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Abstract
This paper considers estimating the leading k
principal components with at most s non-zero
attributes from p-dimensional samples collected
sequentially in memory limited environments.
We develop and analyze two memory and com-
putational efficient algorithms called streaming
sparse PCA and streaming sparse ECA for an-
alyzing data generated according to the spike
model and the elliptical model respectively. In
particular, the proposed algorithms have mem-
ory complexity O(pk), computational complex-
ity O(pkmin{k, s log p}) and sample complex-
ity Θ(s log p). We provide their finite sample
performance guarantees, which implies statisti-
cal consistency in the high dimensional regime.
Numerical experiments on synthetic and real-
world datasets demonstrate good empirical per-
formance of the proposed algorithms.

1. Introduction
Principal component analysis (PCA) (Pearson, 1901), ar-
guably the most widely used dimension reduction method,
is a fundamental tool in data analysis in a wide range of
areas including machine learning, finance, statistics and
many others. Standard PCA extracts the principal compo-
nents (PCs) of a set of samples by computing the leading
eigenvectors of the sample covariance matrix. However, in
the face of modern high dimensional data with p ≫ n, PCA
is no longer statistically solid. Indeed, Johnstone & Lu
(2009) showed that the consistency of PCA depends cru-
cially on the limiting value of p/n: the angle between the
PCA estimate and the true leading PC does not converge to
zero unless p/n goes to zero.

To address this inconsistency issue and encourage more in-
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terpretable solutions, most of previous works focus on the
sparse setting assuming that the leading PCs are sparse,
i.e., only a few of their attributes are non-zero. In this set-
ting, many variants of sparse PCA have been developed
(e.g., Zou et al., 2006; d’Aspremont et al., 2007; Shen
& Huang, 2008; Journee & Y. Nesterov, 2008; Birnbaum
et al., 2013; Vu et al., 2013; Yuan & Zhang, 2013; Wang
et al., 2014). For example, Zou et al. (2006) proposed
to use a regression-type optimization problem based on
the elastic-net to compute sparse PCs. d’Aspremont et al.
(2007) considered a convex semidefinite program formula-
tion for sparse PCA. Yuan & Zhang (2013) and Ma (2013)
proposed the TPower method and the iterative threshold-
ing sparse PCA respectively, which are essentially modified
variants of the classical power method. Vu et al. (2013) pro-
posed the Fantope projection selection method (FPS) which
is a convex relaxation formulation of sparse principal sub-
space estimation based on a semidefinite program.

Yet, it can be hard to apply these sparse PCA methods to
real large scale data, as 1) they need to explicitly com-
pute the sample covariance matrix or store all the sam-
ples, which means that at least O(pmin{p, n}) storage
is required; 2) their computational cost may become pro-
hibitive when the dimensionality is high. For example, FPS
is solved via an ADMM algorithm that requires to perform
spectral decomposition on a p× p matrix in each iteration.

For non-sparse PCA, many computation/memory efficient
algorithms have been proposed in recent years. For ex-
ample, Warmuth & Kuzmin (2008) proposed a multiplica-
tive update algorithm called online PCA under the stream-
ing data model – i.e., the samples are received sequen-
tially. Although each update of online PCA can be cal-
culated efficiently, it still requires O(p2) storage. Brand
(2002) and Arora et al. (2012) developed two variants of
PCA – incremental PCA and the stochastic power method
– both of which have low memory and computational com-
plexity. Yet, they only showed the empirical performance
and provided no theoretical performance guarantees. Re-
cently, Mitliagkas et al. (2013) proposed streaming PCA
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with memory complexity O(pk) and sample complexity
Θ(p log p). However, similar to PCA, all these method are
inconsistent in the high dimensional regime since sparsity
is not exploited. Indeed, how to design a computation- and
memory-efficient sparse PCA method remains unsolved.
Mairal et al. (2010) proposed an online learning algorithm
for sparse coding that leads to an online sparse PCA algo-
rithm. Although this algorithm requires only O(pk) mem-
ory, its computational cost is high due to solving the elastic-
net problem in each iteration.

Another important issue is the sub-Gaussianality assump-
tion. Many sparse PCA methods are theoretically analyzed
under the spike model (e.g., Amini & Wainwright, 2009;
Vu et al., 2013; Yuan & Zhang, 2013; Vu & Lei, 2012;
Shen et al., 2013; Mitliagkas et al., 2013; Cai et al., 2014).
The limitation of the spike model is it requires subgaussian
data and noise, and hence can not model heavy-tail dis-
tributions. To relax this assumption, Han & Liu (2013b)
used the semiparametric transelliptical family to model
data and proposed the transelliptical component analysis
(TCA) based on the the marginal Kendall’s tau statistic for
estimating the leading eigenvectors of the correlation ma-
trix. In their following-up work (Han & Liu, 2013a), they
developed the elliptical component analysis (ECA) based
on the multivariate Kendall’s tau statistic for estimating the
leading eigenvectors of the covariance matrix under the el-
liptical family (Fang et al., 1990) – a semiparametric gener-
alization of the Gaussian family that can model heavy-tail
distributions and nontrivial tail dependence between vari-
ables (Hult & Lindskog, 2002). Although TCA and ECA
have beautiful theoretical guarantees, they require at least
O(p2n2 + p3) computation and O(p2) memory due to the
calculation of the marginal/multivariate Kendall’s tau ma-
trix and the spectral decomposition, which makes them un-
suitable for large-scale applications.

