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1. Preliminaries

Theorem A-1. (Theorem 3.1, (Chang, 2012)) Let A € R™*"™ be of full column rank with QR factorization A = QR,
AA be a perturbation in A, and A + AA = (Q + AQ)(R + AR) be the QR-factorization of A + AA. Let P a and
P a1 be the orthogonal projectors onto the range of A and the orthogonal complement of the range of A, respectively.
Let Q_ be an orthonormal matrix such that matrix [Q, Q_ ] is orthogonal. Define ko(A) = ||All2||At||o, where AT is the
Moore-Penrose pseudo-inverse of A. If

[AA|F

(1+V2)ka(A) TAls

<1,

then
IQ]AA|F
2(A) Ay,

IPA-AQ|r < :
1= (1+v2)ry(A) Lo3E

Lemma A-1. (Lemma 14, (Loh & Wainwright, 2012)) If X € R™*% is a zero-mean sub-Gaussian matrix with parameters
(X, 02), then for any fixed unit vector v € R and any t > 0, we have

AN
BV — E[[Xv]3]] > nf] < 2exp (—cnmm (04, U)) ,

for constant c that depends on o.

Theorem A-2. Let F be a subset of {1,2,--- ,p} with cardinality | F| = s. For matrix X, Xz denotes the submatrix of
X determined by the set F, i.e., extracting the entries of X whose row and column indices are both in F. Suppose that
there are n samples {x1,--- ,Xp} drawn from the spike model we have described in Section 2, then the following holds

with probability at least 1 —
slogp +logT
< o[y L5

2

s
T

sup
FClIn],|Fl=s

e 7
=Y xx] -3
(nrlxxl )F

for parameter T and constant c.

Proof. In the proof, the constants may vary from line to line. Notice that if we can show that the inequality

|

1 n
(ﬁ Z;Xixj - 3X)F

2t
> t] < 2exp (clnmin <4, 2) + 025> (A-1)
ct' o
2
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holds for all t > 0 and any fixed F, where c¢; and ¢, are universal constants, then by the union bound, we have

2t
> t] <2p° exp (—cmmin <4, 2> + 025>
) ot o

2t
=2exp <—cln min <4, 2> + @slogp) .
ot o

The right hand side of (A-2) can be equal to 5;0 when t = co?,/ M for large enough n and constant c. Notice

that 0 = c38Uprc(,) 7|5 |ZFll2 < c3]|%|2 for a certain constant c3, we obtain Theorem A-2. To prove Inequality
(A-1), we apply Lemma A-1. Let x; » € R® be the vector constructed by selecting the entries of x; whose indices are in
F., then we have E[x; X, z] = X . Let Xz € R"** be the matrix whose i'" row is x;] ». From Lemma A-1, for fixed
unit vector v € R® and ¢ > 0, there exists a universal constant ¢ such that

P sup
FCn],|F|=s

1 n
(ﬁ ; XiXiT - X)F

(A-2)

A ZEE
IP’[|||X]:V||§ — E[”X}'VH%” > nt] < 2exp <—cnm1n <U4, 02>) ,

(0t
>t| <2exp | —cnmin —' 3 .
ot o

Suppose that A is a 1/3 cover of Sy = {v € R* : ||v|2 = 1}, then for any v € S, there exists a certain u € A so that

or equivalently,

1
P H —VTX;XFV — VTE]:V
n

lu—v|s < 1/3. We define ¢(vi,va) £ |v] (% - E;) V|, then
sup ¥(v,v) < sup ¢(u,u) + sup 2¢(v —u,u) + (v —u,v—u).
vES, ucA VES,,ueA, |lu—v|2<3

Since [u—v||z < 3, we have sup, cs, ¥(v, V) < supyec 4 (u,u)+ (3 +§)supycs, (v, v). Hence sup, e s, ¥(v,v) <
9 supye4 ¥(u,u). Since | A| < 9%, the follows follow from the union bound,

9 2t
P {sup Y(v,v) > t} <P { sup ¢¥(u,u) > t] < 9°.2exp (—cnmin <4, 2)) ,
veS, 2 uc A g% O

[t
P >t| <2exp | —cinmin 5 ) tcees .
) ot o

Hence we obtain Inequality (A-1). [

which implies that

1 n
.
- g Xi, FX;Fr — UF
=1

Lemma A-2. (Lemma 11, (Chen & Caramanis, 2013)) If samples {y1,--- ,y»} are independently drawn from N (0,1,)
and samples {z1,- - - , 2, } are independently drawn from N (0,1y), then

|

Theorem A-3. Suppose that there are n samples {x1,- -+ ,x,} drawn from the spike model we have described in Section
2, then the following holds with probability at least 1 — d—1°,

