

K∗ ,

and for (i, j) ∈ Rc ∩ Ac ∩H,

Wij +
1

2
cC =

1

2
cC − 3

2
cC

1− τ

τ
≥ 1

2
cC − 3

8
cC =

1

8
cC ≥ 0,

so (IX) and (XII) hold.

2.3. The “Outlier-free” Case

The proofs in this setup are almost the same as above. Recall that Ki is the size of the ith cluster and si is the number of
high confidence nodes in the ith cluster. In this case, we just need to let

λ =
c0√

max{K∗,maxi{
∑

j ̸=i(Ki − si)}} log n
.

A Divide and Conquer Framework for Distributed Graph Clustering

For the dual certificate W1, we let W1 = Q1 +Q2 +Q3, where Q1,Q2,Q3 are defined as follows:

Q1(i, j) =


−(UU⊤)ij , (i, j) ∈ R ∩Ac ∩Hc

1−pij

pij
(UU⊤)ij , (i, j) ∈ R ∩ Cc ∩ A ∩Hc

1−τ1
τ1

(UU⊤)ij , (i, j) ∈ R ∩ C ∩ A ∩Hc

0, otherwise

Q2(i, j) =



−(1 + ϵ)λcAc , (i, j) ∈ R ∩ Cc ∩ Ac ∩Hc

1−pij

pij
(1 + ϵ)λcAc , (i, j) ∈ R ∩ Cc ∩ A ∩Hc

−(1 + ϵ)cC , (i, j) ∈ R ∩ C ∩ Ac ∩Hc

1−τ1
τ1

(1 + ϵ)cC , (i, j) ∈ R ∩ C ∩ A ∩Hc

0, otherwise

Q3(i, j) =



(1 + ϵ)λcA, (i, j) ∈ Rc ∩ Cc ∩ A ∩Hc

− qij
1−qij

(1 + ϵ)λcA, (i, j) ∈ Rc ∩ Cc ∩ Ac ∩Hc

(1 + ϵ)cC , (i, j) ∈ Rc ∩ C ∩ A ∩Hc

− 1−τ2
τ2

(1 + ϵ)cC , (i, j) ∈ Rc ∩ C ∩ Ac ∩Hc

0, otherwise

The only difference is that we remove Q4 since there are no outliers. Similar to Lemma A-5 and Lemma A-6, from the
matrix Bernstein inequality, the followings hold with probability at least 1− n−10:

∥Q1∥ ≤ c

[
log n

pK∗ +

√
2n(1− τ)

K∗2
+

maxi{Ki − si}
pK∗2

·
√
log n

]

∥Q2∥ ≤ c

max{2λcA
c

p
, 2cC} log n+

√
8nc2C(1− τ) + max

i
{Ki − si}

4λ2c2Ac(1− t)

p
·
√
log n


∥Q3∥ ≤ c

max{2λcA
1− q

, 2cC} log n+

√√√√8nc2C(1− τ) + max
i

{
∑
j ̸=i

(Kj − sj)}
4λ2c2At

1− q
·
√

log n

 ,

and

|(UU⊤Q1)ij | ≤ c


√
(2s(1− τ)/K∗2 +maxi{Ki − si}/(pK∗2)) log n

K∗ +
log n

pK∗2


|(UU⊤Q2)ij | ≤ c

(√
(8sc2C(1− τ) + 4maxi{Ki − si}λ2c2Ac(1− t)/p) log n

K∗ +max{2λcA
c

p
, 2cC} ·

log n

K∗

)

|(UU⊤Q3)ij | ≤ c


√
(8sc2C(1− τ) + 4maxi{

∑
j ̸=i(Kj − sj)}λ2c2Act/(1− q)) log n

K∗ +max{2λcA
1− q

, 2cC} ·
log n

K∗

 .

Since maxi{Ki − si} ≤ maxi{
∑

j ̸=i(Kj − sj)}, the terms maxi{Ki − si} in these inequalities can be replaced by
maxi{

∑
j ̸=i(Kj − sj)}. Then one can prove the desired result easily by following the same calculation in Section 2.1.