In this paper, to address the issues discussed above, we pro-
pose two variants of sparse PCA – streaming sparse PCA
and streaming sparse ECA for estimating the leading PCs
of samples drawn from the spike model and the elliptical
model, respectively. Our theoretical analysis shows that
both algorithms have memory complexity O(pk), com-
putational complexity O(pkmin{k, s log p}) and sample
complexity Θ(s log p), and are consistent in the high di-
mensional regime.

Notation. Matrices and column vectors are denoted by
upper-case and lower-case boldface letters, respectively.
For matrix X, we use ∥X∥0 and ∥X∥2 to denote the num-
ber of non-zero entries and the spectral norm of X, re-
spectively. The first k singular values of X are denoted
by λ1(X), · · · , λk(X), and the ith column and the ith row
of X are denoted by Xi and X(i) respectively. For a square
matrix S, its main diagonal is denoted by diag(S).

2. Problem Setup
We consider the streaming data model where one receives
sample xt at time t for t = 1, 2, · · · , and xt vanishes after it
is collected unless it is stored in the memory. Our goal is to
extract the leading k PCs of the received data. We consider
the following two models that generate the samples:

Spike model. Sample xt is generated according to xt =
Azt +wt where zt ∈ Rd is an i.i.d. sample of the random
vector z ∼ N (0, Id), wt ∈ Rp is an i.i.d. Gaussian noise
drawn from N (0, σ2Ip), and matrix A ∈ Rp×d is deter-
ministic but unknown. Let Σ be the covariance of xt, i.e.,
Σ ≜ E[xtx

⊤
t ] = AA⊤ + σ2Ip.

Elliptical model. Sample xt is generated according to the
elliptical distribution ECp(µ,Σ, ξ), i.e., xt = µ+ ξtAzt,
where zt ∈ Rd is a sample of z which is a uniform ran-
dom vector on the unit sphere, ξt is a sample of ξ which
is a scalar random variable (with unknown distribution) in-
dependent of z, µ ∈ Rp is a fixed vector, and A ∈ Rp×d

is a deterministic matrix satisfying AA⊤ = Σ. We only
consider the case that ξ has a continuous distribution.

As our algorithms are designed for the sparse setting,
we assume that the projection matrix Π ≜ UkU

⊤
k onto

the subspace spanned by the eigenvectors Uk ∈ Rp×k

of Σ corresponding to its k largest eigenvalues satisfies
∥diag(Π)∥0 ≤ s, where s indicates the sparsity which is
less than the dimension p and the number of samples n.

3. Algorithm
We now present the details of streaming sparse PCA and
streaming sparse ECA for analyzing high dimensional data.
Similar to streaming PCA (Mitliagkas et al., 2013), our
algorithms are block-wise stochastic power methods that
update the estimated PCs once a block of samples are re-
ceived. The difference between our algorithms and stream-
ing PCA is that we propose to apply a “row truncation” op-
erator as shown in Algorithm 1 to maintain the sparsity of
the estimated PCs to achieve consistency in the high dimen-
sional regime, which truncates the row vectors of a matrix
to zero except the ones with the largest l2-norms.

Algorithm 1 Row Truncation Operator
Input: Matrix X ∈ Rp×k and parameter s.
Procedure:
1) Compute vi = ∥X(i)∥2 for i = 1, · · · , p;
2) Sort {vi} and select the largest s ones. Let I be the
selected indices;
3) Compute X̃ where X̃(i) = X(i) if i ∈ I or 0 other-
wise, and return X̃.

We first present two streaming sparse PCA algorithms, i.e.,
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Algorithm 2 and 3, for analyzing data generated according
to the spike model. Algorithm 2 accepts a sequence of sam-
ples and estimates the leading k sparse PCs simultaneously.
The samples are divided into blocks with equal-size B. In
each block, the estimated PCs are updated via the power
method update followed by the row truncation operation
and the QR decomposition. Clearly, its memory complex-
ity is O(pk) since only the estimated PCs need to be stored
in the memory. Its computational complexity for each iter-
ation is O(p(k2 + log p) + pkB) since the computation of
the power method update requires O(pkB) operations, the
row truncation operation needs O(pk + p log p) operations
and the QR decomposition requires O(pk2) operations. In
the next section, we show that block size B = Θ(s log p)
which implies that streaming sparse PCA has a much lower
computational complexity O(pkmin{k, s log p}) than the
methods proposed by Vu et al. (2013); d’Aspremont et al.
(2007) when s is much smaller than p.

