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Abstract
In this paper, we consider the problem of column
subset selection. We present a novel analysis of
the spectral norm reconstruction for a simple ran-
domized algorithm and establish a new bound
that depends explicitly on the sampling probabil-
ities. The sampling dependent error bound (i) al-
lows us to better understand the tradeoff in the
reconstruction error due to sampling probabili-
ties, (ii) exhibits more insights than existing er-
ror bounds that exploit specific probability dis-
tributions, and (iii) implies better sampling dis-
tributions. In particular, we show that a sam-
pling distribution with probabilities proportional
to the square root of the statistical leverage scores
is better than uniform sampling, and is better
than leverage-based sampling when the statisti-
cal leverage scores are very nonuniform. And by
solving a constrained optimization problem re-
lated to the error bound with an efficient bisec-
tion search we are able to achieve better perfor-
mance than using either the leverage-based dis-
tribution or that proportional to the square root
of the statistical leverage scores. Numerical sim-
ulations demonstrate the benefits of the new sam-
pling distributions for low-rank matrix approxi-
mation and least square approximation compared
to state-of-the art algorithms.
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1. Introduction
Give a data matrix A ∈ Rm×n, column subset selection
(CSS) is an important technique for constructing a com-
pressed representation and a low rank approximation of A
by selecting a small number of columns. Compared with
conventional singular value decomposition (SVD), CSS
could yield more interpretable output while maintaining
performance close to SVD (Mahoney, 2011). Recently,
CSS has been applied successfully to problems of interest
to geneticists such as genotype reconstruction, identifying
substructure in heterogeneous populations, etc. (Mahoney,
2011).

Let C ∈ Rm×` be the matrix formed by ` selected columns
ofA. The key question to CSS is how to select the columns
to minimize the reconstruction error:

‖A− PCA‖ξ,
where PC = CC† denotes the projection onto the column
space of C with C† being the pseudo-inverse of C and
ξ = 2 or F corresponds to the spectral norm or the Frobe-
nius norm (Meyer, 2000). In this paper, we are particularly
interested in the spectral norm reconstruction with respect
to a target rank k.

Our analysis is developed for a randomized algorithm that
selects ` > k columns from A according to sampling prob-
abilities s = (s1, . . . , sn). Building on advanced matrix
concentration inequalities (e.g., matrix Chernoff bound and
Bernstein inequality), we develop a novel analysis of the
spectral norm reconstruction and establish a sampling de-
pendent relative spectral error bound with a high probabil-
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ity as following:
‖A− PCA‖2 ≤ (1 + ε(s))‖A−Ak‖2,

where Ak is the best rank-k approximation of A based
on SVD and ε(s) is a quantity dependent on the sampling
probabilities s besides the scalars n, k, `. As revealed in
our main theorem (Theorem 1), the quantity ε(s) also de-
pends on the statistical leverage scores (SLS) inherent to
the data (c.f. Section 3), based on which are several impor-
tant randomized algorithms for CSS.

To the best of our knowledge, this is the first such kind of
error bound for CSS. Compared with existing error bounds,
the sampling dependent error bound brings us several ben-
efits: (i) it allows us to better understand the tradeoff in the
spectral error of reconstruction due to sampling probabili-
ties, complementary to a recent result on the tradeoff from
a statistical perspective (Ma et al., 2014) for least square
regression; (ii) it implies that a distribution with sampling
probabilities proportional to the square root of the SLS is
better than the uniform sampling, and is potentially bet-
ter than that proportional to the SLS when they are skewed;
(iii) it motivates an optimization approach by solving a con-
strained optimization problem related to the error bound
to attain better performance. In addition to the theoretical
analysis, we also develop an efficient bisection search al-
gorithm to solve the constrained optimization problem for
finding better sampling probabilities.

2. Related Work
In this section, we review some previous work on CSS,
low-rank matrix approximation, and other closely related
work on randomized algorithms for matrices. We focus our
discussion on the spectral norm reconstruction.

Depending on whether the columns are selected determin-
istically or randomly, the algorithms for CSS can be cat-
egorized into deterministic algorithms and randomized al-
gorithms. Deterministic algorithms select ` ≥ k columns
with some deterministic selection criteria. Representative
algorithms in this category are rank revealing QR factor-
ization and its variants from the filed of numerical linear
algebra (Gu & Eisenstat, 1996; Pan, 2000; Pan & Tang,
1999). A recent work (Boutsidis et al., 2011) based on the
dual set spectral sparsification also falls into this category
which will be discussed shortly. Randomized algorithms
usually define sampling probabilities s ∈ Rn and then se-
lect ` ≥ k columns based on these sampling probabilities.
Representative sampling probabilities include ones that de-
pend the squared Euclidean norm of columns (better for
Frobenius norm reconstruction) (Frieze et al., 2004), the
squared volume of simplices defined by the selected sub-
sets of columns (known as volume sampling) (Deshpande
& Rademacher, 2010), and the SLS (known as leverage-
based sampling or subspace sampling) (Drineas et al.,

2008; Boutsidis et al., 2009).