A Divide and Conquer Framework for Distributed Graph Clustering

3. Proof of Theorem 2

Recall that the graph has n nodes, r clusters and n−
∑r

i=1 Ki outliers. K is the minimum cluster size, i.e., K = mini Ki.
For clarity, the constants may vary from line to line.

Step 1. The n nodes are uniformly randomly separated into m groups which form m small graphs {g1, · · · , gm}. For each
i ∈ [n] and j ∈ [m], node i is assigned to graph gj with probability 1

m . For g ∈ {g1, · · · , gm}, let Kg
i be the number of

the nodes in the ith cluster that are assigned to graph g and let ng be the number of nodes in g. Clearly, Kg
i and ng are two

random variables whose expected values are E[Kg
i] =

Ki

m and E[ng] = n
m , respectively. From the Hoeffding’s inequality,

P[|Kg
i − E[Kg

i]| ≥ t] ≤ 2 exp

(
−2t2

Ki

)
.

For constant ρ < 1, let t = 1−ρ
2(1+ρ)mKi, then we have

P
[∣∣∣∣Kg

i − Ki

m

∣∣∣∣ ≥ 1− ρ

2(1 + ρ)m
Ki

]
≤ 2 exp

(
− (1− ρ)2Ki

2(1 + ρ)2m2

)
≤ 2 exp

(
− (1− ρ)2K

2(1 + ρ)2m2

)
.

In other words, 1+3ρ
2(1+ρ)mKi ≤ Kg

i ≤ 3+ρ
2(1+ρ)mKi holds with probability at least 1 − 2 exp

(
− (1−ρ)2K

2(1+ρ)2m2

)
. Similarly,

1+3ρ
2(1+ρ)mn ≤ ng ≤ 3+ρ

2(1+ρ)mn holds with probability at least 1− 2 exp
(
− (1−ρ)2n

2(1+ρ)2m2

)
. By the union bound, we have

1 + 3ρ

2(1 + ρ)m
Ki ≤ Kg

i ≤ 3 + ρ

2(1 + ρ)m
Ki for i ∈ [r], g ∈ {g1, · · · , gm} and

1 + 3ρ

2(1 + ρ)m
n ≤ ng ≤ 3 + ρ

2(1 + ρ)m
n (A-1)

hold with probability at least 1− 2(mr + 1) exp
(
− (1−ρ)2K

2(1+ρ)2m2

)
. Since m ≤ 1−ρ

4(1+ρ)

√
K

logn and mr + 1 ≤ mn
K + 1 ≤ n,

(A-1) holds with probability at least 1− n−6.

Step 2. After all the subgraphs are generated, we perform algorithm A on each subgraph g ∈ {g1, · · · , gm}. Let Sg be
the set of the recovered clusters in g. Since A is λ-workable and 1+3ρ

2(1+ρ)mKi ≤ Kg
i ≤ 3+ρ

2(1+ρ)mKi for i ∈ [r] holds with
high probability, we know that when (p, q) is in C(n/m,K1/m, · · · ,Kr/m,λ, I), Sg satisfies that 1) for each i ∈ I,
there exists Ci ∈ Sg such that Ci a subset of the ith cluster and |Ci| ≥ λiK

g
i ≥ 1+3ρ

2(1+ρ)mλiKi, and 2) for each cluster

C ∈ Sg \
∪

i∈I Ci, we have |C| < mini∈I ρλiK
g
i ≤ 3ρ+ρ2

2(1+ρ)m mini∈I λiKi, with probability at least 1−n−2. By the union
bound, with probability at least 1− n−1, all of Sg1 , · · · ,Sgm satisfy these two properties.

In the “breaking up small clusters” step, note that threshold T satisfies T
mini∈I λiKi

∈ (3ρ+ρ2

2(1+ρ)m , 1+3ρ
2(1+ρ)m). For each

Sg ∈ {Sg1 , · · · ,Sgm}, after breaking up the clusters in Sg whose size is less than T , Sg becomes

S0
g =

∪
i∈I

Ci ∪

{
{u} : ∀u ∈ C, ∀C ∈ Sg \

∪
i∈I

Ci

}
.