Algorithm 2 Streaming SPCA via Row Truncation
Input: Samples {x1,x2, · · · }, number of steps T , block

size B, parameter γ and initial solution Q0 ∈ Rp×k.
Procedure:

for τ = 0 to T − 1 do
1) Initialize S̃τ+1 = 0;
for t = Bτ + 1 to B(τ + 1) do
2) S̃τ+1 = S̃τ+1 +

1
Bxtx

⊤
t Qτ ;

end for
3) Sτ+1 = Truncate(S̃τ+1, γ);
4) QR-decomposition: Sτ+1 = Qτ+1Rτ+1;

end for
5) Return QT .

Intuitively, Algorithm 2 works when matrix Uk ∈ Rp×k –
which consists of the leading k PCs – is row sparse, or
equivalently, the projection matrix Π onto the subspace
spanned by the leading k PCs satisfies ∥diag(Π)∥0 ≤ s.
If this “row sparse” assumption is not satisfied, e.g., the
leading k PCs are all sparse but their supports are nearly
disjoint, one can compute the PCs iteratively via the itera-
tive deflation method (d’Aspremont et al., 2007; Mackey,
2008), as shown in Algorithm 3.

Our streaming sparse PCA algorithm has the following ad-
vantages compared with streaming PCA and TPower: 1)
As we show in the next section, the streaming sparse PCA
is consistent in the high dimensional regime where p is
much larger than n – a regime where streaming PCA is
known to be inconsistent. 2) TPower is not designed to
handle the streaming data model. It needs to store all the
samples or explicitly compute the empirical covariance ma-
trix, which requires at least O(pmin{p, n}) storage. This
can be problematic in applications involving large data. In
contrast, our methods only require O(pk) storage. 3) When

Algorithm 3 Streaming SPCA via Iterative Deflation
Input: Parameters B1, · · · , Bk, T1, · · · , Tk, γ1, · · · , γk

and samples {x1,x2, · · · }.
Procedure:
1) Let n̄ = 0;
for i = 1 to k do

2) Initialize q
(i)
0 ;

4) Run Algorithm 2 with {yn̄, · · · ,yn̄+TiBi}, Ti, Bi,
q
(i)
0 , γi and k = 1. For t = n̄, · · · , n̄ + TiBi, yt is

defined as yt ≜ xt −
∑i−1

j=0 q
(j)q(j)⊤xt. The output

of Algorithm 2 is denoted by q(i);
5) Set n̄ = n̄+ TiBi;

end for
6) Return q(1), · · · ,q(k).

the row sparse assumption holds, Algorithm 1 can compute
the leading k PCs simultaneously, but TPower can only ex-
tract them one by one via the iterative deflation method.

For elliptically distributed data, Han & Liu (2013a)
proposed the ECA algorithm based on the multivariate
Kendall’s tau statistic. In particular, let x be a random vec-
tor following the elliptical distribution ECp(µ,Σ, ξ) and x̃
be an independent copy of x. The multivariate Kendall’s
tau matrix is defined as

K ≜ E
[
(x− x̃)(x− x̃)⊤

∥x− x̃∥22

]
. (1)

It is known that the eigenspace of K is identical to that of
Σ. Based on this fact, Han & Liu (2013a) proposed to re-
cover the eigenspace of a second order U-statistic estimator
of K which is defined as

K̂U ≜ 2

n(n− 1)

∑
i′<i

(xi − xi′)(xi − xi′)
⊤

∥xi − xi′∥22
,

where {x1, · · · ,xn} are n independent samples of x. Note
that K̂U is indeed the empirical covariance matrix of
{ xi−xi′
∥xi−xi′∥2

}i′<i. K̂U is not suitable for the streaming data
model because its computation requires to store all the sam-
ples and is quite time-consuming when n is large. So in-
stead of K̂U , we consider the following estimator:

K̂ ≜ 2

n

n/2∑
i=1

(x2i−1 − x2i)(x2i−1 − x2i)
⊤

∥x2i−1 − x2i∥22
. (2)

Without loss of generality, we assume that n is an even
number. This leads to streaming sparse ECA proposed in
Algorithm 4. In comparison with ECA, streaming sparse
ECA is able to deal with the streaming data model and re-
quires only O(pk) storage. We remark that the main differ-
ence between Algorithms 2 and 4 is that Algorithm 4 com-
putes the empirical covariance of { x2t−1−x2t

∥x2t−1−x2t∥2
}B(τ+1)
t=Bτ+1,
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Algorithm 4 Streaming ECA via Row Truncation
Input: Samples {x1,x2, · · · }, number of steps T , block

size B, parameter γ and initial solution Q0 ∈ Rp×k.
Procedure:

for τ = 0 to T − 1 do
1) Initialize S̃τ+1 = 0;
for t = Bτ + 1 to B(τ + 1) do
2) yt = (x2t−1 − x2t)/∥x2t−1 − x2t∥2;
3) S̃τ+1 = S̃τ+1 +

1
Byty

⊤
t Qτ ;

end for
4) Sτ+1 = Truncate(S̃τ+1, γ);
5) QR-decomposition: Sτ+1 = Qτ+1Rτ+1;

end for
6) Return QT .

rather than the empirical covariance matrix of {xt}B(τ+1)
t=Bτ+1,

to handle elliptically distributed data.