Depending on whether ` > k is allowed, the error bounds
for CSS are different. If exactly k columns are selected to
form C, the best bound was achieved by the rank reveal-
ing QR factorization (Gu & Eisenstat, 1996) with the error
bound given by:

‖A− PCA‖2 ≤
√

1 + k(n− k)‖A−Ak‖2. (1)
with a running time O(mnk log n). The same error bound
was also achieved by using volume sampling (Deshpande
& Rademacher, 2010). The running time of volume sam-
pling based algorithms can be made close to linear to the
size of the target matrix.

If more than k columns are allowed to be selected, i.e.,
` > k, better error bounds can be achieved. In the most
recent work by Boutsidis et al. (2011), nearly optimal error
bounds were shown by selecting ` > k columns with a de-
terministic selection criterion based on the dual set spectral
sparsification. In particular, a deterministic polynomial-
time algorithm 1 was proposed that achieves the following
error bound:

‖A− PCA‖2 ≤

(
1 +

1 +
√
n/`

1−
√
k/`

)
‖A−Ak‖2 (2)

in TVk + O(n`k2) time where TVk is the time needed to
compute the top k right singular vectors of A and O(n`k2)
is the time needed to compute the selection scores. This

bound is close to the lower bound Ω
(√

n+α2

`+α2

)
, α > 0

established in their work. It is worth mentioning that the
selection scores in (Boutsidis et al., 2011) computed based
on the dual set spectral sparsification is difficult to under-
stand than the SLS.

Although our sampling dependent error bound is not di-
rectly comparable to these results, our analysis exhibits
that the derived error bound could be better than that in (2)
when the SLS are nonuniform. Most importantly, the sam-
pling probabilities in our algorithm are only related to the
SLS and that can be computed more efficiently (e.g., ex-
actly inO(TVk) or approximately inO(mn log n) (Drineas
et al., 2012)). In simulations, we observe that the new sam-
pling distributions could yield even better spectral norm
reconstruction than the deterministic selection criterion
in (Boutsidis et al., 2011), especially when the SLS are
nonuniform.

For low rank matrix approximation, several other random-
ized algorithms have been recently developed. For exam-
ple, Halko et al. (2011) used a random Gaussian matrix
Ω ∈ Rn×` or a subsampled random Fourier transform to
construct a matrix Ω and then project A into the column

1A slower deterministic algorithm with a time complexity
TSVD + O(`n(k2 + (ρ − k)2)) was also presented with an error
bound O(

√
ρ/`)‖A−Ak‖2, where ρ is the rank of A.
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space of Y = AΩ, and they established numerous spectral
error bounds. Among them is a comparable error bound
O(
√
n/`)‖A − Ak‖2 to (2) using the subsampled random

Fourier transform. Other randomized algorithm for low
rank approximation include CUR decomposition (Drineas
et al., 2008; Wang & Zhang, 2012; 2013) and the Nyström
based approximation for PSD matrices (Drineas & Ma-
honey, 2005; Gittens & Mahoney, 2013).

Besides low rank matrix approximation and column se-
lection, CSS has also been successfully applied to least
square approximation, leading to faster and interpretable
algorithms for over-constrained least square regression. In
particular, if let Ω ∈ R`×m denote a scaled sampling ma-
trix corresponding to selecting ` < m rows from A, the
least square problem minx∈Rn ‖Ax− b‖22 can be approxi-
mately solved by minx∈Rn ‖ΩAx − Ωb‖22 (Drineas et al.,
2008; 2006b; 2011). Ma et al. (2014) studied CSS for least
square approximation from a statistical perspective. They
exhibited the expectation and variance of the solution to
the approximated least square with uniform sampling and
leverage-based sampling. They found that leveraging based
estimator could suffer from a large variance when the SLS
are very nonuniform while uniform sampling is less vul-
nerable to very small SLS. This tradeoff is complementary
to our observation. However, our observation follows di-
rectly from the spectral norm error bound. Moreover, our
analysis reveals that the sampling distribution with proba-
bilities proportional to the square root of the SLS is always
better than uniform sampling, suggesting that intermediate
sampling probabilities between SLS and their square roots
by solving a constrained optimization problem could yield
better performance than the mixing strategy that linearly
combines the SLS and uniform probabilities as suggested
in (Ma et al., 2014).