Then for each Ci ∈ S0
g , Ci is uniformly randomly divided into l clusters, namely, {C1

i , · · · , Cl
i}. Since w.h.p

|Ci| ≥
1 + 3ρ

2(1 + ρ)m
min
j∈I

λjKj , ∀i ∈ I,

by the Hoeffding’s inequality and the union bound, one can easily verify that for all S0
g ∈ {S0

g1 , · · · ,S
0
gm} and Ci ∈ S0

g ,

A Divide and Conquer Framework for Distributed Graph Clustering

the following inequality holds with probability at least 1− n−6 when l ≤ 1
4

√
(1+3ρ)mini∈I λiKi

2(1+ρ)m logn or l = 1:

|Ck
i | ≥

1 + 3ρ

4(1 + ρ)ml
min
j∈I

λjKj , ∀i ∈ I, k ∈ [l].

Therefore, after the “breaking up small clusters” step, Sg becomes

S1
g =

∪
i∈I

∪
k∈[l]

Ck
i ∪ (S0

g \
∪
i∈I

Ci).

For simplicity, we use Sg instead of S1
g in the following parts.

Step 3. We now analyze the properties of the fused graph. We view each cluster Ui in
∪m

i=1 Sgi as a super node Vi. If
|Ui| > 1, Vi is added into the “high confidence node” set H, which means Vi is a high confidence node in the fused graph.
Otherwise, Vi is an ordinary node. For two nodes Vi and Vj , we say “Vi and Vj are in the same cluster” if the nodes in Ui

and Uj belong to the same cluster. From the construction of the edge between Vi and Vj , we know that when Vi and Vj are
both ordinary nodes, Eij = 1 with probability at least p if Vi and Vj are in the same cluster or Eij = 1 with probability at
most q otherwise. If one of Vi and Vj is a high confidence node, we compute

Ê(Vi, Vj) :=

∑
u∈Ui

∑
v∈Uj

Auv∑
u∈Ui

∑
v∈Uj

1
.

We let X ≜ Ê(Vi, Vj) and Z ≜
∑

u∈Ui

∑
v∈Uj

1. Clearly, Vi and Vj being in the same cluster means that E[Auv] ≥ p for
any u ∈ Ui and v ∈ Uj , which implies that E[X] ≥ p. From the Hoeffding’s inequality, we have

P[|X − E[X]| ≥ θ] ≤ 2 exp
(
−2Zθ2

)
≤ 2 exp

(
− 1 + 3ρ

2(1 + ρ)ml
min
i∈I

λiKiθ
2

)
.

Thus, X ≥ p − θ holds with probability at least 1 − 2 exp
(
− 1+3ρ

2(1+ρ)ml mini∈I λiKiθ
2
)

. Similarly, Vi and Vj being in
different clusters means E[Auv] ≤ q for any u ∈ Ui and v ∈ Uj , which implies that E[X] ≤ q. From the Hoeffding’s
inequality, we have X ≤ q + θ holds with probability at least 1− 2 exp

(
− 1+3ρ

2(1+ρ)ml mini∈I λiKiθ
2
)

.

In Algorithm 2, we set Eij = 1 if X ≥ t or Eij = 0 otherwise. Hence from the analysis above, we know that Eij = 1

with probability at least 1− 2 exp
(
− 1+3ρ

2(1+ρ)ml mini∈I λiKi(p− t)2
)

if Vi and Vj are in the same cluster, while Eij = 1

with probability at most 2 exp
(
− 1+3ρ

2(1+ρ)ml mini∈I λiKi(t− q)2
)

if Vi and Vj are in different clusters. Recall that t ∈

(14p+
3
4q,

3
4p+

1
4q). Since p− q ≥ c2

√
(1+ρ)ml log n

K

(1+3ρ)mini∈I λiKi
, we have

τ ≜ 1− 2 exp

(
− 1 + 3ρ

32(1 + ρ)ml
min
i∈I

λiKi(p− q)2
)

