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1. Restatement of Main Results

Suppose that x € R? is a random vector with mean 0 and variance I;. The distribution of x is denoted by v which is
unknown. We denote its one-dimensional marginal along direction v € S; by 7y, and assume that 7, ({0}) < 0.5 for all
v € 8, and it is sub-Gaussian, i.e. there exists § > 0 such that i, ((—o0, ] U [z, +00)) < exp(1l — 22 /0) for all z > 0.
We define V, (7y) as follows,

Definition 1. For any v € [0,1], let 6, = min{é > 0|y ([—6,8]) > v} and v, = Dy ((—06,9)). Then the “tail weight”
Sfunctions Vy, is defined as follows:

b—€

Vy(7) £ lim 220y (dz) + (v — v, )02
0 —0+€

We also define V() £ supycs, Vv(7) and V™ (7) £ infyes, Vv (7). Note that if v is spherically symmetric, then
V*(y) = V7 (7). In this case, we denote Vy () by V(7).

Recall that the authentic samples z; are generated by the equation z; = Ax; + n; where x; € R are i.i.d. samples of
random variable x and n; are independent realizations of n ~ A/(0,1,). For convenience, we let ¢ = max{6, 2}.

Let Z and O be the index sets of the authentic samples and the outliers, respectively. For fixed x > 0, let X be the optimal
solution of the PCA-like algorithm in the s** stage. The event “good output is generated at step s” is denoted by &(s):

{Zaz Yzyz , X Zaz YzyZ ) >} :

1€EZ ze(’)

pn(1+r)

Lemma 1. The event £(s) is true for some 1 < s < 5o where sg = 5=

Proof. See Section 3. O

1.1. Upper Bound of Subspace Distance

Let f(B) = min {2BJ|A||3 + c7,vB||A||3 + cy(d||A|2 + 1)} where 7 = max{p/n, 1} and c is a universal constant and
let 6k(AAT) = )\k(A)2 — )\k+1(A)2.

Theorem 1. Suppose that p < 0.5 and logp < n, then there exists a finite number s < n such that the output X, of the
PCA-like algorithm in the st stage satisfies the following inequality with high probability,

, f(B1) +nBBy
IXs =Tl < R(p) + Vi min o (AAT) v
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where

eo(||A2 —
8(v[eoll 6}1\(2;2T)#]++Mﬂ)’ w0

R(u) = .| 8eoy(IAJ2+1) ark([AIZ+1)
mm{ %Z(AA%) ’QW}’ w=0

3
€0 =co\/ 8L, e = c11/Z, By = e»(|A3+1), Bi=r+1- V(1 — i) teotes <M) ,and ¢, 1, C2, C3

n ’ n

ENG

are universal constants.

Proof. See Section 3. ]

Theorem 2. Suppose that p < 0.5 and logp < n, the following holds with high probability,

R e

¢ t— /1
Bs=2-V (-)-V( pn)—l—el, B4—min{cl\/5,627 ng},
t t n n

3
By is the right hand side of (1), €1 = c3 (dlonﬂ> , and cy, co, c3 are universal constants.

where

Bl

Proof. See Section 3. O

1.2. Lower Bound of Expressed Variance

Let H* £ (AAT,X*), H, £ (AAT,X,) and H £ (AAT II). The lower bound of E.V is shown in the following
theorem.

Theorem 3. Suppose that p < 0.5. For any k, there exists a constant c such that the following inequalities hold w.h.p,

W (- 2 Yy (1= =~ .
E.V>(1 nv (t 17p) v (1 n(lfp)) 10 (Ck‘HIln{T, 'yg}>1/2
- (14 w)V+ (%) V+(0.5) H
c{fzd1 (log% n)n~1VO[(1+ m)/n]%(log% n)n~"2}
V+(0.5)
2(1 - \/% * *
_X "2“5 —max{1 — Me(X), Mgt (X)),
V(3 H
where w1, - -, wy are the top k eigenvectors of X*, 7 = max{®, 1} and ¢ = max{ logp, 1}
Proof. See Section 4. O
Lemma 2. Suppose that S is a sequence of matrices such that for any S,, € S, S,, € SU*? and Ma(Sy) — Aa41(Sn) >

6 > O. Lel
ixn S’I’H:{ n }{ 1 n Snvli .
arg ma? )< > l’(‘ H H B arg ma’z( )< >

Then if pd®/? = o(i) and f1, — 0 as n — +oo, we have

|A, —B,|lr — 0asn — +oo,

which implies that \q(A,) — 1 and Ag41(A,) = 0asn — +oc.

Proof. See Section 4. O
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Theorem 4. (Asymptotic Bound): Consider a sequence of {V;, \i, Bi, i}, where the asymptotic scaling satisfies

log p; min{ 2 ; ; d;
n; T 400, lim 08D < +oo, lim — { ! i) , n3 T 400, kiw wiBi 4 0.
oo My oo i Ai(A)? d; log™ n; 2j=1 A (A)?

Let p* = limsup p; < 0.5 and suppose t > 0.5n, then if \,(X*) — 1 and My 1(X*) — 0as n; T +oo, the following
holds in probability when i T +o0,

liminf £V > (1 — 5) max v (1_ ) (i
i p (14 r)VF (%

N—

Furthermore, if fiy({0}) = 0 for all v € S, then the breakdown point is p* = 0.5.