4. Performance Guarantees
To measure the accuracy of the output, we use the following
distance function (Mitliagkas et al., 2013). For two orthog-
onal matrix U,V ∈ Rp×k, the distance between U and V
is defined based on the largest principal angle between the
column spaces of U and V:

dist(U,V) = dist(span(U), span(V)) = ∥U⊤
⊥V∥2, (3)

where U⊥ is an orthogonal basis of the perpendicular sub-
space to the one spanned by the columns of U.

4.1. Streaming Sparse PCA

We first show performance guarantees of streaming sparse
PCA, i.e., Algorithm 2 and 3, which handles data generated
under the spike model. Recall that the covariance matrix is
denoted by Σ. Let Σ = UΛU⊤ be the singular value de-
composition of Σ, Uk be a submatrix of U consisting of
the first k columns of U and λk be the kth largest eigen-
value of Σ. Theorem 1 shows sufficient conditions for Al-
gorithm 2 to obtain a solution of accuracy ϵ. We assume
that the initial solution Q0 satisfies ∥U⊤

k,⊥Q0∥ > ϵ.

Theorem 1. For η > 0, 0 < ϵ < 1, and γ ≥ s, let µ ≜
(k+1)λk+1+2ηλk

λk
, f(µ, η, k) ≜ max{ (2+

√
2)µ√
k

, η
k}. If the

initial solution Q0 satisfies that

ν ≜ ∥U⊤
k,⊥Q0∥2 <

1− µ2√
1− µ2 + (µ+ 1)f(µ, η, k)

, (4)

and the following two inequalities hold

T ≥ log(ϵ/ν)

log
[
µ/

(√
1− ν2 − f(µ, η, k)ν

)] ,
B ≥ ck2λ2

1[(s+ 2γ) log p+ log T ]

ϵ2η2λ2
k

,

where c is a universal constant, then with probability at
least 1 − s−10 the output QT of Algorithm 2 satisfies
∥U⊤

k,⊥QT ∥2 ≤ ϵ.

Remark 1. From Theorem 1, we observe that: 1) Al-
gorithm 2 succeeds as long as λk > (k + 1)λk+1 since
there exists η, e.g., η = λk−(k+1)λk+1

4λk
so that µ < 1. 2)

(k+1)λk+1

λk
affects the convergence rate and the block size

B. A smaller (k+1)λk+1

λk
leads to a smaller µ and a larger

η, which implies faster convergence and less samples re-
quired. 3) The upper bound related to the initial solution
Q0 mainly depends on µ, which goes to 0 as µ → 1 and
approaches to k

η as µ → 0. In other words, a more ac-
curate initial solution is required when µ is larger. 4) The
block size B should be at least Θ((s+ 2γ) log p+ log T ).
Typically, if s ≤ γ ≤ 2s, our algorithm can succeed when
B = Θ(s log p+ log T ). Notice that this is typically much
smaller than streaming PCA which requires the block size
B = Θ(p log p).

Remark 2. When k = d, η can be set to λd−(d+1)σ2

4λd
so

that µ = 1
2

[
1 + (d+1)σ2

λd

]
and f(µ, η, k) = 2+

√
2√

d
µ. Thus

in this case, Algorithm 2 succeeds as long as σ2 – the co-
variance of the noise – is less than λd

d+1 .

Remark 3. When k = 1, η can be set to λ1−2λ2

4λ1
so that

µ = 1
2 + λ2

λ1
and f(µ, η, k) = (2 +

√
2)µ. Notice that

Algorithm 2 now becomes a block-wise stochastic version
of TPower. When γ = s, Yuan & Zhang (2013) proved that
TPower succeeds when λ1 >

√
5λ2, while our analysis

leads to a slightly better result of λ1 > 2λ2.

The following theorem provides the performance guaran-
tee of Algorithm 3 that extracts PCs via iterative defla-
tion. Note that the errors of the first t − 1 estimated PCs
q(1), · · · ,q(t−1) may propagate to the estimate of q(t).

Theorem 2. Let η > 0, 0 < ϵ <
√
2
2 , γi ≥ s for

i = 1, · · · , k. Let {ϵ1, ϵ2, · · · , ϵk} be such that ϵk =

ϵ, ϵk−1 = ηλkϵk
20λ1k

, ϵk−2 = ηλk−1ϵk−1

20λ1(k−1) , · · · , ϵ1 = ηλ2ϵ2
40λ1

.