≥ 1− cτ
K

n
,

where cτ and c2 are universal constants. Then we have

• Eij = 1 with probability at least p if Vi and Vj are ordinary and in the same cluster;
• Eij = 1 with probability at most q if Vi and Vj are ordinary and in different clusters;
• Eij = 1 with probability at least τ if Vi or Vj is high confident and they are in the same cluster;
• Eij = 1 with probability at most 1− τ if Vi or Vj is high confident and they are in different clusters;

Step 4. We perform the graph clustering algorithm (1) on the fused graph G = (V, E). From the analysis above, we know
that the number of the high confidence nodes in G is at least ml|I|, the size of the smallest cluster in G that contains no

A Divide and Conquer Framework for Distributed Graph Clustering

ordinary nodes is at least ml, the total number of the ordinary nodes in G is at most n−
∑

i∈I λiKi, and the total number
of the nodes is at least mr. Let J be the set {i ∈ I : λi ̸= 1}, then the size of the smallest cluster that contains at least one
ordinary node is at least S(m, l) = min{mini∈J {ml+(1−λi)Ki},mini∈Ic Ki}. From Theorem 1, if ml ≥ c3 logn and

p− q√
p(1− q)

≥ c1 max

{√
(n−

∑
i∈I λiKi) log n

S(m, l)
,

√
log n

S(m, l)

}
,

then the clusters in graph G can be correctly recovered with probability at least 1− (mr)−10.

Overall, if c3 log n ≤ m ≤ 1−ρ
4(1+ρ)

√
K

logn and

p− q ≥ max

{
c1
√

p(1− q)max

{√
(n−

∑
i∈I λiKi) log n

S(m, l)
,

√
log n

S(m, l)

}
, c2

√
(1 + ρ)ml log n

K

(1 + 3ρ)mini∈I λiKi

}

hold, Algorithm 1 outputs the true clusters w.h.p. By minimizing the right hand side over l, we obtain this theorem.

4. Proof of Theorem 3

We use the same notation as that in the proof of Theorem 2.

Step 1. This step is similar to Step 1 in the proof of Theorem 2. The n nodes are uniformly randomly separated into m

groups which form m subgraphs {g1, · · · , gm}. As shown above, we can prove that

1 + 3ρ

2(1 + ρ)m
Ki ≤ Kg

i ≤ 3 + ρ

2(1 + ρ)m
Ki for i ∈ [r], g ∈ {g1, · · · , gm} and

1 + 3ρ

2(1 + ρ)m
n ≤ ng ≤ 3 + ρ

2(1 + ρ)m
n (A-2)

hold with probability at least 1− n−6 since m ≤ 1−ρ
4(1+ρ)

√
K

logn .

Step 2. After the subgraphs are obtained, we perform algorithm A on each subgraph g ∈ {g1, · · · , gm}. Let Sg be the set of
the recovered clusters in g. Since algorithm A is (λ, I, ϵ)-pseudo-workable and 1+3ρ

2(1+ρ)mKi ≤ Kg
i ≤ 3+ρ

2(1+ρ)mKi for i ∈
[r] holds with high probability, when (p, q) is in C(n/m,K1/m, · · · ,Kr/m,λ, I, ϵ), we know that with probability at
least 1 − n−2, Sg satisfies that 1) for each i ∈ I, there exists Ci ∈ Sg so that Ci contains at least λiK

g
i nodes in the ith

cluster and at most ϵiK
g
i nodes not in the ith cluster, which implies that |Ci| ≥ λiK

g
i ≥ 1+3ρ

2(1+ρ)mλiKi, 2) for each cluster

C ∈ Sg \
∪

i∈I Ci, we have |C| < mini∈I ρλiK
g
i ≤ 3ρ+ρ2

2(1+ρ)m mini∈I λiKi. By the union bound, with probability at least
1− n−1, all of Sg1 , · · · ,Sgm satisfy these two properties.