Proof. Notice that k is a constant and H; = 2?21 )\j(AiTAi). Since A\ (X*) — 1 and )\k+1(X*) — 0asn; T +oo,

min{ 7%~}

we know that max{l — \;(X*), Ap11(X*)} — 0. Since lim;44 105—’” < 400, limjgy o0 — 10, ;8 L 0and

lﬁ“f 1 0and w 1 0. Since iy ({0}) =forall v € S, we have V*( ), V™ (¢) > 0 for any
c > 0. Hence we obtaln this lower bound of E.V. To show that the breakdown point is p* = 0.5, one only needs to show
that liminf; E.V > 0 when p* < 0.5. Since p* < 0.5, we have (1 o < 1 for k = 1, then we only need to show that

V- (i _p*) > 0. Since ¢ > 0.5n, we have

t 1
_ [t p* _ 0.5n p* _[(05—p*
R > — = _ .
Y (t 1—p*>_v ((1—p*)n 1—p*> Y (1—,0* >0

O

Corollary 1. Under the settings of the above theorem, the following holds in probability for some constant C when i T +00,

(£ — C\/Bp* log(1/2
liminfE.Vz(l—n)l 2 pr log(1/2p)

V()

Proof. See Section 4. O

2. Useful Concentration Results
2.1. Concentration Results for Isotropic Random Vectors

Lemma 3. (Lemma 2, (Xu et al., 2013)) Forany 0 < a1 < as < a3 < land v € Sy, we have

Vv(a2) — VV(al) < VV(a3) - VV(@).

az —ay - az — ag

Lemma 4. (Lemma 3, (Xu et al., 2013)) 1) Forany a € [0,1] and v € 84, we have Vy (a) < a. 2) Forany0 < a; < ag <1
and v € Sy, we have

az — a1

VV(G‘Q) - Vv(al) <

1—0,1.

Lemma 5. Foranyl > € > 0and k € [e,1] and v € Sg, we have Vy, (k) — Vs, (k — €) < Clelog(1/e).



A Unified Framework for Outlier-Robust PCA-like Algorithms

Proof. By monotonicity, it suffices to prove the result for x = 1. Notice that for K > 260,
Vo(1) = V(1 —¢)
<eK?+E,op,[2° - 1(z > K))

o0
—eK? —|—/ Py, [22 > z]d2
K2

<eK? +/ exp(l — z/0)dz

K2
=eK? + egf exp(—K?/0)
Let K2 = 0log(1/¢), then we have V(1) — Vy (1 — €) < Chelog(1/e). O

Theorem 5. (Theorem 7(I), (Xu et al., 2013)) Suppose random vector n; ~ N'(0,I,). Let T = max{p/n,1}. There exist
a universal constant ¢ > 0 such that with high probability,

1 t

sup — Z(WTl’li)Q <ecr.
wes, VT
Theorem 6. There exists an absolute constant C' > 0, such that with high probability,

1 n T ) d
sup |— v x;)° =1 <COy/—.
sp -3 () 1 < 0y

i=1
Proof. The proof depends on the following Lemma (Lemma 14 in (Loh & Wainwright, 2012)).

Lemma 6. If X € R"*? is a zero-mean sub-Gaussian matrix with parameters (X, 0?%), then for any fixed (unit) vector
v € R% and any t > 0, we have

(Pt
P[|[|Xv|j3 — E[||Xv]3]] > nt] < 2exp (—cnmln (04, 02)) ,
for a universal constant c.

Consider matrix Z € R™*¢ where the i'" row is x, , then for any fixed (unit) vector v € R and any ¢ > 0, there exists a
universal constant ¢ such that

ot
PlIIZvI - EOJZvIE]] > o) < 2exp (~enmin (z.5) )
Let A be a 1/3 cover of S, then for any v € Sy, there is some u € A such that ||u — v|j2 < 1/3. It is known that

|A| < 9% Define ¢(vy,va) = |v] (ZTTZ - @) va|, then we have

sup ¥(v,v) < maxt(u,u) 4+ 2 sup (v —u,u) + sup (v —u,v—u).
veESy uc A vESy vESy

Since ||u — vz < %, we have

2 1
sup (v, v) < max¢(u,u) + (7 + 5) sup P(v,v).
vES, uc A 3 9 vESY

Hence sup, ¢ s, ¥(v,v) < % maxye 4 ¥ (u, u). By the lemma above and the union bound,

9 d . (ot
< e < . — —., = .
Plaup (v:v) > 1 < P o) >0 <5° 200 (enmin (7.5 )

Thus, we have
n

2
P[sup \l Z(vTxi)2 —1] > t] < 2exp (—cln min <22, 2) + CQd) .

veSy T i=1

Let the right hand side be d~1°, then ¢t = CH\/E for constant C' and large enough n. O
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Lemma 7. With high probability, the following holds uniformly over in < nand v € Sy,

n—mn

i=1

for a universal constant C.

Proof. The proof is similar to the proof of Theorem 11 (Xu et al., 2013). We just need to replace V with V. O

Theorem 7. With high probability, the following holds uniformly over i < nand v € Sy,

< C'max {9\/37 91/2d1/4(10g n)3/4n_1/4} 7
n

Lo T 2
nE::V x|(;) — Vw(n/n)

for a universal constant C.

Proof. Follow the proof of Corollary 5 in (Xu et al., 2013). As shown above, Theorem 6 and Lemma 7 hold w.h.p. Under
the condition of Theorem 6 and Lemma 7, we define n

ng = (1 — 6024 *n=41og™* n))n.