1 — d
=N xix! — 8| < A3 + 0] Az + 0%y /2,
n P n n

2

n

S !

i=1

> t] < 2exp (—cln min (tz,t) + c2 max{p, d}) .
2

where c is a universal constant.
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Proof. Since x; = Az; + w;, we have

n
1 E T
_ XX, —
n -

1=1

n

1
Z(AzlzlAT +wiz; AT+ Az;w] +w;w,) — (AAT +0%L,)
n
2

i=1
A(iizw ) ZWZ R
i=1

1 n
Al = iz, — I AT
From Lemma A-2 and the proof of Theorem A-2, the following inequalities hold with probability at least 1 — d~1°:

2

<

+2
2

i=1 2

1< T d |1 Tl < max{p7 d} 52 [P
EZZZZ’ c — EZziwl <co wa —o? <co )
i=1 =1 2 2
where c is a universal constant. Hence this theorem is obtained. O
Theorem A-4. Let k(-) : RP? x RP — RP*P be a matrix value function defined as k(x,y) = % LetXq, -+ ,Xp

be n independent observations of random vector x. Suppose that n is even and K £ E[k(x,X)] exists where X is an
independent copy of x, then we have

n/2 3nt? )
pexp (— e ) S 1Kl
P § k‘ X21 1’X2l _K| >t| < 16(H?Tl|t2+”KH§)
, p-exp —416(1+\|K\|7)) ; t > [|K][2.

Proof. We let m = n/2 and S; = Lk(x2i—1,%2;) — —~K, then we have 2 37" /1 k(x2i-1,%x2;) — K = >, S; and
E[S;] = 0. Note thatfori = 1,--- ,m,

1 1 1
[S: — E[S:]|l2 = EHk(Xm—th) - K]z < E(Hk(xzi—hxm)ﬂz +[[Kll2) = E(l + [1K]|2),

1 1.\?
(k(XZi—hXQi) - K) ]
m m

1
: = [ s )] - K,

2

= (32 s) &[], =

1 1
<— (|[B [Feair x20)?] [, + K3) = — (IK[l2 + [ K])

From the Matrix Bernstein 1nequality (Tropp, 2012),

m 2 2 (IKl2+IKIZ)

1 P - exp —7’&) t< mi K
P [ ’m S k(o 1,%00) ~ K| > t] < SR+ TETE) i)~ 1Kl

i—1 9 P eXP (3K ) ° otherwise.

Hence this theorem holds. ]

Theorem A-5. Define S(x) £ Sor random vector x and its independent copy X. Let k(-) : RP x RP — RP*P pe a

Hx XH
— w
Ix—vl3

x ~ EC, (1, 3, €). Suppose that n is even and let K = E[S(x)S(x) "] and K22 Zn/z k(X2i—1,X2;). For any v such
that ||v||2 = 1, if the following inequality holds,

matrix value function defined as k(x,y) = Letxy,--- , X, be n independent observations of random vector

ex viS(x))? -v Kv ex %), for £ -
Elexp(t[(v " 5(x)) Kv])] < exp(nt®), fe té\/ﬁ, (A-3)

where cq is a constant and nn > 0 only depends on the eigenvalues of 35, then the following holds with probability at least

—10
. /s logT
sup |VT(K — K)V| S C’I’}% w’
Ivll2=1,[Ivllo=s n

S
1- 2,

for parameter T and constant c.



Streaming Sparse Principal Component Analysis

Proof. The proof is similar to the proof of Lemma 8.2 in (Han & Liu, 2013). For simplicity, the constants may vary from
line to line. Suppose that A is a 1/3 cover of Sy = {v € R® : ||v||2 = 1}. As shown in the proof of Theorem A-2, we
know that for any symmetric matrix X, supycs. [v' Xv| < §sup,e4 [v' Xv]. Let F; be a subset of {1,2,--- ,p} with
cardinality |F;| = s. For square matrix X, X z, denotes the submatrix of X determined by the set Fg, i.e., extracting the
entries of X whose row and column indices are in F;. For vector x, x r, selects the entries of x indexed by F5.