In the “breaking up small clusters” step, note that T
mini∈I λiKi

∈ (3ρ+ρ2

2(1+ρ)m , 1+3ρ
2(1+ρ)m), and each Ci ∈ Sg is divided into l

clusters {C1
i , · · · , Cl

i} while the clusters in Sg \
∪

i∈I Ci are broken up to single nodes. By the Hoeffding’s inequality and
the union bound, we have for all Sg ∈ {Sg1 , · · · ,Sgm} and Ci ∈ Sg

|Ck
i | ≥

1 + 3ρ

4(1 + ρ)ml
λiKi, ∀i ∈ I, k ∈ [l] (A-3)

holds with probability at least 1− n−6 when l ≤ 1
4

√
(1+3ρ)mini∈I λiKi

2(1+ρ)m logn or l = 1. Then after this step, Sg becomes

Sg =
∪
i∈I

∪
k∈[l]

Ck
i ∪

{
{u} : ∀u ∈ C, ∀C ∈ Sg \

∪
i∈I

Ci

}
.

Step 3. In the “building the fused graph” step, we view each cluster Ui in
∪m

i=1 Sgi as a super node Vi. If |Ui| > 1, Vi

A Divide and Conquer Framework for Distributed Graph Clustering

is added into the “high confidence node” set H, which means Vi is a high confidence node. Otherwise, Vi is an ordinary
node. For two nodes Vi and Vj , from the construction of the edge between Vi and Vj , we know that if Vi and Vj are both
ordinary nodes, then Eij = 1 with probability at least p if Vi and Vj are in the same cluster while Eij = 1 with probability
at most q if Vi and Vj are in different clusters. If one of Vi and Vj is high confident, we compute

Ê(Vi, Vj) =

∑
u∈Ui

∑
v∈Uj

Auv∑
u∈Ui

∑
v∈Uj

1
.

Note that because A is (λ, I, ϵ)-pseudo-workable, Ui may contain some outliers when |Ui| > 1. We denote the inlier and
outlier nodes in Ui by Ūi and Ûi, respectively. Suppose that the inlier nodes belong to the kth cluster, then from Inequality
(A-2) and (A-3), we know that |Ūi| ≥ 1+3ρ

4(1+ρ)mlλkKk and |Ûi| ≤ 3+ρ
2(1+ρ)mϵkKk hold with high probability.

We first consider the case that Vi and Vj are in the same cluster, e.g., Vi, Vj belong to the kth cluster. Then

Ê(Vi, Vj) ≥
∑

u∈Ūi

∑
v∈Ūj

Auv

(|Ūi|+ |Ûi|)(|Ūj |+ |Ûj |)
≥
∑

u∈Ūi

∑
v∈Ūj

Auv

|Ūi||Ūj |

(
1− |Ûi|

|Ūi|
− |Ûj |

|Ūj |
− |Ûi||Ûj |

|Ūi||Ūj |

)
.

Since l ≤ p−q
72 mink∈I

λk

ϵk
, we have |Ûi|

|Ūi|
,
|Ûj |
|Ūj |

≤ 2(3+ρ)
1+3ρ · ϵkl

λk
≤ 6ϵkl

λk
≤ 1, which implies that

Ê(Vi, Vj) ≥
∑

u∈Ūi

∑
v∈Ūj

Auv

|Ūi||Ūj |

(
1−max

k∈I

18ϵkl

λk

)
.

From the Hoeffding’s inequality, one can easily verify that Ê(Vi, Vj) ≥ (p−θ)
(
1−maxk∈I

18ϵkl
λk

)
holds with probability

at least 1− 2 exp
(
− 1+3ρ

2(1+ρ)ml mini∈I λiKiθ
2
)

.

Similarly, when Vi and Vj are in different clusters, we have

Ê(Vi, Vj) ≤
∑

u∈Ūi

∑
v∈Ūj

Auv + |Ūi||Ûj |+ |Ûi||Ūj |+ |Ûi||Ûj |
|Ūi||Ūj |

≤
∑

u∈Ūi

∑
v∈Ūj

Auv

|Ūi||Ūj |
+max

k∈I

18ϵkl

λk
.

From the Hoeffding’s inequality, we know that Ê(Vi, Vj) ≤ q + θ + maxk∈I
18ϵkl
λk

holds with probability at least 1 −
2 exp

(
− 1+3ρ

2(1+ρ)ml mini∈I λiKiθ
2
)

.