For the ith iteration, let µi ≜ 2λi+1+2ηλi

λi
, f(µi, η) ≜

max{(2 +
√
2)µi, η}. If the initial solution q

(i)
0 satisfies

νi ≜
√

1− |u⊤
i q

(i)
0 |2 <

1− µ2
i√

1− µ2
i + (µi + 1)f(µi, η)

,

and the following two inequalities hold

Ti ≥
log(ϵi/νi)

log
[
µi/

(√
1− νi2 − f(µi, η)νi

)] ,
Bi ≥

cλ2
1[(s+ 2γi) log p+ log(kTi)]

ϵ2i η
2λ2

i

,

where c is a universal constant, then |u⊤
i q

(i)| ≥
√
1− ϵ2i

holds with probability at least 1− s−10.
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Let Q ≜ [q(1), · · · ,q(k)], one can easily verify that The-
orem 2 implies ∥U⊤

k,⊥Q∥2 ≤ 2ϵ. In the experiments, we
empirically show that Algorithm 3 can generates good es-
timates when k is relatively small, e.g., k = 8.

4.2. Streaming Sparse ECA

We now present the performance guarantee of streaming
sparse ECA. We start with the following theorem which
states that the population multivariate Kendall’s tau statistic
K and the scatter matrix Σ under the elliptical model share
the same eigenspace.

Theorem 3. (Marden, 1999; Croux et al., 2002; Han
& Liu, 2013a) Let ECp(µ,Σ, ξ) be a continuous ellip-
tical distribution and K be the population multivariate
Kendall’s tau statistic. Then if rank(K) = q and λj(Σ) ̸=
λk(Σ) for any j ̸= k ∈ {1, · · · , q}, we have

uj(Σ) = uj(K) and λj(K) = E

[
λj(Σ)y2j∑q
i=1 λi(Σ)y2i

]
,

where uj(·) is the eigenvector corresponding to the jth

largest eigenvalue and y ≜ (y1, · · · , yq)⊤ ∼ N (0, Iq).

This theorem states that when Σ has distinct eigenvalues,
Σ and K have the same eigenspace with the same descend-
ing order of the eigenvalues. Based on this, our stream-
ing sparse ECA utilizes K̂ defined in Equation (2) to re-
cover the eigenspace of Σ. We here abuse the notations
and let λk(K) be the kth largest eigenvalue of K and
Uk be the matrix consisting of the eigenvectors of K cor-
responding to its k largest eigenvalues, and suppose that
∥diag(UkU

⊤
k )∥0 ≤ s. The following theorem states the

theoretical guarantee of the streaming sparse ECA.

Theorem 4. For η > 0, 0 < ϵ < 1, and γ ≥ s, let µ ≜
(k+1)λk+1+2ηλk

λk
, f(µ, η, k) ≜ max{ (2+

√
2)µ√
k

, η
k}. If the

initial solution Q0 satisfies that

ν ≜ ∥U⊤
k,⊥Q0∥2 <

1− µ2√
1− µ2 + (µ+ 1)f(µ, η, k)

,

and the following two inequalities hold

T ≥ log(ϵ/ν)

log
[
µ/

(√
1− ν2 − f(µ, η, k)ν

)] ,
B ≥ ck2 (1 + λ1(K))

2
[(s+ 2γ) log p+ log T ]

ϵ2η2λk(K)2
,

where c is a universal constant, then with probability at
least 1 − s−10 the output QT of Algorithm 4 satisfies
∥U⊤

k,⊥QT ∥2 ≤ ϵ.

Notice that all the bounds in Theorem 4 relates to the eigen-
values of K. The connection between the eigenvalues of

K and Σ has been shown in (Han & Liu, 2013a), namely,
λj(K) = Θ(λj(Σ)/tr(Σ)) or each j, when ∥Σ∥F log p =
tr(Σ) · o(1), e.g., the condition number of Σ is upper
bounded by a constant.

5. Initialization
As shown in Theorem 1, 2 and 4, both of streaming sparse
PCA and ECA require an initial solution whose estimation
error is bounded by Equation (4) which involves the intrin-
sic properties of Σ and the number of PCs one wants to
extract. Therefore, how to find such an initial solution is an
important issue. Yuan & Zhang (2013) proposed to adap-
tively select the desired sparsity γ in TPower, i.e., one can
run TPower with a relatively large γ to generate the ini-
tial solution and then rerun the algorithm with a smaller γ,
while (Han & Liu, 2013a) computed the initial solution by
FPS (Vu et al., 2013). In streaming PCA, Mitliagkas et al.
(2013) showed that the initial solution could be generated
by randomly drawing k vectors from the standard Gaussian
distribution.

Due to limitations of space, we mainly discuss the initial-
ization issue for streaming sparse PCA. This can be easily
generalized to streaming sparse ECA. The idea is to run
streaming PCA (streaming sparse PCA with γ = p) on
several blocks of the collected samples and then apply the
truncation operation on its output to generate the initial so-
lution. This is summarized in Algorithm 5.

Algorithm 5 Finding Initial Solution
Input: Samples {x1,x2, · · · }, block size B, parameter θ̄

and γ.
Procedure:
1) Run streaming PCA on several blocks so that the out-
put Q̂0 satisfies ∥U⊤

k,⊥Q̂0∥2 ≤ θ̄;
2) Initialize S̃0 = 0;
for t = 1 to B do

2) S̃0 = S̃0 +
1
Bxtx

⊤
t Q̂0;

end for
3) S0 = Truncate(S̃0, γ);
4) QR-decomposition: S0 = Q0R0;
5) Return Q0.