There are much more work on studying the Frobenius norm
reconstruction of CSS (Drineas et al., 2006a; Guruswami
& Sinop, 2012; Boutsidis et al., 2011; Drineas et al., 2008;
Boutsidis et al., 2009). For more references, we refer the
reader to the survey (Mahoney, 2011). It remains an in-
teresting question to establish sampling dependent error
bounds for other randomized matrix algorithms.

3. Preliminaries
LetA ∈ Rm×n be a matrix of sizem×n and have a rank of
ρ ≤ min(m,n). Let k < ρ be a target rank to approximate
A. We write the SVD decomposition of A as

A = U

(
Σ1 0
0 Σ2

)(
V >1
V >2

)
where Σ1 ∈ Rk×k, Σ2 ∈ R(ρ−k)×(ρ−k), V1 ∈ Rn×k and
V2 ∈ Rn×(ρ−k). We use σ1, σ2, . . . to denote the sin-
gular values of A in the descending order, and λmax(X)
and λmin(X) to denote the maximum and minimum eigen-

values of a PSD matrix X . For any orthogonal matrix
U ∈ Rn×`, let U⊥ ∈ Rn×(n−`) denote an orthogonal ma-
trix whose columns are an orthonormal basis spanning the
subspace of Rn that is orthogonal to the column space of
U .

Let s = (s1, . . . , sn) be a set of scores such that∑n
i=1 si = k 2, one for each column of A. We will

drawn ` independent samples with replacement from the
set [n] = {1, . . . , n} using a multinomial distribution
where the probability of choosing the ith column is pi =
si/
∑n
j=1 sj . Let i1, . . . , i` be the indices of ` > k selected

columns 3, and S ∈ Rn×` be the corresponding sampling
matrix, i.e,

Si,j =

{
1, if i = ij
0, otherwise,

and D ∈ R`×` be a diagonal rescaling matrix with Djj =
1
√
sij

. Given S, we construct the C matrix as

C = AS = (Ai1 , . . . , Ai`). (3)
Our interest is to bound the spectral norm error between A
and PCA for a given sampling matrix S, i.e., ‖A−PCA‖2,
where PCA projects A onto the column space of C. For
the benefit of presentation, we define Ω = SD ∈ Rn×` to
denote the sampling-and-rescaling matrix, and

Y = AΩ, Ω1 = V >1 Ω, Ω2 = V >2 Ω, (4)

where Ω1 ∈ Rk×` and Ω2 ∈ R(ρ−k)×`. Since the column
space of Y is the same to that of C, therefore

‖A− PCA‖2 = ‖A− PYA‖2
and we will bound ‖A − PYA‖2 in our analysis. Let
V >1 = (v1, . . . ,vn) ∈ Rk×n and V >2 = (u1, . . . ,un) ∈
R(ρ−k)×n. It is easy to verify that

Ω1 = (vi1 , . . . ,vi`)D, Ω2 = (ui1 , . . . ,ui`)D

Finally, we let s∗ = (s∗1, . . . , s
∗
n) denote the SLS of A

relative to the best rank-k approximation to A (Mahoney,
2011), i.e., s∗i = ‖vi‖22. It is not difficult to show that∑n
i=1 s

∗
i = k.

4. Main Result
Before presenting our main result, we first characterize
scores in s by two quantities as follows:

c(s) = max
1≤i≤n

s∗i
si
, q(s) = max

1≤i≤n

√
s∗i
si

(5)

Both quantities compare s to the SLS s∗. With c(s) and
q(s), we are ready to present our main theorem regarding
the spectral error bound.

Theorem 1. Let A ∈ Rm×n have rank ρ and C ∈ Rm×`

2For the sake of discussion, we are not restricting the sum of
these scores to be one but to be k, which does not affect our con-
clusions.

3Note that some of the selected columns could be duplicate.
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contain the selected columns according to sampling scores
in s. With a probability 1 − δ − 2k exp(−`/[8kc(s)]), we
have

‖A− PCA‖2 ≤ σk+1(1 + ε(s))

where ε(s) is

ε(s) = 3

√c(s)k(ρ+ 1− k) log
[
ρ
δ

]
`

+ q(s)
k log

[
ρ
δ

]
`


where σk+1 = ‖A − Ak‖2 is the (k + 1)th singular value
of A.
Remark: The proof is deferred to Section 6. Clearly, the
spectral error bound and the successful probability in The-
orem 1 depend on the quantities c(s) and q(s). In the sub-
section below, we study the two quantities to facilitate the
understanding of the result in Theorem 1.