If n < ng, then Lemma 7 leads to

:M—‘

< COY2d 4 (logn)3/4n=1/4,

Z Txt) = W (/n)

If n > ng, we have

L
HZ;V x(z) Vo (7/n)

1 n
<= VTG — 1+ 1= V(a/n)]
nz:l
d n—ng n
§010 *+029 log
n n—ng

<C'max {9\/3, 01/2d"*(log n)3/4n_1/4} .
n

On the other hand,

> Ty = Vylmno/m)| + Valino/n) — W (/)]

Vdl -
<C’1n ogn/n+029n nolog n

- n —ngo n n—"no
SC91/2d1/4(10g n)3/4n—1/4.

Hence this theorem holds. O
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2.2. Concentration Results for Non-isotropic Random Vectors

Lemma 8. There exists a constant ¢ > 0 such that with high probability,
1¢ T, 3\2 T p
; > (v'zi)? = v v < o(||Z 2 o

i=1
Proof. Recall that z = [A, IJu where u is a sub-gaussian random variable with mean zero and variance I,; 4. Denote
(A,1,)" by A, since ATA = ¥ and d < p, then with high probability

sup
vES,

n 1 n _ B
T T.1\2 TAT
sup |- vz 2 _viSv| = sup |- Av) uw)*—v A'Av
veS, tzz: veS, t;(( ) )
Av 1 &
< s JATAL LAV s s RS @ -
veS,N{v:Av#0} i=1 ”AV” Q€Sppa [T i=1

<eClBlay 2.

O
Lemma9. Let 7 = max{p/n, 1}. There exists a constant C' > 0 such that with high probability,
d
sup tz v'z;)? <2|A|3(1 4 16 ~)+ o
veS, im1
Proof. Consider the following inequalities
1
T

sup — v 'z;)° = sup (Ax; + n;

ves, t;( veS, tz )
< sup Tsz + sup — (v 'n;) 24 sup — TAxZn V)

veS, tz veS, Z veS, t Z
<2 | sup =) (v Ax;)?+ sup v'n;)?

( Z P s Z
'L vTAx;
=92 sup ||VTAH [ 24 sup — v nl
<v€$pﬂ{v:ATv7$O} 2 Z HVTAH2 veS, t Z
d
<2||AJ3(1 + 16 )—|—627'
O

where the last inequality follows from Theorem 5 and Theorem 6.
Lemma 10. Let 7 = max{p/n, 1}. There exists a universal constant c such that with high probability the following holds
uniformly over n < n,

n—mn

1 d
sup — Z v’ z\[] <2||A|3 (1 -V~ (n/n) + 019\/;—1— 0291/2d1/4(10gn)3/4n_1/4> + et

veS,

Proof. Consider the following inequalities

L™ Ty LS 0T (Ax 4 w2
Sup — V Z|iqg = Sup — A" X n .
veS, n i—1 [z] vES, n i—1 [l]

=1

n—mn 1n—ﬁ
<2 <sup — Z |VTAX\[] + sup — Z an[Qi]> )
veS
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Note that B
1~ | vIAx
sup — Z |VTAX| sup |AAT|,- = Z T
vES), vESpﬁ{v:ATv;éO} n i—1 HV A||2 [4]

=|AA Tz sup
vESy

1< 1<
SO DI LA R S VA1)
=1 =1

From Theorem 6 and Theorem 7, we know that

1< 1 & B
- > vTx]? - - S OvTx[E - (1 - Vv(n/n))|
=1

sup
vVES, i=1
1 n
< sup |— vix)?-1 + sup vV X (n/n
veSy ”;| | vES, Z' |l) /m)

d d
<010\/7+ €9 Max {9\/7’ 01/2d1/4(10gn)3/4n—1/4} 7
n n
which implies that

sup — Z |VTAX| <|AJZ- (1 -V~ (7/n) +619\/7+ co0'2dY*(logn)3/4n—1/4 > . (3)

ves, 1

Similarly, for the term sup, ¢ % 372" [vTnl?), since n ~ N(0,1,), from Theorem 5 we have

1 ¢ T2
sup — v n|; < sup — v n|° <ecr.
z| < s L ST

veS, I
Hence we obtain this theorem. ]

Lemma 11. With high probability the following holds uniformly over i < n for every matrix X € RP*P,

—Z i <min{[2(1 -V~ (7/n) + €(d)) A3+ er] [1X]].
(1 =V~ (@/n) + e(d)) [|A]3 + co(1 + ¢l All2)] Xl }

where €(d) = 019\/% + c20'/2d 4 (log n)3/4n =4, 1 = max{1, 2}, ¢ = max{l,w/lo%} and ¢, ¢y, co are universal

constants.