Let 5 = cn% \/@ for constant c. By the union bound, we have

P|sup sup |v (K—-K)zv|> ﬁ <P |sup sup |v' (K—-K)zv|>g
vESs FsClp] veAF.Clp]

. 1 /sl logT
<9°p°P [VT(K —-K)rv| > 2 w7 for fixed v,fS] .
n

Therefore, if we can show that for fixed v and F,

) (A-4)

P [|VT(K - K)rv|> ,8} < Qexp(cnnﬂ2

then we have

> 1 logT -10
95p°P [VT(K —K)£v| > en?y /w7 for fixed v,]-'s‘| < 2exp(—c(slogp +1ogT)) < ST
n

holds for a certain constant ¢, which implies this theorem. We now prove Inequality (A-4). Let m = 3, forany 0 < ¢t <
com

\/,77 s

. 1 m
E [exp(th(K — K);Sv)} =E |exp | tv' (m Z k(x2i—1,%2;) — K) v
i=1

FS

[exp ( Z" (xai1,%2:) — K) 1. v)] = (E [exp (7; v (k(x2i-1,%2i) — K) 7. v)])m
= (e <;<<st<x>g>2 - vTKfsv>)])m <exp(lL),

where the last inequality follows from (A-3). Suppose that 3 < 2cg,/7 (this can be satisfied when n is large enough, i.e.,
cy/ M < cp)and lett = %;L then by the Markov inequality, we have

2
P [VT(K ~K)rv > 5} < exp(~ "y
n
By symmetry, we have the same bound for P |:VT (K -K)rv<— B] . Hence we obtain Inequality (A-4). [
Theorem A-6. Let k(-) : R? x R? — RP*P be a matrix value function defined as k(x,y) = CNNT X1, ,Xp

x—vl3

be n independent observations of random vector x ~ EC, (1, X, €). Suppose that n is even. Let K = E[S(x)S(x) ]

>

K 2 2 Zn/ k(x2i—1,X2;) and ¢ = rank(K), then there exists a universal constant ¢ such that the following holds with
—10

probability at least 1 — *+—,

- . [4M(K) [slogp +logT
sup |VT(K7K)V| Sc(mln{ ,1}+|K2) _—
Ivll2=1,][vllo=s qAq(K) n

Proof. Apply Theorem A-5 and follow the proofs of Lemma 8.3 and Theorem 4.2 in (Han & Liu, 2013). O

for parameter T.
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2. Proofs in Section 4

In this section, we show the theoretical performance guarantees of our algorithms regardless of the requirement that the
initial solution Qo satisfies [|[U; | Qol| > €. The results in the paper can be easily obtained from the following theorems.

2.1. Streaming Sparse PCA

Recall that each sample is independently drawn from the spike model x; = Az, + w; where z; ~ N(0,1;) and w; ~
N(0,0°1,). The covariance matrix of x; is denoted by X, i.e., ¥ = E[x;x;] = AAT + ¢%I,. Welet ¥ = UAUT
be the singular value decomposition of 3, and let A\, be the kth largest eigenvalue of X Wthh equals Agy, and Ay be
the diagonal matrix such that the first & diagonal entries of Ay are equal to A1, - - - , \g, respectively, while the rest entries
are zero. Let U, € RP*F be the matrix consisting of the leading & eigenvectors of X, i.e, the first £ columns of U, and
Uy, 1 be the matrix consisting of the last p — k columns of U. By the assumption, we know that Uy, is row sparse, i.e.,
IUk|l2,0 < s where ||Ug]|2,0 is the number of non-zero rows in Uy. In Algorithm 2, Q- is the solution generated on the

L B(r+1)
7 — Literation, S; 41 = £ >y (T;H xx; Q,, S

controls the desired sparsity.

++1 = Truncate(S,;1,7) and S; 41 = Q1R 1 where parameter

We denote the row support of Uy, Q, and Q, 1 by S, F» and F, 1, respectively, and denote 5 Zf (;tlﬂ xtxt by E
Let F = SUF; U]—'TH, and X (i, 7) be the (i, 7)™" entry of matrix X. For a p x p squared matrix, e.g., 3, we let 33, = be
the matrix whose (i, j)*" entry equals 32 (z 4)ifi,j € F or 0 otherwise. For a p x k matrix, e.g., S, 1, we let S, 1 7 be
the matrix satisfying that STH,}-(Lj) = S7—+1(7,7j) ifi € F or S-,—+1’]:(Z,j) = 0 otherwise. In other words, ETf selects
the entries whose row index and column index are both in F while §T+17 7 selects the entries whose row index is in F.
One can easily verify that §T+17}- = fJT,;QT and S, 1 = Truncate(gTH,Jr7 7). Let the QR decomposition of STJ,.]_’]-' be
Sri1,7 = Qry1,7Rri1 7.