4.1. More about the two quantities and their tradeoffs
The result in Theorem 1 implies that the smaller the quan-
tities c(s) and q(s), the better the error bound. Therefore,
we first study when c(s) and q(s) achieve their minimum
values. The key results are presented in the following two
lemmas with their proofs deferred to the supplement.

Lemma 1. The set of scores in s that minimize q(s) is given

by si ∝
√
s∗i , i.e., si =

k
√
s∗i∑n

i=1

√
s∗i

.

Remark: The sampling distribution with probabilities that
are proportional to the square root of s∗i , i ∈ [n] falls in be-
tween the uniform sampling and the leverage-based sam-
pling.

Lemma 2. c(s) ≥ 1,∀s such that
∑m
i=1 si = k. The set of

scores in s that minimize c(s) is given by si = s∗i , and the
minimum value of c(s) is 1.

Next, we discuss three special samplings with s (i) propor-
tional to the square root of the SLS, i.e., si ∝

√
s∗i (re-

ferred to as square-root leverage-based sampling or sqL-
sampling for short), (ii) equal to the SLS, i.e., si = s∗i
(referred to as leverage-based sampling or L-sampling for
short), and (iii) equal to uniform scalars si = k/n (referred
to as uniform sampling or U-sampling for short).

sqL-sampling. Firstly, if si ∝
√
s∗i , q(s) achieves its

minimum value and we have the two quantities written as

qsqL =
1

k

n∑
i=1

√
s∗i

csqL = max
i

s∗i
∑
i

√
s∗i

k
√
s∗i

= qsqL max
i

√
s∗i

(6)

In this case, when s∗ is flat (all SLS are equal), then
qsqL =

√
n
k and csqL = 1. The bound becomes

Õ(
√

(ρ+ 1− k)k/`+
√
nk/`2)σk+1 that suppresses log-

arithmic terms. To analyze qsqL and csqL for skewed SLS,

we consider a power-law distributed SLS, i.e., there ex-
ists a small constant a and power index p > 2, such that
s∗[i], i = 1, . . . , n ranked in descending order satisfy

s∗[i] ≤ a
2i−p, i = 1, . . . , n (7)

Then it is not difficult to show that
1

k

n∑
i=1

√
s∗i ≤

a

k

(
1 +

2

p− 2

)
which is independent of n. Then the error bound in The-

orem 1 becomes O
(√

ρ+1−k
` + 1

`

)
σk+1, which is better

than that in (2). This result is summarized in Corollary 3 at
the end of this subsection.

L-sampling. Secondly, if si = s∗i , then c(s) achieves its
minimum value and we have the two quantities written as

qL = max
i

1√
s∗i
, cL = 1 (8)

In this case, when s∗ is flat, we have qL =
√

n
k and cL = 1

and the same bound Õ(
√

(ρ+ 1− k)k/`+
√
nk/`2)σk+1

follows. However, when s∗ is skewed, i.e., there exist very
small SLS, then qL could be very large. As a comparison,
the q(s) for sqL-sampling is always smaller than that for
L-sampling due to the following inequality

qsqL =
1

k

n∑
i=1

√
s∗i =

1

k

n∑
i=1

s∗i√
s∗i

< max
i

1√
s∗i

∑n
i=1 s

∗
i

k

= max
i

1√
s∗i

= qL

U-sampling. Lastly, we consider the uniform sampling
si = k

n . Then the two quantities become

qU = max
i

n
√
s∗i
k

, cU = max
i

ns∗i
k

(9)

Similarly, if s∗ is flat, qU =
√

n
k and cU = 1. Moreover,

it is interesting to compare the two quantities for the sqL-
sampling in (6) and for the uniform sampling in (9).

qsqL =
1

k

n∑
i=1

√
s∗i ≤ max

i

n
√
s∗i
k

= qU

csqL = max
i

1

k

√
s∗i

n∑
i=1

√
s∗i ≤ max

i

ns∗i
k

= cU

From the above discussions, we can see that when s∗ is a
flat vector, there is no difference between the three sam-
pling scores for s. The difference comes from when s∗
tends to be skewed. In this case, si ∝

√
s∗i works al-

most for sure better than uniform distribution and could
also be potentially better than si = s∗i according to the
sampling dependent error bound in Theorem 1. A simi-
lar tradeoff between the L-sampling and U-sampling but
with a different taste was observed in (Ma et al., 2014),
where they showed that for least square approximation the
CSS leveraging-based least square estimator could have a
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large variance when there exist very small SLS. Nonethe-
less, our bound here exhibits more insights, especially on
the sqL-sampling. More importantly, the sampling depen-
dent bound renders the flexibility in choosing the sampling
scores by adjusting them according to the distribution of
the SLS. In next subsection, we present an optimization
approach to find better sampling scores. In Figure 1, we
give a quick view of different sampling strategies.