Proof. Let {k(i)} be the indices of the largest n — 7 values of (zz ', X), then

n—mn

1
- Z X)) = (= > Zk(i)2is X)
i=1
1 n—mn 1 n—mn
< rnin{lln > iz oI X, I~ > zkaZ@)IIzXI*} :
i=1 i=1

Notice that || 1 S Zgo(i) zk( »l|2 can be bounded by Lemma 10, so we only need to bound ||5; Ly " Zi(i )zk(z) loo- We

have B
1 n—m
H; Z Zk(i)zl—cr(i)HOO

1 n—mn
<H*ZAxk DX )ATlloo+H*an ) ||oc+||*ZAXk 1) lloo
=1 =1 i=1

n—n n n

1 1
<l > AxpixiA T2 + II* D il Mo + 2d| Al D il Tl

=1 =1 =1
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LetP £ L5 |ng|n;| " and Q £ 2 377" | [x;|[n;| T, then

n

1 2 1 < 2
= Z_: nging;| < - Z(nii +nj;), Qi = - Z |Xking;| < - Z(Xﬁi +nj;).

k=1 k=1 k=1

Since xy; is a zero-mean sub-Gaussian random variable and ng; is a standard Gaussian random variable, from Proposition
5.16 (Vershynin, 2012)

1 n
P [ — Z n?, — 1| > t] < 2exp(—c; min{nt? nt}), and
"=
I nt? nt
P[n§xii >t] < 2exp(—co min{ 92’7})

for universal constant ¢y, co. There exists ¢ (may change from line to line) so that when ¢ = ¢ k’%

we have
1 1
[Pl > 14 ¢/ OEP] <p, andP lIQlloo > ¢+ c\/"f%] <p

where ( = max{60,2}. Let = max{1, 105” }, then with high probability

, by the union bound

IPlloc < ¢, and [[Q[loc < (o

Thus,
1 n—mn n—mn
I~ Yz zigp oo < 1= Z Axiy XAl |z + cp(1+ Cd|All).
i=1 i=1
The first term on the right hand side can be bound by Equation (3). Hence we obtain this lemma. O

Lemma 12. (Corollary 3.3, (Vu et al., 2013)) There exists a universal constant c such that with probability at least 1—p~19,

1 & logp
= ~ Y < T
I3 ] = Sloo < [ lay/ —E2

=1

3. Proofs of Section 1.1

Lemma 13. (Lemma 3.1, (Vuetal., 2013)) Let 3 be a symmetric matrix and I be the projection onto the subspace spanned
by the eigenvectors of 3 corresponding to its k largest eigenvalues \y > Ao > -+ . If § = A\ () — Ap11(X) > 0, then

*llH X[ < (2,1 -X)
Sor all X satisfying 0 = X < Iand tr(X) = k.

3.1. Proof of Lemma 1
Proof. If £(s) is false, then

Zaz ylyl , X Zaz ylyl s Xs).-

1€EZ 76(9

. (yiy; . X) .
Let Aq; & e iy T O a;, if 32, E(s) is false, we have

Z Z Aa;(s) < % Z Z Aa;(s)

s=1i€Z s=1i€0O
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From the algorithm, at least one « is eliminated in each iteration. Thus, we have > 22 | > | Aa;(s) > so, which implies

that
S0
>3 ) + 03 A 2 30
s=lieZ s=14i€0
Hence
1 &
- >
B I)INIEED 3) SIVHEER
s=14€0 s=14€0
Note that pn > 3772 | 37 Acy(s), then pn > {52, 50 sp < @. 0
3.2. Proof of Theorem 1

Proof. Note that for any 1 < § < s, the event £(3) is false, which implies that
> ai®)(yiyl X Zaz (yiyi » Xs),
1€EZ 26(9

Thus, we have

Z AO@(E) < % Z Aai(g)

i€Z €0
Since i (s) = 1 — 30— Aay(k),
= - Se et "

Hence for any X € F(k), we have

t—pn/k
ZO% yzyz ) >_ Z <ZZT,X>(1')
1€EZ i=1
t—pn/k t
= Z (i (s) — 1)<ZJ(Z)Z (i )aX> Z aj(i)(s)<zj(i)z;r(i)vx>
i=1 i=t—pn/k+1
4
t—pn/k ¢ 4)
> Z (aj(i)(s) - 1)<ZZT7X>(t—pn/n) + Z aj(i)(s)<zzT7X>(t—pn/n)
1=1 i=t—pn/k+1

- (Z ai = (t - p,f)) (27, X) iy 2 0

i€Z

Since X is the optimal solution of the PCA-like algorithm and event £(s) is true, we have

O autslyay! X)X
) [}142 ai(s)yiy] . TI) - u|n||1]

>(1—n) [71#2 ai(s)yiy; , II) — pl[ |1

€2

1 1
ZE<Z ai(s)yiy] , TI) — p|[ ][y — 7 <M+ ||ﬁ Zai(s)YiYiTHOO> |ITL]|y

€2 1EZ
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and

Zou 8)yiyi » Xs) =l Xl

Zaz YzYz , X Zaz YZY1 ) >_/14||X5H1
i€z €O
1+ kK
IR S oy X — Xl
IEZ

Denote (i + |2 i ai(s)yiy, [loo) IITT[11 by B, we have

1
~(Q_ ai(s)yayi s X = T0) = pl X1 + pl| T + Zaz s)yiyi » Xs) +nB > 0.
€2 1EZ

Since Inequality 4 holds and 0 < o; < 1,

t—pn/k
1 1
~Q_ vy Xe) =~ D> ez M) — pl Xy + pl| T+ Zyzyl X)) +nB>0
i€Z i=1 i€Z
or equivalently,
1< Koo 170
T T T
— . _ _ =z ] - . >
n<ZZzZz y X = II) — pf| X[ + pl[TT][1 + n(ZZzZz Xs) + Z(ZZ D +nB >0
i=1 =1 i=1
Let A =X, —IIand W = IZZ 121 — 3, then
nu o onfs nnB
(W43, A) = — [T+ Afly + == [Tl + 5(W + 3, X,) + > (22" M) + —— >0
i=1
Since —(3, A) > 2| A2 where § = A\ (Z) — Aj11(X) (Lemma 13), we have
nu nu fols nnB _ §
(W, A) = —~ I+ Al + —= [Tl + £(W + 3, X,) + — > (22" ) + 2 §||AH2F- )
i=1
For simplicity, we let
1 folr T nnB
= n(W+2,X.) + - ; (zz " )y + ——