Let φ ≜ maxk∈I
18ϵkl
λk

. Since l ≤ p−q
72 mink∈I

λk

ϵk
, φ ≤ 1

4 (p− q), which implies that the inequality 1
4p+

3
4q+φ ≤ (34p+

1
4q)(1−φ) hold. Therefore, there exists t such that 1

4p+
3
4q+φ ≤ t ≤ (34p+

1
4q)(1−φ). In Algorithm 2, we set Eij = 1

if X ≥ t or Eij = 0 otherwise. Hence Eij = 1 with probability at least 1− 2 exp
(
− 1+3ρ

2(1+ρ)ml mini∈I λiKi(p− t
1−φ)

2
)

if Vi and Vj are in the same cluster, while Eij = 1 with probability at most 2 exp
(
− 1+3ρ

2(1+ρ)ml mini∈I λiKi(t− q − φ)2
)

if Vi and Vj are in different clusters. Since 1
4p+

3
4q + φ ≤ t ≤ (34p+

1
4q)(1− φ), we have

1

4
p+

3

4
q ≤ t

1− φ
≤ 3

4
p+

1

4
q, and

1

4
p+

3

4
q ≤ t− c ≤ 3

4
p+

1

4
q.

When p− q ≥ c2

√
(1+ρ)ml log n

K

(1+3ρ)mini∈I λiKi
, we have

τ ≜ 1− 2 exp

(
− 1 + 3ρ

32(1 + ρ)ml
min
i∈I

λiKi(p− q)2
)

≥ 1− cτ
K

n
,

where cτ and c2 are universal constants. Hence we have

A Divide and Conquer Framework for Distributed Graph Clustering

• Eij = 1 with probability at least p if Vi and Vj are ordinary and in the same cluster;

• Eij = 1 with probability at most q if Vi and Vj are ordinary and in different clusters;

• Eij = 1 with probability at least τ if Vi or Vj is high confident and the inlier nodes of Ui and Uj are in the same
cluster;

• Eij = 1 with probability at most 1− τ if Vi or Vj is high confident and the inlier nodes of Ui and Uj are in different
clusters;

Step 4. We run the graph clustering algorithm (1) on the fused graph G = (V, E). From the analysis above, we know that
the number of the high confidence nodes in G is at least ml|I|, the size of the smallest cluster in G that contains no ordinary
nodes is at least ml, the total number of the ordinary nodes in G is at most n−

∑
i∈I λiKi, and the total number of the nodes

is at least mr. Let J be the set {i ∈ I : λi ̸= 1}, then the size of the smallest cluster that contains at least one ordinary
node is at least S(m, l) = min{mini∈J {ml + [(1 − λi)Ki −

∑
j∈I,j ̸=i ϵjKj]+},max{mini∈Ic Ki −

∑
j∈I ϵjKj , 1}}.

From Theorem 1, if ml ≥ c3 log n and

p− q√
p(1− q)

≥ c1 max

{√
(n−

∑r
i=1 λiKi) log n

S(m, l)
,

√
log n

S(m, l)

}
,

then the clusters in graph G can be correctly recovered with probability at least 1− (mr)−10.

Overall, if c3 log n ≤ m ≤ 1−ρ
4(1+ρ)

√
K

logn and

p− q ≥ max

{
c1
√
p(1− q)max

{√
(n−

∑r
i=1 λiKi) log n

S(m, l)
,

√
log n

S(m, l)

}
, c2

√
(1 + ρ)ml log n

K

(1 + 3ρ)mini∈I λiKi
, 72max

i∈I

ϵi
λi

}

hold, the output of Algorithm 1 contains at most
∑r

i=1 ϵiKi misclassified nodes.

5. Proof of Corollary 1

Since algorithm A recovers clusters by solving (1) with C = ∅, we have that A is (1, [r])-workable with ρ = 0 and set C
defined by

C =

{
(p, q) :

p− q√
p(1− q)

≥ c1

√
n log n

K

}
where K is the size of the smallest cluster in the graph and c1 is a universal constant.