Corollary 2. Let A ∈ Rm×n have rank ρ and C ∈ Rm×`
contain the selected columns according to sampling scores
in
√
s∗. Assume the scores in s∗ follow a power-law dis-

tribution as in (7) with p > 2 and ` ≥ 8a2(1 + 2/(p −
2)) log(k/δ). With a probability at least 1− 3δ, we have

‖A− PCA‖2 ≤ σk+1O

[√
(ρ+ 1− k) log[ρδ ]

`
+

log[ρδ ]

`

]
where the big O(·) suppresses the dependence on a and p.

4.2. Optimizing the error bound
As indicated by the result in Theorem 1, in order to achieve
a good performance, we need to make a balance between
c(s) an q(s), where c(s) affects not only the error bound but
also the successful probability. To address this issue, we
propose a constrained optimization approach. More specif-
ically, to ensure that the failure probability is no more than
3δ, we impose the following constraint on c(s)

`

8kc(s)
≥ log

(
k

δ

)
, i.e., max

i

s∗i
si
≤ `

8k log
(
k
δ

) := γ

(10)
Then we cast the problem into minimizing q(s) under the
constraint in (10), i.e.,

min
s∈Rn+

max
1≤i≤n

√
s∗i
si

s.t. s>1 = k, s∗i ≤ γsi, i = 1, . . . , n (11)
It is easy to verify that the optimization problem in (11)
is convex. Next, we develop an efficient bisection search
algorithm to solve the above problem with a linear conver-
gence rate. To this end, we introduce a slack variable t and
rewrite the optimization problem in (11) as

min
s∈Rn+,t≥0

t, s.t. s>1 = k

and
s∗i
si
≤ min

(
γ, t
√
s∗i

)
, i = 1, . . . , n

(12)

We now find the optimal solution by performing bisection
search on t. Let tmax and tmin be the upper and lower
bounds for t. We set t = (tmin + tmax)/2 and decide the
feasibility of t by simply computing the quantity

f(t) =

n∑
i=1

s∗i
min

(
γ, t
√
s∗i
)

Evidently, t is a feasible solution if f(t) ≤ k and is not if
f(t) > k. Hence, we will update tmax = t if f(t) ≤ k and

more uniform more skewed 
U-sampling L-sampling 

sqL-sampling 

mixing suggested by Ma et al., 2014   

optimization based mixing 

Figure 1. An illustration of different sampling strategies. The
mixing strategy suggested by (Ma et al., 2014) is a convex combi-
nation of U-sampling and L-sampling. Our optimization approach
gives an intermediate sampling between the sqL-sampling and the
L-sampling.

tmin = t if f(t) > k. To run the bisection algorithm, we
need to decide initial tmin and tmax. We can set tmin = 0.
To compute tmax, we make an explicit construction of s by
distributing the (1−γ−1) share of the largest element of s∗
to the rest of the list. More specifically, let j be the index
for the largest entry in s∗. We set sj = ‖s∗‖∞γ−1 and
si = s∗i + (1− γ−1)‖s∗‖∞/(n− 1) for i 6= j. Evidently,
this solution satisfies the constraints s∗i ≤ γsi, i ∈ [n] for
γ ≥ 1. With this construction, we can show that

q(s) ≤ max

(
γ√
‖s∗‖∞

,
n− 1√

‖s∗‖∞(1− γ−1)

)
Therefore, we set initial tmax to the value in R.H.S of the
above inequality. Given the optimal value of t = t∗ we
compute the optimal value of si by si =

s∗i
min(γ,t∗

√
s∗i )
.

The corresponding sampling distribution clearly lies be-
tween L-sampling and sqL-sampling. In particular, when
γ = 1 the resulting sampling distribution is L-sampling
due to Lemma 2 and when γ → ∞ the resulting sampling
distribution approaches sqL-sampling.

Finally, we comment on the value of `. In order to make
the constraint in (10) feasible, we need to ensure γ ≥ 1.
Therefore, we need ` ≥ Ω(k log

(
k
δ

)
).

4.3. Subsequent Applications
Next, we discuss two subsequent applications of CSS, one
for low rank approximation and one for least square ap-
proximation.