2.1.1. PROOF OF THEOREM 1

9, then if STH, F has full column rank, we have

Lemma A-3. Let W, = 3. — X_ and s+2y = SUDF. | Fl<si2y W, ~

[/\kJrl HUELQTHQ + §s+27]2
Nt 104 L Qrllz + Es2q)? + Py /1 = U] L Qr[l5 — &s25]?

2, there exists vector v so that the following holds,

10, LQrs, 73 <

Proof. By the definition of || - |

HUQLQTJr1 72 = HUJLQTH,FVH% _ ||U2,LQT+1JR~T+1JO||§
7 | VI3 IR7+1, 73
UL S FvIE UL Sri1,7v]3
CISe VB OIS AV U] Se 3

-1
R 7V

where v = ——
IR ;1 #vi2

(R;il, F €xists since §T+1, 7 has full column rank).
We now bound ||U2’J_§T+1,;\7H2 and ||U]}'S,; 41, 7V||2. Since S C F, we have £ = 3 and

UL Sr11.7V]2 = UL 27 7Q, 92
=|U} (5 + W, 5)Q, |2
>|[UlZ£Q, vz — |[U W, Q. V|2

>|AU QY2 —  sup  [Worl
F:|F|<s+2vy

>MIUTQv]la—  sup Wi r|a
F:|F|<s+2vy

A /1= U1 QB =  sup W x|
F:|F|<s+2vy
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Similarly,
||UIILST+1,J:{’H2 :HU;—’lﬁ)T’}-QT{;HQ
=UL L (BF + Wr 7)Q: 92
<UL B7Q 92 + [[UL L W, 7Q. ¥

<A =ADUL L Qr¥]2+  sup [[Wozll
Fi|F|<s+2v

XellUL 1 Qrlla+  sup  [[Wo 2|2,
FiF|<s+27

Hence we have

U1 Qrir7l3
Mes1l|UL L Qrllz + supr, £j<sioy [Wrzll2]?

< .
Mer1lUL L Qrllz + 5upr 7 <pon (W zll2]? + iy /1= 10y L QI3 — supzzi<iay [Wr Fllo]?

Let {512y = SUD £, Fl<st2y [|Wr 7|2, then

[Akt1 HUZ,J_QT”Q + fs+27}2
Mot 10 Qrllz + Esr29]2 + iy /1 = UL L Qr I3 — ooy )?

||U/cT,LQr+1,f||§ <

Hence we obtain this lemma. O

Lemma A-4. Let Q.41 7,1 be an orthonormal matrix such that matrix Q.41 7, Qr41 7, 1] is orthogonal. Let W, =
9, then if v > s and

Y, - X, and fs+2’y = SuP]—';|]—'|§s+2’y ”W‘r,]:

VEXe41 UL L Qrll2 + €or2v] !

Aey/1- U7, Q.3 2+ V2

(A-5)

we have

kXei1lUL L Qrll2 + Eovan]
Mey/1 = 10L Q13— 24 V2)VEN 11U} L Qrll2 + Esyay]

Proof. Suppose that Q, = U, A + U | B, then

HQI+1J,¢(QT+1 —Qri1,7)l2 <

Sri17 =2, 7Q; =3rQ, + W, Q.
=UAU' (UyA + U 1 B) + W, Q,
=UpA A +UA - Ap)B+ W, £Q,.

Denote F \ S by 8¢ Let ASTH’}- be the matrix whose the i*” row equals the one of g7+1,f if 7 € 8¢ or 0 other-
wise, i.e., AS; 11 7 = S;11.7 — Sry1.5. Since AS, 1 7 € RP** the row support of Uy, is S and ||U;J_QTH2 =
HU;’LUk,LBHZ = ||BH2, we have

|AS 1,7 llF <VE|AS, 11,72
<VE|UA = A)B+ W, Q.|

<VEMes1|Blla+  sup Wy z|2]
F:|Fl<s+2vy

—VEM1 UL Qrlla+ sup  [Wo #]fa).
F:|F|<s+2~v
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Recall that the row support of S;q is Fr41, and S;41 = Truncate(S;11 5,~) where the truncation operator sorts the
lo-norms of the row vectors of S;; 7 and then selects  rows with the largest lo-norms. Since v > s, or equivalently,
|Fri1] > |S|, we have

18741 = Seq1. 73 =lSr41.7, 41 = Srv1. 7% = [Sr41.741 — Srvr.suse |
=S+ 11,7 usaFan lF = [1Sri1.8v5 4 IF + 1S+ 11,8007, I
<IIS741,7 n\slF + [Sr11.8005 1 IF < ISrt1,s:1F = A1 717
where the first inequality follows from the definition of the truncation operator and the fact that |S \ Fr11] < |Fr41 \ S)-