We first consider the case that p # 0. Since (W, A) < ||W/||x||A|l1 and n >t > 0.5n,
)
Wl = ple Ay + pllAlly = pl T+ Ally + p Ty + T > ZJ A

Let N be the subset of indices of the nonzero entries of I, since || II|o < A% and |Ax|l1 < B||AN|F < Bl A7,
[A[l = [T+ Ally + [Ty = [[An[ly = [Ty + Al + [Tx[ls < 2[[Ax].

Also note that A has at most 72 + 32 non-zero entries, so ||A|; < /72 + B2||A||r < 27v||A||. Thus,

)
20/[IWlloo = 4 + B Allp + T = LA,

which implies that

A, < SO0Vl —ple b 8) o [T 8(1leoc 1°5P|25:||2 “pletnd) o
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where the last inequality follows from Lemma 12.

We now consider the case that g = 0, then (5) becomes (W,A) + T > 2|A[%. Since (W,A) <
min{[|Wijeo [ Allr, [Wll2[|Alle} < 2min{y[|[Wleo||All7, k[[W]|2}, | Al # should satisfy that

. )
2min{y|| Wl | Allr, k[Wll2} + T > S| A7

By simple calculation, we have

8coyCy/ 2|3 kTS
1Al < ming® Wl o Wy o [T 200V TR o JaRCVRIPle, g [T,

where the last inequality follows from Lemma 8 and Lemma 12. Hence we have ||Al|r < R(u) + 2\/? where

8(v[cov/ 5L (I Al3+1)—pl s +16) 20
R(y) = 3 ) 2
H = min{s(:m/b,%z<|A|3+1>72 /61k\/f(6|A|§+1)}’ =0,

We ignore ¢ in R(11) because it’s a constant.

We now bound T'. Notice that ||TII||, < %k and ||II||; < 5||II||r < Bk, from Lemma 11, the following inequality holds
with high probability,

1 n—m
— Z(zzT,H>[i] <kmin {2 (1 -V~ (n/n) + €(d)) |A||Z + e,
i=1

n <

B =V~ (@/n) +e(d)) |A]3 + co(1 + ¢dl|All2)] } -

Since t > 0.5n, there exist constants cj,co such that |[W + X < 2(1 + 010\/%)||A||§ + cr and [[W]e <
coC b%(\\AH% + 1) hold with high probability (Lemma 9 and Lemma 12). Hence

(W3, X) < mind[W + 32| X[, [[W + 3| oo [ Xsl1}

d 1
<kmin {2 <1 + cla\/;> |AJ3 + e,y (1 + eo€ in> (1Al3 + 1)}

where the last inequality follows from || X;||. < k and || X1 < || Xs|lr < k. Also notice that 0 < «a;(s) < 1 and
ITX|ly < BITI||F = Bk, we have

nnB 1 T log p
= Snpk (2u+ I > v, |oo> <npk <2u+ <COC\/ — - T1/IZElz]).

€2

Let B) 2 2u + (COC 10% + 1) (|IAJ|32 + 1), since j is less than some universal constant and logp < n, there exists

constant ¢y such that By 2 co(||Al|3 +1) > Bf. Let g = coCy/ logp, €1 = e+ e(d) + 610\/% Since d < n,
1
€1 <€+ (@) " Since ( is a constant, we have k < 1, 8 < «yand logp < n,
T = kmin (2B, [ A3 + er, 1B Al + ey(d|All2 + 1)} + kB,

where By =k +1 -V~ (1 — ﬁ) + €1. By minimizing T over x, we can obtain this theorem. O
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3.3. Proof of Theorem 2

Proof. Under the conditions of Theorem 2, the conditions of Theorem 1 are satisfied, let A = X, — II, W =
131 zz] — %, and f(B) = min {2B||A |} + cr,7B|| A3 + cy(d||A|]2 + 1)} then whp

|Allr < R(u) + VE_min JB) +n8Bo » g

>Kk>2p )

From the Algorithm, we know that

i i i t—pn
;;(ZZTvam > ;;<YYT7X*>(1') > 71?1—21<ny7)(8>@ > % ; <ZZT7XS>(i)'
Hence we have
1 t 1 t—t 1 t—t+pn 1 t
n Z(ziz;r,X*> - Z<ZZT7X*>[U + n Z <ZZT7X5>[1] > n Z(ziz;r,Xs>
- 1 tftf_l 1 t7f+:;1 -
=(W+3,X") + - ;<ZZT,X*>M +5 ; (zz", X)) > (W + 2, X,).

letT £ 1 Z,tfi(zzT, X+ 1 Zz;fﬂm(zzT, X)) and A* £ X* —II. Note that & = AAT + I, from Lemma 13,
* 4] *
(W, A" = A) + [AAT[[p|Allr + [|A[L +T > S| A™F,

where § = A\, (E) — A\p11(Z). Since [|A*|. < [|X*|« + [T+ < 2k, |[AAT||F = Z?zl Ni(AAT)2 < d|A||% and
|A|lF < Bs, we have

\ 2 .
[A™|F < \/5(<W,A — A) +dBs||Al3 4+ T + 2k).