Then from Theorem 2,we know that in order to recover the true clusters, (p, q) should satisfy

p− q√
p(1− q)

≥ c1

√
mn log n

K
.

and

p− q ≥ min
l̄≥l≥1

max

{
c1
√
p(1− q)max

{√
(n−

∑
i∈I λiKi) log n

S(m, l)
,

√
log n

S(m, l)

}
, c2

√
(1 + ρ)ml log n

K

(1 + 3ρ)mini∈I λiKi

}

= min
l̄≥l≥1

c2

√
(1 + ρ)ml log n

K

(1 + 3ρ)mini∈I λiKi
= c2

√
m log n

K

K
.

Hence we obtain Corollary 1.

A Divide and Conquer Framework for Distributed Graph Clustering

6. Proof of Corollary 2

Recall that algorithm A recovers clusters by solving (1) with C = ∅. For a graph containing n nodes and r clusters with
size {K1, · · · ,Kr}, we define

u = c3

√
p(1− q)n

p− q
log2 n, and l = c4

√
p(1− q)n

p− q
.

Let Ku be the set of the clusters whose sizes are greater than or equal to u and Kl be the set of the clusters whose sizes
are less than or equal to l. Let Y∗ be the true adjacent matrix, then by Theorem 1 in (Ailon et al., 2013), if each cluster is
included in either Ku or Kl, then (Ŷ,A − Ŷ) is an optimal solution of (1) with probability at least 1 − n−3, where Ŷ is
defined as

Ŷ(i, j) =

 Y∗(i, j), node i and j belongs to the same cluster in Ku

0, otherwise.

Let I = {i : Ki ≥ u} and λ be a vector whose entry λi = 1 if i ∈ I or 0 otherwise. The conditions above related to (p, q)

is denoted by C(n,K1, · · · ,Kr,λ, I). Clearly, A is (λ, I)-workable with ρ = 0 and set C(n,K1, · · · ,Kr,λ, I).

From Theorem 2, in order to recover the true clusters, (p, q) should be in C(n,K1/m, · · · ,Kr/m,λ, I), which means that
for all i ∈ [r], either Ki ≥ u or Ki ≤ l where

u = c3

√
p(1− q)mn

p− q
log2 n, and l = c4

√
p(1− q)mn

p− q
.

Besides, (p, q) should also satisfy

p− q ≥ min
l̄≥l≥1

max

{
c1
√
p(1− q)max

{√
(n−

∑
i∈I λiKi) log n

S(m, l)
,

√
log n

S(m, l)

}
, c2

√
(1 + ρ)ml log n

K

(1 + 3ρ)mini∈I λiKi

}
,

(A-4)
where S(m, l) = min{mini∈I:λi ̸=1{ml + (1− λi)Ki},mini∈Ic Ki}. Since A is (λ, I)-workable, (A-4) becomes

p− q ≥max

{
c1
√
p(1− q)max

{√∑
i∈Ic Ki log n

mini∈Ic Ki
,

√
log n

mini∈Ic Ki

}
, c2

√
m log n

K

mini∈I Ki

}

=max

{
c1
√
p(1− q)max

{√∑
i∈Ic Ki log n

K
,

√
log n

K

}
, c2

√
m log n

K

mini∈I Ki

}

which implies that

K ≥ max

{
c1

√
p(1− q)

∑
i∈Ic Ki log n

p− q
, c21

p(1− q) log n

(p− q)2

}
, and m ≤ (p− q)2 mini∈I Ki

c22 log
n
K

.

Besides, m should also satisfy c3 log n ≤ m ≤ 1
4

√
K

logn . Hence, by combining these inequalities together, we obtain this
corollary.

7. Proof of Theorem 4

It requires O(f(n
m)m) computation and O(g(n

m)m) memory for A recovering the clusters in the subgraphs. From the
proof of Theorem 3, we know that the size of the fused graph is O(mrl+n−

∑
i∈I λiKi). Thus, recovering clusters in the

A Divide and Conquer Framework for Distributed Graph Clustering

fused graph by solving (1) needs O((mrl + n−
∑

i∈I λiKi)
3) computation and O((mrl + n−

∑
i∈I λiKi)

2) memory.
Hence we obtain this theorem.