Theorem 5 provides the performance guarantee of Algo-
rithm 5. Note that the block size B should be Ω(p) to
achieve consistency. However, we observe from experi-
ments empirically this algorithm is able to generate accept-
able results even when B is much smaller than p, especially
when the covariance of noise σ2 is small.

Theorem 5. Fix accuracy ϵ with 0 < ϵ < 1, and let θ̄ =√
ϵ2

ϵ2+8(3+2
√
2)(1+

kλk+1
λk

)2
, then ∥U⊤

k,⊥Q0∥2 ≤ ϵ holds
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with probability at least 1−d−10 if γ ≥ s, ∥U⊤
k,⊥Q̂0∥2 ≤ θ̄

and B ≥ ck2[λ1(A)4d+(2λ1(A)+σ)2σ2p]

(λk(A)2+σ2)2θ̄2 , where c is a univer-
sal constant.

6. Proof Sketch
We now sketch the proofs of the theorems presented in Sec-
tion 4. We start with Theorem 1. The key ingredient of our
proofs is to build a connection between the estimation error
on the τ th iteration ∥U⊤

k,⊥Qτ∥2 and that on the τ + 1th

iteration ∥U⊤
k,⊥Qτ+1∥2. If this error decreases on each

iteration, then one can compute the number of iterations
needed for the estimation error to be less than ϵ.

In the rest of this section, the empirical covariance of sam-
ples {xBτ+1, · · · ,xB(τ+1)} is denoted by Σ̂τ , and the row
supports of Uk, Qτ and Qτ+1 are represented by S, Fτ

and Fτ+1, respectively. We let F ≜ S ∪ Fτ ∪ Fτ+1

and let X(i, j) be the (i, j)th entry of matrix X. For a
p × p squared matrix, e.g., Σ̂τ , let Σ̂τ,F denote the ma-
trix whose (i, j)th entry equals Σ̂τ (i, j) if the row index
i and the column index j are both in F , and 0 otherwise.
For a p × k matrix, e.g., S̃τ+1, let S̃τ+1,F denote the ma-
trix whose (i, j)th entry equals S̃τ+1(i, j) if the row index
i ∈ F , and 0 otherwise. Then one can easily verify that
S̃τ+1,F = Σ̂τ,FQτ and Sτ+1 = Truncate(S̃τ+1,F , γ). Let
S̃τ+1,F = Qτ+1,FRτ+1,F be the QR decomposition of
S̃τ+1,F . In order to establish a relationship between Qτ

and Qτ+1, we first connect Qτ to Qτ+1,F :

Lemma 1. Let ξ = supF :|F|≤s+2γ ∥Σ̂τ,F −Στ,F∥2, then
if S̃τ+1,F has full column rank, we have

∥U⊤
k,⊥Qτ+1,F∥22

≤
[λk+1∥U⊤

k,⊥Qτ∥2 + ξ]2

[λk+1∥U⊤
k,⊥Qτ∥2 + ξ]2 + [λk

√
1− ∥U⊤

k,⊥Qτ∥22 − ξ]2
.

We now connect Qτ+1,F to Qτ+1 based on the perturba-
tion analysis of the QR decomposition and the error analy-
sis of the row truncation operation.

Lemma 2. Let Qτ+1,F,⊥ be an orthonormal matrix such
that matrix [Qτ+1,F ,Qτ+1,F,⊥] is orthogonal and let ξ ≜
supF :|F|≤s+2γ ∥Σ̂τ,F −Στ,F∥2, then if γ ≥ s and

√
k[λk+1∥U⊤

k,⊥Qτ∥2 + ξ]

λk

√
1− ∥U⊤

k,⊥Qτ∥22
<

1

c
,

we have

∥Q⊤
τ+1,F,⊥(Qτ+1 −Qτ+1,F )∥2

≤
k[λk+1∥U⊤

k,⊥Qτ∥2 + ξ]

λk

√
1− ∥U⊤

k,⊥Qτ∥22 − c
√
k[λk+1∥U⊤

k,⊥Qτ∥2 + ξ]
,

where c = 2 +
√
2.

We then prove that ∥U⊤
k,⊥Qτ+1∥2 can be upper bounded

by ∥U⊤
k,⊥Qτ+1,F∥2 + ∥Q⊤

τ+1,F,⊥(Qτ+1 − Qτ+1,F )∥2.
Therefore, by combining the two lemmas above, let ν ≜
∥U⊤

k,⊥Q0∥2, we can show that the following holds with

probability at least 1− s−10

T ,

∥U⊤
k,⊥Qτ+1∥2 ≤

µ∥U⊤
k,⊥Qτ∥2√

1− ν2 − f(µ, η, k)ν
,

if B ≥ ck2λ2
1[(s+2γ) log p+log T ]

ϵ2η2λ2
k

and Inequality (4) holds.
Thus Theorem 1 is established.