We first bound the term (W, A* — A). Notice that
(W, A" = A) <min{|[WI2(|A" [ + [|A]L), [Wlloo (1A + [[A]l1)}-

Since || A"« < 2k and ||A"]|1 < |X*|l1 + |TX]|1 < 4| X*||#7 + B||H||F < k(y+ B) < 2k7 (A has similar inequalities),
we have
(W, A" — A) < 4k min{||W/[2, 7[[W||se}.

From Lemma 8, there exists constant c3 such that [[W |z < ¢1¢+/Z[|3||2 = e1¢+/Z(||A]|3 + 1) holds with high probabil-
Wl < || B|2y/ 252 = ¢3¢/ 282 (||A |2 + 1) holds for constant c5.

- n n

ity, where ¢ = max{6,2}. From Lemma 12,
Let By £ 4¢min{c\/Z, coyy/ %52}, then

n

. 2
[A™]F < \/5[(de + kB4)||A[]3 + T + 2k + kBu].

For term 7', we follow the same proof of Theorem 1. The following inequality holds w.h.p,

T < kmin {2Bs|A[}3 + e,/ Bal| All3 + cy(d All2 + 1)},

where By = 2 — V‘(%) — V_(thft’m) + €(d). Hence we have

. 2 ,
[Ar < \/5 [(dB2 + kBy) || A3 + kmin {2B3 + 1,7 B3 + cy(d[|All2 + 1)}],

which establishes this theorem. O
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4. Proofs in Section 1.2

Let H* & (AAT,X*), H, & (AAT X,) and H £ (AAT II). In order to bound E.V, we first bound |H* —
Zle w* " AATw?|, and then bound H*/H. This involves the following steps:

K3

1. Bound |H* — Zle wiTAATwr.

2. Bound the robust variance estimator of the the authentic samples by applying the concentration inequalities (Theorem
5, Theorem 6 and Theorem 7, i.e. bounding 1 S lw'z[f,).

3. Show that with high probability, the algorithm finds a “good” solution within a bounded number of steps and then
show that the “good” solution in previous step is close to the optimal solution and the final solution of our algorithm

is close to this “good” solution.

4.1. Step 1

Lemma 14. For any X € RP*? such that 0 <= X < I, and tr(X) = k, let w1, --- , Wy, be the top k eigenvectors of X,

then
k

(AAT.X) = > wiTAATw;| < max{l — \e(X), 1 (X)} - tr(AAT),
i=1

where Ay, is the k" largest eigenvalue of X.

From this lemma, we have E.-V{w7{, .- ,wi} > % —max{1l — M\(X), \er1(X) }

4.2. Step 2

From Theorem 5, Theorem 6, Theorem 7 and Lemma 12, the following inequalities hold with high probability for constant
¢, c1 and co:

t

(I) sup lXZ(WTni)2 < er,

wes, Ui

t
1 d
II) sup |- wj—x1-2—1<09\/7ée7
(1) Sup ;( ) < by =
7 _ _
1 t t(1 \/dl 1 : 1 t
(III) sup *ZlWTXﬁi) -V(-)| < cat(l + o) — ogn/n /\cgeédz(logn)%n—z 2e(-),
wess | L= t t—1 t

t
1
(V) H; ZniniTHoo < ¢,

i=1

where 7 = max{2,1} and ¢ = max{ k’%, 1}. When t = ¢, we can indeed sharpen the result of (II) by applying (II),
so let €1 (1) = ¢p. We have the following theorem:

Theorem 8. There exists a constant c such that the following inequalities hold w.h.p,

t t -
IX2AL (V7(0) - () - 21X 2 Al /T T ajehmintr. )

t

< <ZZ—r , X> )

SR

i=1

t t - .
§HX1/2AH% (V+(t) + El(t)> + 2HX1/2A||F\/(1 + eo)ck min{r, y¢} + ck min{r, s},

foranyt <tand X € F(k).
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4.3. Step 3
Suppose that a “good” solution X is found at stage s (0 < s < s¢), namely event &(s) is true. We can bound H*/H by
leveraging the relationship between X, and IT and the connection between X* and X.

Lemma 15. If |I1|o < 32 and E(s) is true for s < s, there exists a constant ¢ such that the following inequalities hold
w.h.p,

14 €0)H, +2/(1 + eo)ck min{7, v} H, + ck min{r, v¢}

- S N p—C— | - €o)ck min{t 7 ga—
(V0= g - alt- 2 ) B -2y cpkmin{r ) B - 2]

Lemma 16. Fix{ < t, there exists constant ¢ such that the following inequalities hold w.h.p,

(o

> (V‘(t —) - el _tpn)> H, —2y/(1 + eo)ck min{r, ys } H,.