Hence

ISr1 = Srirzllr < VRN UL Qellz+ sup [Wr zl2]. (A-6)
F:|F|<s+2vy

We now bound the minimal singular value of S, 1 7, which is denoted by dyin(S++1 7). By applying the Weyl’s Inequal-
ities,

5min(ST+1,]—') Z(smin(UkAkA> - HU(A - Ak:)B + WT,}'QTH2

Z \/ 5min(ATAiA) - Ak-‘,—lHBHZ - sup ||WT,.7:H2-

F:|F|<s+2vy
Note that 5min(ATAiA) > A/ Omin(ATA) > \p/1 — ||B|2 where the last inequality follows from that AT A +
BB = I}, which implies that §,,;, (AT A) > 1 — || BT B||2. Thus,

1 ~
&t - 6rnin(s‘r+1,]:) 2 Ak: 1-— HUZJ_QT”% - Ak+1‘|U;g|:LQT||2 - sup HWT,]:”Q; (A'7)
ST 11 7ll2 Fi|FI<s+2y

Note that when Inequality (A-5) holds, the right hand side of (A-7) must be positive. One can also verify that when
Inequalities (A-5), (A-7) and (A-6) hold, SIHfHQHSTH —S,11.7|lF < V2 — 1. Then from Theorem A-1, we have

KJZ(ST—&-l .7-—) S
) IS+y1. 7l
1Q 151 Qi1 — Qrir )l < T Sen sl
1-(1+ \/§)HQ(ST+1,.7:)M

IS++1,7ll2

. i
Q41,71 (Sr+1=8S+41,7)llr

”QLFLJ-',J_ (S7—+1 - ST-HJ") ”F

w g~ A VDISrs = Seprlr
T+1,F
\/E||Q7T+1,.7:,J_(ST+1 —Sri1.7)2
- ﬁ — (1+V2)[Sr41 = Sry17llF
TH1,F

VEIST #ll2lISr4+1 — Sri1. 7l
1=+ VRIS, AllalISr1 — Sria Flle

Let {542y = SUD £, F|<st2y | W7, 7|2, from Inequalities (A-6) and (A-7), we have

1Q41 7.1 (Qra1 — Qrir7)ll2
<Q41 7.1 (Qrt1 — Qi F)llF
k41U Qrll2 + Earay]
M/ 1= 107, Qe 113 = M U] L Qe — Earoy — (1 + V2IVEDw 1 [U] | Qrlla + €52y
< kAk+1 UL Qe 2 + &2

“oey/1= UL QB — 2+ VEOVEN1 U] Qo lz + €20

Hence we obtain this lemma. O

<
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Lemma A-5. Forn >0,0<e<1,T>0and~ > s, let u = W\%M and f(u,n, k) = max{ (2+ff)“ +1, then
if the block size B satisfies
ck*X3[(s + 27) logp + log T

e2n2\3

B> (A-8)

and the initial solution Qq satisfies

—pf (1, k) + /1 + fu,n, k)? — 2
L+ f(u,m, k)? ’

—10

the following inequality holds with probability at least 1 — =

max{[[ U} | Qoll2, €} < (A-9)

W
max{[| Uy, Qoll2, €} = f(p,n, k) max{|[U} | Qoll2 €}

UkiQT+1”2_\/1 max{| U} | Q;|l2,€}.  (A-10)

A

Proof. We use the same notation as Lemma A-4. We let §, = \Ug 1 Q-||2 and let ¢9 = max{6y,e}. Suppose that
Qri1=Qry1,7A+ Q; 11 7 1 B, then
||U;,¢Qr+1\|2 §||U;¢Qr+1,fA||2 + ||U;—,J_QT+1,}',J_BH2
<UL L Qrirxll2 + 1B
:HUkT,J_QT+1,J'_||2 + ||Q7T+1,]-',J_(QT+1 = Qry1,7)l2-

Since B satisfies (A-8), Theorem A-2 implies that {42, < ”Ek)"“ holds with probability at least 1 — % One can
easily verify that Inequality (A-9) implies that there exist o and S such that o < 1, n8 < 1, %% < By/1—¢3 and

Z2((k + 1) Akgr + 20\l do < adiy/T— 93, e.g,

_ @+ V2R + DN +20M]  do and § — P
VE 1—¢2 k/1— §2
This theorem can be proved by mathematical induction. We suppose 0. < ¢( and then prove 6,1 < ¢g by showing that
Inequality (A-10) holds. Since 6, € < ¢g, we have
VENe10r + oty < VEN1¢0 + 1925] <> 1
Ay/1 — 602 - Ae/1— @2 T24V2 242