Theorem 2 can be proved by analyzing the error propaga-
tion in the iterative deflation, combining with the results
derived from Theorem 1 with k = 1. For Theorem 4, as we
have discussed in Section 3, streaming sparse ECA uses
K̂ as the estimator of the multivariate Kendall’s tau matrix
instead of the empirical covariance of the received sam-
ples. Therefore, Theorem 4 can be established following
the proofs discussed above, together with an upper bound
of supF :|F|≤s+2γ ∥(K̂τ −Kτ )F∥2 shown below.

Theorem 6. Let x1, · · · ,xn be n independent observa-
tions of random vector x ∼ ECp(µ,Σ, ξ). Let K be mul-
tivariate Kendall’s tau matrix of x and K̂ be the empirical
estimation of K which is defined as Equation (2). Then
there exists a universal constant c such that the following
holds with probability at least 1− s−10

T ,

sup
∥v∥2=1,∥v∥0=s

|v⊤(K̂−K)v|

≤c

(
min

{
4λ1(K)

qλq(K)
, 1

}
+ ∥K∥2

)√
s log p+ log T

n
,

for parameter T , where q = rank(K).

Theorem 6 implies that supF :|F|≤s+2γ ∥(K̂τ −Kτ )F∥2 ≤

c (1 + ∥K∥2)
√

(s+2γ) log p+log T
n with high probability.

Then by embedding this inequality into Lemma 1, Lemma
2, we obtain Theorem 4.

7. Experiments
We investigate the performance of our algorithms on a vari-
ety of simulated and real-world datasets. All the algorithms
mentioned below are implemented in Python. The exper-
iments are conducted on a desktop PC with an i7 3.4GHz
CPU and 4G memory.

7.1. Synthetic Data

We first illustrate the empirical performance of our stream-
ing sparse PCA (Algorithm 2) with synthetic datasets. For
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the spike model, we consider two data generating schemes.
The first one, which is similar to (Yuan & Zhang, 2013), is
that matrix A ∈ Rp×2 satisfies that AA⊤ = λ1v1v

⊤
1 +

λ2v2v
⊤
2 , where v1 ∈ Rp and v2 ∈ Rp are two sparse vec-

tors satisfying that

v1i =

{ 1√
10

1 ≤ i ≤ 10

0 otherwise,
v2i =

{ 1√
10

11 ≤ i ≤ 20

0 otherwise,

and λ1 = 5, λ2 = 3. The second one constructs matrix
A ∈ Rp×d by randomly generating two orthogonal matri-
ces U ∈ Rp×d and V ∈ Rd×d such that ∥diag(UU⊤)∥0 =
s, and then setting A = USV⊤ where S ∈ Rd×d is a
diagonal matrix whose diagonal entries are computed ac-

cording to the chi-square density f(x) = x− 1
2 e−

1
2
x

√
2Γ( 1

2 )
, i.e.,

Sii = f( i
20 ) for i = 1, · · · , d. In the experiments, we

repeat each test 20 times and report the average results.

In the first experiment, we make a comparison between
streaming sparse PCA, streaming PCA, FPS and online
sparse PCA (Mairal et al., 2010) for a relative small p.
We use three measurements to evaluate their performance,
namely, the subspace distance defined in Equation (3),
the expressed variance in (Xu et al., 2013) defined as∑k

i=1 q
⊤
i AA⊤qi/

∑k
i=1 λi(AA⊤), and the sparsity de-

fined as
∑k

i=1 |{j : |qij | > t}|, where {q1, · · · ,qk} are
their estimation and t is a threshold which is set to 0.001.
Figure 1(a) shows the results in the first scheme, where
the leading PC is extracted. We observe that streaming
sparse PCA performs similarly to online sparse PCA and
outperforms FPS and streaming PCA. The running time of
streaming sparse PCA is much less than that of FPS and on-
line sparse PCA because FPS needs to solve a SDP problem
via an ADMM algorithm and online sparse PCA needs to
solve the elastic-net (Zou & Hastie, 2005) in each iteration,
whereas our algorithm only requires the truncation opera-
tion and the QR decomposition. Figure 1(b) presents the
results in the second scheme, where we extract the leading
ten PCs. It can be observed that FPS and streaming sparse
PCA have better performance than the other methods. No-
tice that streaming sparse PCA runs more than 100 times
faster than FPS and FPS needs to store the p×p covariance
matrix while streaming sparse PCA only maintains a p× k
matrix.

In the second experiment, we mainly compare streaming
PCA and streaming sparse PCA in the high dimensional
regime since the other two methods are too slow in this
setup. The estimation error is measured by the subspace
distance. The samples are generated according to the sec-
ond scheme described above and we extract the leading
10 PCs. Figure 2(a) shows their estimation errors when
n = 1000, B = 100 and p varies from 1000 to 50000.
Clearly, streaming sparse PCA succeeds in recovering the
sparse PCs but streaming PCA fails when p is large, which
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Figure 1. (a) Scheme 1 with n = 1000, σ2 = 0.5, B = 100,
γ = 10 and k = 1. (b) Scheme 2 with n = 1000, d = 10,
σ2 = 0.2, B = 100, s = 50, γ = 50 and k = 10.