—~

3

1_
>
“k+1

4
)+ el(t)) H* +2/(1 + €o)ck min{r,y¢} H* 4 ck min{r, 7}

| o>

Theorem 9. Suppose ||I1||o < 82 and p < 0.5. For any &, there exists a constant ¢ such that the following inequalities
hold w.h.p,

(Y (b))

il (14 m)V+ (i) ©VH(0.5) Jil
_cff3di(log n)n~ % v O[(1+ k) /k]E(log? n)n 3} 2upVE
V+(0.5) V+(%)ﬁ

4.4. Details of the Proof
4.4.1. PROOF OF LEMMA 14

Proof. Since 0 <X X =1, we have

k k
(AAT.X) = > wi TAATw; | < [[AAT|, - [IX = wiw, |2
=1

i=1
Kk P
=tr(AAT) ) (i — Dwiw] + > Awiw] [l = tr(AAT) - max{1 — \e(X), Ay 1(X)}
i=1 i=k+1
Hence we obtain this lemma. O

4.4.2. PROOF OF LEMMA 2

Proof. LetS =S, 4 = pp and A = B,, — A, then (S, A) > 0and (S, A) < u||Bpll1 — pl|Anlls < p||Bnl1. Since
tr(B,) =dand B, = 0, | B, |1 < p||Bn||r = pVd. Then we have 0 < (S, A) < up\/d. Since A, B,, € Fy,

0 < tr(SA) < upVd, 0 < B, — A < I, tr(A) =0.

By SVD decomposition, S = QAQ " where Q is an orthogonal matrix and A is a diagonal matrix. Let A = QT AQ,
then,
0 <tr(AA) < pupVd, 0 <X — A <1, tr(A) =0,

where X = {Iod 8} Thus, 0 < >, \iA;; < ppyV/d and
0<A;<1lforl<i<d,
—1<A; <0ford+1<i<p,
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which implies that Y7, | |[Ay] < %‘/& (otherwise, >0 XAy > D207 Aalyi + [ Aa— Aa1| Dby 1Aii] > pupVd).

A _D],then()j[Id_Al D

. A d - \/E — -
Since tr(A) = 0, we also have ) ;| Ay < XS Let A = {—DT N DT A,

implies that A; > 0 and A5 > 0. Hence

} = 1,, which

|AE =llAwllE + [ AzF +2[D]E

d P
<tr(Aq)® +tr(A2)* +2) > D}

i=1 j=d+1
usVd
() S ¥ s,
i=1 j=d+1
2 i p
pBvVd
<2 (6 +QZ Z | A5
i=1 j=d+1
2
upVd ppd®/?
2| — 2
()
_ _ 2
Thus, | A — Bal3 = [QAQT 3 = A3 <2 (#57) + 2624 — 0as p— 0 when pd®/> = o(1). O
4.4.3. PROOF OF THEOREM 8
Proof. For an arbitrary w € S, let j(i) be permutations of {1,--- ,n} such that (w ' x;;))? is non-decreasing. Thus,

t
|
(22" X)) < 2 D _tr ((Ax0) +1056)) " X(Ax;) +1507)))

=1

S
'Mm

s
Il
-

I
| =
-

s
Il
—

T T T T
tr (3 ATXAx; () + 20] XAx;) + 1 Xny(, )

t t
2 1
-T(i)ATXij(q;) +< > (X2 Ax), X0 ) + n > (X'/?n;, X/?n;)
i=1 i=1

IA
| =
uMm

t t t
1 2 1
<|ATXAL. I > XXl + 7 D IXY2 A2 - X 0l + 7 D IXnyl3
=1 =1 =1

Since [|ATXA ||, = || X!/2A]|2% and the Cauchy-Schwarz inequality holds, we have
t

t
1 1

WwWES, i=1

t t t
1 1 1
S IX VAR | 5 ST I+ 1 ST X 03
i=1 1=1 1=1

1
<|XY2A|% - sup - E (WTX)%Z»)-F
weSy t .

t t
1 1 1
2| X2Alp sup D (wTx)?- - ; |X1/2n,]|2 + 7 z_: X120, |3

wESy i=1
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Note that

*ZIIXU2 il = (X, - an ) <min{[|X[|. - II*an 2 1 X - II*an 7l

. 1 1
<ninfhl 2 3 nenT o, 2 3 nenT ok
=1 1=1

Then from (DADIII)(IV), we have w.h.p

E —
1 t
§ (e X0 < IX AL (V*Q) tal; >) + 2] X"/ Al| /(T + €o)ck min{r, 7} + ck min{r, vc}.

We now compute the lower bound. For an arbitrary w € S, let k(i) be permutations of {1, - - - , n} such that (zk(i)zg( i) X)
is non-decreasing, then

t t t

1 2 1

n Z X)) = Z X A TXAXKG) + 5 Y0 XAxG) + T D16 Mk
i=1 i=1 i=1 =1

—

t t
2
2(X, 2 A E X XnnA ) — n > X2 A2 - X 02
i=1 i=1

Perform SVD on X, we have X = Y7 a;v; v, , then

1 T T o o
(X, EAZXk(i)Xk(i)A )= Z TJ Z v Axyp)?

i=1 j=1 i=1
Pl & P Q; d

23S T AN 2 VAR Y U S (R
j=1 t i=1 J=1 t i1 ‘V A||

Then from Lemma 6 and Lemma 7 (Note that we assume V;FA # 0 in the last inequality. We ignore the case that v;rA =0
since the bound holds trivially),

> sl Al (V) - () — 21X 2 ALy T eo)cbmintr, 5]

)

» B ~
t t -
=tr(AT - Zajvjvj A) <V(t) - el(t)> —2||XY2A | p/(1 + €0)ck min{7, y<}
j=1
7 f .