As shown in Lemma A-4, this inequality implies that QTH, # has full column rank. Hence we can apply Lemma A-3 and
Lemma A-4,

[Ak+10- +€s+2ﬂ2
Aet10r + Eopoqy]? + [Ae/1 = 02 = Ep04]?
o < k[)\k+19 +§s+2'y] '
Aky/1 2+ V2)VEN 107 + Esr29]

We first consider the case where 6, > €. From the definition of « and [ above, we have

2
Akt + T35)%02 B B i e

(Mgt + BE)202 + [N /T— 02 — 120,12 = | (1—nB)A\ey/1— 62|

(kX+1 +nAg)0- < (kXet1 +nAi)0-

N/ T =02 = 222 (b +he)0, (1= a)hiy/T— 02

U1 Qrir,7l3 <

||Q'r+1 fL(QT+1 QT+1 .7:)

”Ul-cr,LQT—Q—l,]:”g <

1Q 171 (Qr1 — Qryr )2 <

which implies that

(M1 + 120, (kAk+1+nAk)e o (DA + 20\

‘r U T > 97’7
w2 IH'Q +illa < (1 =nB)Aky/1— 62 Aey/1—602 7 (1 —max{a,nB}) /1 — ¢2
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where the last inequality holds because 6, < ¢y. Denote M\%M by u, then we have

"

/1_¢0 max { 2+f)u n}¢

< 1, or equivalently,

97’+1 S

Clearly, when 0 :
early, when U < m—max{%»%}%

— umax{ 2+ff)u "}+\/1+max{(2+‘[)” ny2 _
1 + max {(2+\f)u Y2

¢g <

0 will decrease in each iteration, i.e., 6,1 < 6, < ¢q. For the case where 6, < ¢ < ¢, one can follow the same proof

above and obtain B

V1 — ¢3 — max{ 2+\[‘)“ "}(;S

#}, we conclude that

041 <

Let f(u,n, k) 2 max{ ZE2,

max{0,, €}

07’+1 § K
V 1- ¢3 - f(/lﬂ?» k)(ﬁ()

when ¢y < 2AC ’i)ifv( IJ;J;C)’; k)" . Hence this lemma holds. O

Theorem A-7. Forn > 0,0 < e < 1, and y > s, let p = W\%M [l k) & maX{(H\/\g# i} and
9(Q,e) & maX{HU;J_QHQ, €}. If the initial solution Qg satisfies that

1— p?
9(Qo,€) < ; (A-11)
’ L—p?+ (p+ 1) f(pm, k)

and the following two inequalities hold

7> log(¢/9(Qo; €))
log [u/ (W S, m,k)9(Qo, ))}

ckz)\z[(s +27)logp + log T
= ENCpY) ;

(A-12)

where c is a universal constant, then ||U,—';LQT||2 < ¢ holds with probability at least 1 — s~ *°.

Proof. This theorem can be easily derived from Lemma A-5. Notice that

—pf (0, k) + 1+ (o, k)2 — 2 1—p? o 1—p?
L+ f(p,m, k)? wf(om k) + 1+ flun, k)2 = p2 — /1= @2+ (u+ 1) f(un, k)

which means that (A-11) implies (A-9). In order to make HU; 1 Q|2 < e, one should ensure that the number of iterations
T satisfies that

T
T ) 10

which implies (A-12). O]

Corollary 1. When k = d, one can set 1) in Theorem A-7 to %‘:1)”2 so that . = % {1 + %} and f(p,n, k) =

2+v2
va *
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= (d+1)>‘d>\21+2”>‘d and (2+\}§)“ > 1. H

Corollary 2. When k = 1, one can set 1) in Theorem 1 to %21)‘2 so that = % + )\—2 and f(p,m, k) = (2 + v2) .