is consistent with the theoretical results shown in Theorem
1. Figure 2(b) presents the number of samples required for
recovering the leading 10 PCs of accuracy ϵ ≤ 0.03 where
B = 100, which shows that streaming PCA requires much
more samples than streaming sparse PCA to achieve the
same accuracy. Figure 2(c) shows the effect of block size
B on their performance, where n = 1000 and p = 5000.
When B is too small, e.g., less than 60, streaming sparse
PCA does not guarantee the convergence to the true PCs,
which agrees with Theorem 1. Figure 2(d) demonstrates
the probability of success of streaming sparse PCA, mea-
sured by the fraction of the trials in which the estimation
error is less than 0.05. We here set n = 1000 and B = 100.
We can observe that the tolerance of σ2 decreases as p in-
creases when B is fixed. This is because both of p and σ2

affect the lower bound of B as shown in Theorem 1.

We now compare our streaming sparse PCA/ECA with
ECA (Han & Liu, 2013a) under the elliptical model. In
the following experiments, the samples are independently
drawn from ECp(0,Σ, ξ). Here, Σ is constructed accord-
ing to Σ = AA⊤ + Ip where A is generated following
the first scheme described above, and ξ follows the chi-
distribution with degree of freedom p or the F-distribution
with degrees of freedom p and 1. We estimate the leading
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Figure 2. (a), (b) and (c) show the comparison between streaming
PCA and streaming sparse PCA, where σ2 = 0.2, k = 10 and
γ = s = 100. (d) presents the effect of σ2 on the performance of
streaming sparse PCA.
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Figure 3. Comparison between ECA, streaming sparse ECA, and
streaming sparse PCA. Random variable ξ follows (Left) the chi-
distribution χp, and (Right) the F-distribution F (d, 1).

eigenvector of Σ. Figure 3 plots the subspace distances be-
tween their estimation and the true PC against parameter γ
for these three methods, where we set p = 500, n = 600
and B = 100, which shows that streaming sparse ECA per-
forms similarly to ECA and is better than streaming sparse
PCA especially when γ is close to s. Typically, streaming
sparse ECA is much faster than ECA when p or n is large,
because ECA computes the second order U-statistic esti-
mator and uses FPS to construct a good initial solution. In
this experiment, on the average, ECA needs 30s to gener-
ate its solution while streaming sparse ECA only requires
30 milliseconds. Figure 4 shows the comparison between
the “streaming” versions of PCA, ECA and sparse PCA in
the high dimensional setting where p = 10000, n = 2000
and B = 100. Clearly, streaming sparse ECA outperforms
the other two methods in the elliptical model.

7.2. Real-world Datasets

We use two large datasets, the NIPS paper dataset and the
NYTimes news articles dataset, both available from the
UCI Machine Learning Repository (Bache & Lichman),
to compare the empirical performance of streaming sparse
PCA, streaming PCA and large-scale sparse PCA (Zhang
& El Ghaoui, 2011). Both datasets record word occur-
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Figure 4. Comparison between streaming PCA and streaming
sparse PCA/ECA. Random variable ξ follows (Left) the chi-
distribution χp, and (Right) the F-distribution F (d, 1).

1 2 3 4 5 6 7 8

k

0 .16

0 .18

0 .20

0 .22

0 .24

0 .26

0 .28

0 .30

0 .32

E
x
p

la
in

e
d

 v
a

ri
a

n
c

e

S tre a m ing PCA

S tre a m ing S PCA

La rge -sca le  SPCA

1 2 3 4 5 6 7 8

k

0 .00

0 .02

0 .04

0 .06

0 .08

0 .10

0 .12

E
x
p

la
in

e
d

 v
a

ri
a

n
c

e

S tre a m ing PCA

S tre a m ing S PCA

La rge -sca le  SPCA

Figure 5. (Left) NIPS dataset. (Right) NYTimes dataset.

rences in the form of bags-of-words. The NIPS dataset
contains 1500 articles and a dictionary of 12419 words.
The NYTimes dataset contains 300000 articles and a dic-
tionary of 102660 words. We evaluate the performance
by the fraction of explained variance which is defined as
tr(U⊤XX⊤U)/tr(XX⊤) where X ∈ Rp×n is the sample
matrix and U ∈ Rp×k is the output. Parameters B and γ in
streaming sparse PCA are set to 300 and 500, respectively.
The leading k PCs are computed via the iterative deflation.
Figure 5 plots the explained variance against k. We observe
that streaming sparse PCA performs similarly to streaming
PCA and is better than large-scale sparse PCA, in terms of
the expressed variance. One advantage of streaming sparse
PCA is that it is computationally efficient and guarantees
the sparsity of its solution, i.e., γ = 500, without much
loss of performance compared to streaming PCA.

8. Conclusion
In this paper, we propose streaming sparse PCA/ECA for
dimensionality reduction of high dimensional data gen-
erated according to the spike model and the elliptical
model, and establish finite sample performance guarantees.
The experiments validate that they perform better and are
more computationally efficient than the other alternatives
to PCA.
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