—IXV2AJ (V7(0) - () - X2 Al TT elchmintr )
Hence the theorem holds. O
4.5. Proof of Lemma 15

Proof. Since &(s) is true, we have Y, > a;(s)(yiy; , Xs) = 23,00 @i(s)(yiy/ ., X,), which implies that

n
(1) Y aus) yiy] , X >Zaz (vl . X >Z(1—77)(Zai(8)<YiyiT,H>—WIIHII1>,
=1

1€EZ
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where the last inequality holds because X is the (1 — n)-optimal solution of the PCA-like algorithm at stage s. Note that

XX}, < BT = By/ux(IT) = V. then

| =
'MH

< Z az ylyz ) >

=1 ’LEZ

1-—n n
> z 2 ) - k
n+1< Za ) yiyi  TI) tuﬂf>
1—n 1t_fm/"C n
> " ’LT7H D k )
“k+1 |t ; (i M)y = GubVE

where the last inequality follows from Equation (4). From Theorem 8, the following inequality holds w.h.p,

(1+€)Hs +2v/(1 + €o)ck min{r, y¢} H, + ck min{r, v¢}
2 (7 (T ) i kit 2

it | (770 ) = ) T -2yl dkmingr s T - 00V

O
4.6. Proof of Lemma 16
Proof. Since |O| = |V\Z| = pn, we have
t—pn i t
S (eaT X0 < Slyy T X < 3 (eaT, X .
i=1 i=1 i=1
Since X* is the final output of this algorithm, V ;(X*) > V;(X;). Thus,
1 i 1 t—pn
? Z<ZZT3X*>(i) 2 Vf(X*) > Vf(XS) > % Z <ZZT7X8>(Z')~
i=1 i=1
Then from Theorem 8, the following inequality holds w.h.p,
: :
(V (E) +ei(- )) H* 4 2/(1 + €o)ck min{r, ys} H* + ck min{r, <}
t— t—
> (V_( tpn) — e tpn)> H, — 27/(1 + €o)ck min{r, v} H,.
O

4.7. Proof of Theorem 9

Proof. Recall that with high probability £ (s) is true for s < sp and notice that we can assume €y < 1 for large enough n.
From Lemma 15 and Lemma 16, since H > H* and H > Hg, the following inequalities hold w.h.p,

ilq [(V(l_ ﬁ) —e(l— u_pp),i_)>H—Q\/(l-i-eo)ckmin{T,yg}H— %p,uﬂ\/g

<(1+e)Hs+ 2\/(1 + €o)ck min{7, v} H + ck min{r,ys},
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and

(V_(f—tpn) — 61(£ — pn)> H, < <V+(t) + 61(f)> H* + 4\/(1 + €o)ck min{7, v¢} H + ck min{r,y<}.

_ 0 P — 2x+4 . — uBVEk 14k . 1+k
1-— - —L)H- 1 7 AR < Pave)H
(V ( ( ) —ex( (l—p)/i)> = \/( + eg)ck min{r, v¢} 1= 1_nckm1n{7',7g} < 1_77( +eo)Hs,

)> H* + 4\/(1 + €o)ck min{7, v} H + ck min{r,y<}.

Let e; = co02d7 (logn)in~4. Since el(tf%) < €1 and €1 (£522) < €1, we have

Ik

1—p

g A=) (V-gZm-a)(ViE-)-a) erry(v -2 -a) VT Rminm g,

— > _
H

(14 5)(1 + e0) (v+(§) +61> (14 8)(1 + €0) (v+(§) +61)

_ 1%) —e+1+ EO) ckmin{T,’Yd’i
; 7

ok

41+ r)(1+ eo)\/(l + €g)ck min{r, ’yg}ﬁ_l/g B (V_(
1+ R)(1+e0) (VD) + ) (1+e0) (vi(E) +a)

(1 — )1k

——1

H

(1 +m)(1+e) (VH(D) + )

Note that the last term

(1— )tk er (=B o1 - VR
(1+I€)(1+60)(V+(§)+€1) V) VR

Since g = c10y/4 = 60,61(%) = cQt(HEOz_VEdIOgn/n A ca02di(logn)in=3, and Vy (k) — Vy(k — €) < Cheloge by

Lemma 5, we can follow the proof of Theorem 2 in (Xu et al., 2013) and obtain that the following inequality holds w.h.p,

e (L=n)V~ (% - ﬁ) 1% (1 - ﬁ) 10 (ck mirir, 7{})1/2
)

H = (1+ K)V+ (g CVH(0.5) H
~cff3di (logi n)n % v O[(1 + k) /k]3 (log? n)n=2} 21 —n)uBVE
V+(0.5) V+(§)ﬁ
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4.8. Proof of Corollary 1

Proof. When x > 1, the corollary holds trivially. Hence, fix £ < 1. From Theorem 4, we have

limiréfE.V{wf,~-~ Wi
v ()] ()
> (1 - ) max C e |
K 14+k Y+ (%)
[ 1 OO log A V- (i) COL~log =2
> (1 — 1) max B P P % o P b
I 1+k 1+k v+ (%) v+ (%)

Cop* 1 K (i) COp*log 5L
}X (5 A

SRR 7 R o Hoove(d)
b il | 2]
| 1 .0

1
>(l—-—n)max |[1—-rk— | —+
K K

i Cop*log 2| V™ (¢
>(1—n)max [1—Kk— P %5 (t)

O 0]

The second inequality is due to Lemma 5 and V(1) = 1. The third inequality is due to p* < 0.5 and x < 1. The sixth

inequality holds because k < 1 and V'~ (%) < 1. Taking k = , /6p* log ﬁ, we can obtain this corollary. [
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