Proof. 1t can be easily verified that

Proof. The proof is the same as that of Corollary 1. O

2.1.2. PROOF OF THEOREM 2

Lemma A-6. Let ; = q) — the estimation of the t'" leading eigenvector ut of 3, and 3 2 % ZB 1 X1XT be the

empirical covariance matrix of these B samples. Define 3, = H;fll(I ;0 ) 3 - H;ll (I—-u,a ) and ; =

I—uz IR I—uz fla] gl < efori=1,- ,t—landegi,whereuu_lsanorthogonal
= 1 1= 1 7, L 2 s
matrix such that [u;, u;, L] is ()rthogonal then for any fixed F, we have

(2 =20 7ll2 < (14 10t6) [ (B0 — £) 7|2 + 10te]| S|l (A-13)
Proof. Notice that
t—1 t—1 t—1 t—1
18— 07l = ([T - dy8)) - o [[E - dy0)) — [T~ win)) -2 T~ ww) )zl
j=1 j=1 i=1 i=1

=
(T =10, )81 (T = 0;0]) = (T—wqu, B (T—wgul )72
<A = wou ) (B = D)X= wau )+

||((ut 1w =0 ) (T a8 )+ (= wegu) )3 (wqu) ) — 10 )) 7
<(Beo1 = Be1)Fll2 + 20010 —wgu ol Ze 1]

>

T

<(Bimr = Bim1) Fll2 + 2l a—1iy 5 — wegu) 2] Bl

Letv, ; =10, 1 —uy_y,since ||[i;_1][2 = 1 and ||u:_17Lﬁt,1\\2 < ¢, we have

1
ullvt,l = —§||vt,1|\§7 and |1 + u;rflvt,1| >V1—e2

which implies that ||v;_1[|3 < 2(1 — V1 —€2) = # < 2¢2 < 1. Hence

”ﬁt—lﬁ;r—l - ut—lu;r_1||2 :”Vt—lu;r_l + ut—lvj_l + Vt—1V:_1H2
<2+ [[vi-1ll2)[vi-1ll2 < Be.

Thus, |3, — Z¢lla < [|Z¢_1 — 1|2 + 10€][Zo]|2, which implies (A-13). O
Theorem A-8. Letn > 0,0 < € < \f vi > sfori=1,--- k. Let{e, €2, - ,€x} be such that e, = €,€_1 =
Bokck eh—2 = 472'31?2;5_1;7“' ce1 = 22 For the ith iteration, let p; & 22 £ n) £ max{(2 + v/2) i, n}
and g(qé ), ;) = max{y/1 — |[u, qq () |2, €; }. If the initial solution q( 2 satisfies that

(i L—pf

g(qO 7€i) < B
V1= + (i + 1) f i)
and the following two inequalities hold

cAi[(s + 2v;) log p + log(kT;)]

log(e ,
T, > g( z/g(CI() €)) 62772)\2 ’

" og [m/( 1—g(al’,e)? — f(pim)g(al e ))}

, and B; >

where c is a universal constant, then |ujq(i)\ > /1 — €2 holds with probability at least 1 — s~ 1°
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Proof. We use the same notation as Lemma A-6. By following the proof of Lemma A-5, we only need to select B; on the
th jteration so that SUP . Fl<st2y; [(Bi — i) 7ll2 < mAie;. By Lemma A-6 and Theorem A-2, we have

sup H(E > )]:HQ (1 + 107¢;_ 1) sup ||(20 — E)]—'”Q + 10’L'€i,1||2”2

Fi| Fl<s+27vi F:|F|<s+2v;
nAi€i A nAi€i
=1+ sup 3o —X)rl2+ 32
L+ 5% (5= D)l + S
> 7)\1'61'
<2 sup (S - B)rle + 157 < ki
Fi|FI<s+2v;
holds with probability at least 1 — 57— ° when B; > ¢ [(HQ”Q 1;’2g/\’;+1°g(kT )] ]

2.2. Streaming Sparse ECA

As we have discussed in the paper, the difference between ECA and PCA is that ECA considers the multivariate Kendall’s
tau estimator instead of the empirical covariance matrix as its input. The multivariate Kendall’s tau matrix is defined as
follows:

< AT
x —X)(x —Xx
Kog =R
% —x][3
where x is a random vector and X is an independent copy of x. Let x1, - - - , x,, be n independent realizations of a random

vector x ~ EC, (1,3, €). Han & Liu (2013) considered a second-order U-statistic as the estimator of K, which averages

(i =) (xi =) T
i =, 2 . | . . :
streaming data model. Without loss of generality, we assume that n is an even number. If  is odd, one can just use n — 1

samples. We consider another estimator of K:

for all 7, j such that 4 # j. This estimator has high computational cost and is hard to be extended to the

n/2

K2 EZ Xoi—1 — Xo;)(X2i-1 — X2;) |
n [%2i-1 — x2: (|3
Xn_1—Xn th :

S T —T }. Recall that the £*" largest eigen-

value of K is denoted by A, (K), Uy, are the leading % eigenvectors of K and Uy, | is an orthogonal basis of the perpen-
dicular subspace to the one spanned by Uy,. Then we have the following theorem.