Rank-k approximation. If a rank-k approximation is de-
sired, we need to do some postprocessing since PCAmight
have rank larger than k. We can use the same algorithm as
presented in (Boutsidis et al., 2011). In particular, given
the constructed C ∈ Rn×`, we first orthonormalize the
columns of C to construct a matrix Q ∈ Rm×` with or-
thonormal columns, then compute the best rank-k approx-
imation of Q>A ∈ R`×n denoted by (Q>A)k, and finally
construct the low-rank approximation as Q(Q>A)k. It was
shown that (Lemma 2.3 in (Boutsidis et al., 2011))

‖A−Q(Q>A)k‖2 ≤
√

2‖A−Π2
C,k(A)‖2
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where Π2
C,k(A) is the best approximation to A within the

column space of C that has rank at most k. The running
time of above procedure is O(mn`+ (m+ n)`2). Regard-
ing its error bound, the above inequality together with the
following theorem implies that its spectral error bound is
only amplified by a factor of

√
2 compared to that of PCA.

Theorem 3. Let A ∈ Rm×n have rank ρ and C ∈ Rm×`
contain the selected columns according to sampling scores
in s. With a probability 1 − δ − 2k exp(−`/[8kc(s)]), we
have

‖A−Π2
C,k(A)‖2 ≤ σk+1(1 + ε(s))

where ε(s) is given in Theorem 1.

Least Square Approximation. CSS has been used in
least square approximation for developing faster and in-
terpretable algorithms. In these applications, an over-
constrained least square problem is considered, i.e., given
A ∈ Rm×n and b ∈ Rm with m� n, to solve the follow-
ing problem:

xopt = arg min
x∈Rn

‖Ax− b‖22 (13)

The procedure for applying CSS to least square approxima-
tion is (i) to sample a set of ` > n rows from A and form
a sampling-and-rescaling matrix denoted by Ω ∈ R`×m 4;
(ii) to solve the following reduced least square problem:

x̂opt = arg min
x∈Rn

‖ΩAx− Ωb‖22 (14)

It is worth pointing out that in this case the SLS s∗ =
(s∗1, . . . , s

∗
m) are computed based on the the left singular

vectors U of A by s∗i = ‖Ui∗‖22, where Ui∗ is the i-th
row of U . One might be interested to see whether we can
apply our analysis to derive a sampling dependent error
bound for the approximation error ‖xopt − x̂opt‖2 sim-
ilar to previous bounds of the form ‖xopt − x̂opt‖2 ≤

ε
σmin(A)‖Axtop − b‖2. Unfortunately, naively combining
our analysis with previous analysis is a worse case analysis,
and consequentially yields a worse bound. The reason will
become clear in our later discussions in Section 7. How-
ever, the statistical analysis in (Ma et al., 2014) does indi-
cate that x̂opt by using sqL-sampling could have smaller
variance than that using L-sampling.

5. Numerical Experiments
Before delving into the detailed analysis, we present some
experimental results. We consider synthetic data with the
data matrix A generated from one of the three different
classes of distributions introduced below, allowing the SLS
vary from nearly uniform to very nonuniform.

• Nearly uniform SLS (GA). Columns of A are
generated from a multivariate normal distribution
N (1m,Σ), where Σij = 2 ∗ 0.5|i−j|. This data is

4We abuse the same notation Ω.
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Figure 2. Comparison of the spectral error for different data, dif-
ferent samplings, different target rank and different sample size.
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Figure 3. The spectral error for the sampling probabilities found
by the constrained optimization approach with different values of
γ ≥ 1. The left most point corresponds to sqL-sampling and the
right most point corresponds to L-sampling.

referred to as GA data.

• Moderately nonuniform SLS (T3). Columns of A are
generated from a multivariate t-distribution with 3 de-
gree of freedom and covariance matrix Σ as before.
This data is referred to as T3 data.

• Very nonuniform SLS (T1). Columns of A are gen-
erated from a multivariate t-distribution with 1 degree
of freedom and covariance matrix Σ as before. This
data is referred to as T1 data.

These distributions have been used in (Ma et al., 2014) to
generate synthetic data for empirical evaluations.

We first compare the spectral norm reconstruction error
of the three different samplings, namely L-sampling, U-
sampling and the sqL-sampling, and the deterministic dual
set spectral sparsification algorithm. We generate synthetic
data with n = m = 1000 and repeat the experiments 1000
times. We note that the rank of the generated data matrix
is 1000. The averaged results are shown in Figure 2. From
these results we observe that (i) when the SLS are nearly
uniform, the three sampling strategies perform similarly
as expected; (ii) when the SLS become nonuniform, sqL-
sampling performs always better than U-sampling and bet-
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Figure 4. Comparison of variance and squared bias of the estima-
tors for different data, different samplings and different sample
size.
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Figure 5. Comparison of variance and squared bias of the estima-
tors for different mixing strategies. Opt refers to our optimiza-
tion based approach and LU refers to a convex combination of L-
sampling and U-sampling with γ−1 as the combination weight.

ter than the L-sampling when the target rank is small (e.g.,
k = 10) or the sample size ` is large; (iii) when the SLS are
non-uniform, the spectral norm reconstruction error of sqL-
sampling decreases faster than L-sampling w.r.t the sample
size `; (iv) randomized algorithms generally perform better
than the deterministic dual set sparsification algorithm.