8. Useful Lemmas

The following two lemmas are derived from the matrix Bernstein inequality (Tropp, 2012).

Theorem A-1. (Matrix Bernstein, (Tropp, 2012)) Let X1, · · · ,Xn be independent random matrices with common dimen-
sion d1 × d2. Assume that each matrix has bounded deviation from its mean:

∥Xk − EXk∥ ≤ R for each k = 1, · · · , n.

Form the sum Z =
∑n

k=1 Xk, and introduce a variance parameter

σ2 = max{∥E[(Z− EZ)(Z− EZ)⊤]∥, ∥E[(Z− EZ)⊤(Z− EZ)]∥},

then

P[∥Z− EZ∥ ≥ t] ≤ (d1 + d2) exp

(
−t2/2

σ2 +Rt/3

)
.

Lemma A-5. Suppose W is a n × n random matrix whose entries are independent random variables satisfying that
E[W] = 0, ∥W∥∞ ≤ b, Var[Wij] ≤ σ2

0 for (i, j) ∈ C and Var[Wij] ≤ σ2
1 for (i, j) ∈ Cc, then the following inequality

holds with probability at least 1− n−10:

∥W∥ ≤ c

(
b log n+

√
(nσ2

0 + (n− s)σ2
1) log n

)
where c is a universal constant.

Proof. Let ei be the ith standard basis vector, then

W − EW =
∑
i,j

Wijeie
⊤
j ≜

∑
i,j

Xij .

Thus, ∥Xij∥ = |Wij | ≤ b for all (i, j). Since the entries of W are independent,

∥E[(W − EW)(W − EW)⊤]∥ = ∥E
∑
i,j

W 2
ijeie

⊤
j eje

⊤
i ∥

≤∥E
∑

(i,j)∈Cc

W 2
ijeie

⊤
j eje

⊤
i ∥+ ∥E

∑
(i,j)∈C

W 2
ijeie

⊤
j eje

⊤
i ∥ ≤ (n− s)σ2

1 + nσ2
0 ,

where the last inequality follows from the definition of the high confidence nodes and the fact that the number of the high
confidence nodes is s. Then from the matrix Bernstein inequality, there exists a universal constant c such that

∥W − EW∥ ≤ c

(
b log n+

√
(nσ2

0 + (n− s)σ2
1) log n

)
holds with probability at least 1− n−10.

Lemma A-6. Suppose W is a n × n random matrix whose entries are independent random variables satisfying that 1)
E[W] = 0; 2) maxij |Wij | ≤ b0 and Var[Wij] ≤ σ2

0 for (i, j) ∈ C; 3) maxij |Wij | ≤ b1 and Var[Wij] ≤ σ2
1 for

A Divide and Conquer Framework for Distributed Graph Clustering

(i, j) ∈ Cc, then the following inequality holds with probability at least 1− n−10:

|(UU⊤W)ij | ≤


√

nσ2
0 logn

K + b0 logn
K , all the nodes in R(i) are high confident√

(sσ2
0+(n−s)σ2

1) logn

K∗ + max{b0,b1} logn
K∗ , otherwise

where c is a universal constant and R(i) is the cluster that node i belongs to.

Proof. Suppose cluster R(i) contains K(i) nodes, then

(UU⊤W)ij =
1

K(i)

∑
j′:(i,j′)∈R(i)

Wij′ .

If all the nodes in cluster R(i) are high confident, then∑
j′:(i,j′)∈R(i)

E[W2
ij′] = K(i)σ2

0 ≤ nσ2
0 .

Otherwise, suppose that cluster R(i) contains c(i) high confidence nodes, then∑
j′:(i,j′)∈R(i)

E[W2
ij′] = (K(i)− c(i))σ2

1 + c(i)σ2
0 ≤ sσ2

0 + (n− s)σ2
1 .

By the standard Bernstein inequality, we can obtain this theorem.

References

Ailon, N., Chen, Y., and Xu, H. Breaking the small cluster barrier of graph clustering. In International Conference on
Machine Learning, ICML ’13, 2013.

Tropp, J. A. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):
389–434, 2012.