In other words, K is the empirical covariance matrix of { H):(II:):(;HQ e

Theorem A-9. Forn > 0,0 < ¢ < 1, andy > s, let p = W\%Q"’\" flp,m k) & max{(Hf’L 1} and
9(Q,e) & maX{HU;J_QHQ, €}. If the initial solution Qq satisfies that

1— p?
L= 42 4 (u+ 1) f (k)

g(Q07 6) <

and the following two inequalities hold

log(e/0(Q0.)
tog [0/ (/1= 9(Qo, ) = £l K)9(Qo,) )|

ck? (1+ M (K))* [(s + 27) log p + log 7]
212\ (K)2 '

T>

B>

where c is a universal constant, then ||U] | Qr||2 < € holds with probability at least 1 — s~1°.

Proof. From Theorem A-6, when B > (4 (I{E)z);[gskﬁg)zlog ploeT] e know that SUD|ly [o=1,|v]lo=s |V (K-K)v| <
O
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3. Proofs in Section 5

€2

€2 +8(3+2v) (1+ it )2’

A 1 K2[||Al2d+(2]|A 252 . .
U] Qoll2<f0and B> *© (Al +§\2%2 l242)"0"P) \here ¢ is a universal constant.
’ k

Proposition A-1. For0 < e <1, letf =

then ||U£LQ0||2 < € holds with probability at least

1—d 0y >s

Proof. We follow the proof of Lemma A-4. Let W = 3 — X, then |W ||, < %é with probability at least 1 — d~'° when

B> Ck2[”A|‘§d+f\i‘l§?‘l2+a)202p] (by Theorem A-3). Notice that § satisfies
k

1 — _ B
ixk\/l — 02> (24 V2)k(M 10+ [[W]2) > 2+ V2)VEA 110 + [W]2). (A-14)
Suppose that QO = Ui A + Uy, | B, then we have
So =3Qo = =Qo + WQq
—UAUT (U A + U, B)+ WQ,
=UpArA + U(A — Ap)B + WQq,

which implies that
1S0,s — Soll 7 <V So,s — Soll2

<VE|U(A — Ap)B + WQpl|2
<VENet1|Bll2 + [|[W]2]
=VENe+1[UL L Qoll2 + [W]J2].

Since Sy = Truncate(Sy,v) and v > s, we have
IS0 = Soll# < [1So,s = Sollw < VE[Me11][UL L Qoll2 + [[W]la]-
By applying the Weyl’s Inequalities,
1 ~ .
W = Omin(S0) Z0min(UrArA) — ||Uk L (A — Ap)B + WQgl|2
0ll2

> 5min(ATAiA) - )‘k+1||B||2 - ||W||2

>Xy/1 = UL L Qoll3 = MU L Qoll2 = [[W]l2 > 0

where the last inequality (> 0) follows from ||U; 1 Qoll2 < 6 and Inequality (A-14). Notice that HU;r 1 Qoll2 < 6 and
Inequality (A-14) also imply Ar4/1 — HU;LQ()H% > (24+V2)VE[ 1 ||UkT)J_Q0||2 +||W/||2]. Then from Theorem A-1,
we have

VE[ISEll2[1So — Soll»

AT _C < = S
190.4(Q0 = Qolllr <=7 50 87110 - Solr

ke [UF ) Qollz + [|Wl2]

Ay /1= U] Qoll3 = M UL Qollz = W2 = (14 vV2)VENer1 U] L Qollz + [W]l2]
- kM1 UL Qoll2 + W12

/1 — HUII,J_QOHE —(2+ \@)\/E[)\kHHU;,LQOHQ + [[W|2]

UL L Qoll2 <107 Qoll2 + Q7.1 (Qo — Qo)ll2
ke lUL L Qoll2 + [W][2]

Ay = 10 Qoll3 = 2+ V2)VE k41 [US L Qoll2 + [W]2]

<

Thus,

SHU;J_QOHQ +
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For simplicity, let § = ||UkT 1 Qoll2 and & = ||[W]||2. In order to make the right hand side of the equation above less than
or equal to €, we only need to ensure that

= %6’ and Akm—k[(gkfj%f/]wkﬂo e %6‘
By the assumptions, we know that § < § < %e. Then by Inequality (A-14), we have
kAg+10 + €] < E[Aps10 + €] < 2(kXj+1 + Ag)0 «_ & €
MVT =2 = 2+ V2OVENr10+E ~ N1 - 82— 2+ V2WVENef+€] — NV1-82 T 2+V2 2
Thus, [|[U; | Qoll2 <e. O
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