Second, we compare the sampling scores found the con-
strained optimization with L-sampling and sqL-sampling.
We vary the value of γ from 1 (corresponding to L-
sampling) to∞ (corresponding to sqL-sampling). A result
with sampling size ` = 500 is shown in Figure 3. It demon-
strates that intermediate samplings found by the proposed
constrained optimization can perform better than both L-
sampling and sqL-sampling.

Finally, we apply CSS to over-constrained least square re-
gression. To this end, we generate a synthetic data matrix
A ∈ Rm×n with m = 50 and n = 1000 similarly to (Ma
et al., 2014). The output is generated by y = A>β + ε
where ε ∼ (0, 9In) and β = (110, 0.1130,110)>. We
compare the variance and bias of the obtained estimators
over 1000 runs for different sampling distributions. The
results shown in Figure 4 demonstrate the sqL-sampling

gives smaller variance and better bias of the estimators than
L-sampling and U-sampling. We also compare the pro-
posed optimization approach with the simple mixing strat-
egy (Ma et al., 2014) that uses a convex combination of the
L-sampling and the U-sampling. The results are shown in
Figure 5, which again support our approach.

More results including relative error versus varying size n
of the target matrix and the Frobenius norm reconstruction
error can be found in supplement.

6. Analysis
In this section, we present major analysis steps leading to
Theorem 1 and Theorem 3 with detailed proofs included
in supplement. The key to our analysis is the following
lemma.
Lemma 3. Let Y,Ω1,Ω2 be defined in (4). Assume that
Ω1 has full row rank. We have

‖A− PYA‖2ξ ≤ ‖Σ2‖2ξ +
∥∥∥Σ2Ω2Ω†1

∥∥∥2
ξ

and ∥∥A−Π2
Y,k(A)

∥∥2
ξ
≤ ‖Σ2‖2ξ +

∥∥∥Σ2Ω2Ω†1

∥∥∥2
ξ

where ξ could be 2 and F .

The first inequality was proved in (Halko et al., 2011) (The-
orem 9.1) and the second inequality is credited to (Bout-
sidis et al., 2011) (Lemma 3.2) 5. Previous work on
the spectral norm analysis also start from a similar in-
equality as above. They bound the second term by
using ‖Σ2Ω2Ω†1‖2 ≤ ‖Σ2Ω2‖2‖Ω†1‖2 and then bound
the two terms separately. However, we will first write∥∥∥Σ2Ω2Ω†1

∥∥∥
2

= ‖Σ2Ω2Ω>1 (Ω1Ω>1 )−1‖2 using the fact Ω1

has full row rank, and then bound ‖(Ω1Ω>1 )−1‖2 and
‖Ω2Ω>1 ‖2 separately. To this end, we will apply the
Matrix Chernoff bound as stated in Lemma 4 to bound
‖(Ω1Ω>1 )−1‖2 and apply the matrix Bernstein inequality
as stated in Lemma 5 to bound ‖Ω2Ω>1 ‖2.

Lemma 4 (Matrix Chernoff (Tropp, 2012)). Let X be a
finite set of PSD matrices with dimension k, and suppose
that maxX∈X λmax(X) ≤ B. Sample {X1, . . . , X`} inde-
pendently from X . Compute

µmax = `λmax(E[X1]), µmin = `λmin(E[X1])

Then

Pr

{
λmax

(∑̀
i=1

Xi

)
≥ (1 + δ)µmax

}
≤k
[

eδ

(1 + δ)1+δ

]µmax
B

Pr

{
λmin

(∑̀
i=1

Xi

)
≤ (1− δ)µmin

}
≤k
[

e−δ

(1− δ)1−δ

]µmin
B

Lemma 5 (Noncommutative Bernstein Inequality (Recht,

5In fact, the first inequality is implied by the second inequality.
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2011)). Let Z1, . . . , ZL be independent zero-mean ran-
dom matrices of dimension d1 × d2. Suppose τ2j =

max
{
‖E[ZjZ

>
j ]‖2, ‖E[Z>j Zj‖2

}
and ‖Zj‖2 ≤ M al-

most surely for all k. Then, for any ε > 0,

Pr

∥∥∥∥∥∥
L∑
j=1

Zj

∥∥∥∥∥∥
2

> ε

 ≤ (d1+d2) exp

[
−ε2/2∑L

j=1 τ
2
j +Mε/3

]

Following immediately from Lemma 3, we have

‖A− PYA‖2 ≤ σk+1

√
1 + ‖Ω2Ω>1 (Ω1Ω>1 )−1‖22

≤ σk+1

√
1 + ‖Ω2Ω>1 ‖22λ

−2
min(Ω1Ω>1 )

≤ σk+1(1 + ‖Ω2Ω>1 ‖2λ−1min(Ω1Ω>1 )),

where the last inequality uses the fact
√
a2 + b2 ≤ a + b

for a, b ≥ 0. Below we bound λmin(Ω1Ω>1 ) from below
and bound ‖Ω2Ω>1 ‖2 from above.

6.1. Bounding ‖(Ω1Ω>1 )−1‖2

We will utilize Lemma 4 to bound λmin(Ω1Ω>1 ). Define
Xi = viv

>
i /si. It is easy to verify that

Ω1Ω>1 =
∑̀
j=1

1

sij
vijv

>
ij =

∑̀
j=1

Xij

and E[Xij ] = 1∑n
i=1 si

∑n
i=1 siXi = 1

k Ik, where we use∑n
j=1 sj = k and V >1 V1 = Ik. Therefore we have

λmin(E[Xij ]) = 1
k . Then the theorem below will follow

Lemma 4.

Theorem 4. With a probability 1−k exp(−δ2`/[2kc(s)]),
we have λmin(Ω1Ω>1 ) ≥ (1− δ) `k .

Therefore, with a probability 1−k exp(−δ2`/[2kc(s)]) we
have ‖(Ω1Ω>1 )−1‖2 ≤ 1

1−δ
k
` .

6.2. Bounding ‖Ω2Ω>1 ‖2

We will utilize Lemma 5 to bound ‖Ω2Ω>1 ‖2. Define Zj =
uijv

>
ij
/sij . Then

Ω2Ω>1 =
∑̀
j=1

1

sij
uijv

>
ij =

l∑
j=1

Zj

and E[Zj ] = 0. In order to use the matrix Bernstein in-

equality, we will bound maxi ‖Zi‖2 = maxi
‖uiv>i ‖2

si
≤

q(s) and τ2j ≤
(ρ+1−k)c(s)

k . Then we can prove the follow-
ing theorem.

Theorem 5. With a probability 1− δ, we have

‖Ω2Ω>1 ‖2 ≤
√

2c(s)
(ρ+ 1− k)` log( ρk )

k
+

2q(s) log( ρk )

3
.

We can complete the proof of Theorem 1 by combining
the bounds for ‖Ω2Ω>1 ‖2 and λ−1min(Ω1Ω>1 ) and by setting
δ = 1/2 in Theorem 4 and using union bounds.

7. Discussions and Open Problems
From the analysis, it is clear that the matrix Bernstein in-
equality is the key to derive the sampling dependent bound
for ‖Ω2Ω>1 ‖2. For bounding λmin(Ω1Ω>1 ), similar analysis
using matrix Chernoff bound has been exploited before for
randomized matrix approximation (Gittens, 2011).

Since Lemma 3 also holds for the Frobenius norm, it might
be interested to see whether we can derive a sampling de-
pendent Frobenius norm error bound that depends on c(s)
and q(s), which, however, still remains as an open prob-
lem for us. Nonetheless, in experiments (included in the
supplement) we observe similar phenomena about the per-
formance of L-sampling, U-sampling and sqL-sampling.

Finally, we briefly comment on the analysis for least square
approximation using CSS. Previous results (Drineas et al.,
2008; 2006b; 2011) were built on the structural conditions
that are characterized by two inequalities

λmin(ΩUU>Ω) ≥ 1/
√

2

‖U>Ω>ΩU⊥U⊥
>
b‖22 ≤

ε

2
‖U⊥U⊥>b‖22

The first condition can be guaranteed by Theorem 4 with
a high probability. For the second condition, if we adopt a
worse case analysis

‖U>Ω>ΩU⊥U⊥
>
b‖22 ≤ ‖U>Ω>ΩU⊥‖22‖U⊥

>
b‖22

and bound the first term in R.H.S of the above inequality
using Theorem 5, we would end up with a worse bound
than existing ones that bound the left term as a whole.
Therefore the naive combination can’t yield a good sam-
pling dependent error bound for the approximation error of
least square regression.

8. Conclusions
In this paper, we have presented a sampling dependent
spectral error bound for CSS. The error bound brings a new
distribution with sampling probabilities proportional to the
square root of the statistical leverage scores and exhibits
more tradeoffs and insights than existing error bounds for
CSS. We also develop a constrained optimization algorithm
with an efficient bisection search to find better sampling
probabilities for the spectral norm reconstruction. Numer-
ical simulations demonstrate that the new sampling distri-
butions lead to improved performance.
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