
On Identifying Good Options under Combinatorially Structured Feedback
in Finite Noisy Environments

Yifan Wu YWU12@UALBERTA.CA
András György GYORGY@UALBERTA.CA
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Abstract
We consider the problem of identifying a good
option out of finite set of options under combi-
natorially structured, noisy feedback about the
quality of the options in a sequential process:
In each round, a subset of the options, from an
available set of subsets, can be selected to re-
ceive noisy information about the quality of the
options in the chosen subset. The goal is to
identify the highest quality option, or a group
of options of the highest quality, with a small
error probability, while using the smallest num-
ber of measurements. The problem generalizes
best-arm identification problems. By extend-
ing previous work, we design new algorithms
that are shown to be able to exploit the com-
binatorial structure of the problem in a nontriv-
ial fashion, while being unimprovable in special
cases. The algorithms call a set multi-covering
oracle, hence their performance and efficiency is
strongly tied to whether the associated set multi-
covering problem can be efficiently solved.

1. Introduction
Consider the problem of identifying the most rewarding op-
tion(s) out of finitely many. At your disposal are a number
of probing devices, or just probes, that give you noisy mea-
surements of the quality of a select set of options. More
precisely, each probe is associated with a known subset of
options whose quality the probe will measure. In a sequen-
tial process, the goal is to select the probes so that one can
stop early to return, with high probability, a sufficiently re-
warding option (or a set of options). As a specific example,
consider the problem of identifying the segment on a road
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Figure 1. A specialized algorithm (SEWP) proposed in this paper
can take nontrivial advantage of the probe structure as compared
with simple adaptations of earlier algorithms, while being only
marginally more expensive. All algorithms maintain the same
error-rate. The plot on the left-hand-side uses a log-log-scale.
Due to the special structure of the problem, the expected stop-
ping time of the specialized algorithm scale linearly with

√
K,

while the others scale linearly with K, the number of options.

network that is in the worst shape after a long winter. Mea-
surements can be obtained by sending trucks checking the
road for potholes along the paths they travel on. The trucks
must return to their garage every day. Here, the options
correspond to road segments, the probes correspond to a
closed walk in the road network that starts from the garage.
Somewhat ironically, a road segment is “rewarding” (from
the point of view of how beneficial it is to sending there the
repair team) if it has many potholes.1 Measurements are
noisy, as potholes are easy to miss.

Problems like the above one abound. Numerous quality
assurance and surveying tasks are such that measurements
give simultaneous information about multiple entities due
to physical constraints on the measurement process. Ap-
plication areas include technical computing (e.g., network-
ing), biology (ecology, microbiology, etc.), physics, etc.

Of course, even though individual measurements might be

1In practice, one may want a whole “plan” at the end for the
repair team. As often, we took the liberty of simplifying the prob-
lem to be able to focus on how the structure of probes should be
used.
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impossible, it is always possible to treat each probe as one
that gives individual measurements for the options asso-
ciated with it, though this could be wasteful (cf. Fig. 1).
The main topic of the present paper is how to exploit, with
efficient algorithms, when probes give information about
multiple options.

The special case when each probe measures a single option,
is known as the best arm identification problem, whose his-
tory goes back more than half a century (Bechhofer, 1958;
Paulson, 1964), and with much activity in the last decade
(e.g., Even-Dar et al. 2002, Mannor & Tsitsiklis 2004, Au-
dibert et al. 2010, Kalyanakrishnan & Stone 2010, Bubeck
et al. 2011, Kalyanakrishnan et al. 2012, Gabillon et al.
2012, Karnin et al. 2013, Kaufmann & Kalyanakrishnan
2013, Bubeck et al. 2013, Jamieson et al. 2014, Kaufmann
et al. 2015, Zhou et al. 2014, Chen et al. 2014).

In this paper we consider two basic settings: identifying the
best option with a prespecified error probability while us-
ing the smallest possible number of probes, and identifying
a group of options of a fixed size, again with a prespeci-
fied error probability with the smallest possible number of
probes. For the first setting, we propose two algorithms,
SEWP and EGEWP described in Section 3, extending the
works of Even-Dar et al. (2002) and Karnin et al. (2013).
They work by constructing coverings with the probes of
the sets of options not eliminated. The second algorithm
removes a logarithmic term from the upper bound and it
required a non-trivial extension of the median elimination
method of Even-Dar et al. (2002). For the second setting, in
Section 4, the quality of a group returned is assessed either
by the quality of the worst option in the group (following
Kalyanakrishnan & Stone (2010)), or by the average qual-
ity of options in the group (Zhou et al., 2014). We propose
a single algorithm (SARWP) that essentially covers both
cases. For the average quality, our distribution dependent
upper bound is novel even in the bandit case and also near
optimal in the worst case compared with the lower bound
proposed by Zhou et al. (2014). For simple probe structures
(singletons, or when a probe that covers all options is avail-
able), our algorithms are shown to be essentially unimprov-
able. We also give lower bounds for general probe struc-
tures. While both our lower and upper bounds express how
the structure of the probes interferes with the structure of
payoffs, they differ in subtle ways and it remains for future
work to see whether there is a gap between them.

Due to space constraints, proofs and some experimental re-
sults are relegated to the appendix.

2. Preliminaries
In this section, we formulate the problem studied, as well
as introducing the set covering problem, which will play an

important role in our algorithms and analysis. We start by
defining some notation.

2.1. Notation

The set of natural numbers will be denoted by N, which
includes zero. For a positive natural number n, [n] denotes
the set of integers between 1 and n: [n] = {1, . . . , n}.
The power set, i.e., the set of all subsets of a set S, will
be denoted by 2S . As usual, functions, mapping set X to
set Y will be viewed as elements of Y X . For v ∈ Y X ,
we will often write vx instead of v(x) to minimize clutter.
This also helps with the next convention: When U ⊂ X ,
we will use vU to denote the restriction of v ∈ Y X to U :
vU (u) = v(u), u ∈ U . We identify Y [n] with Y n (the
set of n-tuples) in the natural way, which allows us to use
notation vU for v ∈ Y n ≡ Y [n]. The cardinality of a set
S is denoted by |S|. Certain symbols will be reserved to
denote elements of certain sets (i.e., p will always be an
element of set P). When using such reserved symbols, we
will abbreviate (e.g.)

∑
p∈P f(p) to

∑
p f(p). We will use

log(·) to denote the natural logarithm function.

2.2. Problem Formulation

A decision maker is given a pair ([K] ,P), where elements
of [K] are called arms, or, interchangeably, actions, and
P ⊂ 2[K] such that the sets in P cover [K]: ∪P = [K].
Elements of P are called probes. A problem instance D,
or environment, is specified by K distributions over the re-
als, D = (D1, . . . , DK). The decision maker does not
have direct access to these distributions. For 1 ≤ i ≤ K,
we think of distribution Di as the distribution of “rewards”
associated with arm i. We assume that the mean reward
µi =

∫
xDi(dx) of each arm is well defined. Further as-

sumptions on Di will be given later.

The goal of the decision maker is to find arms with the
largest mean reward. For this, the decision maker can query
the rewards of the arms by using the probes in a sequential
manner. In particular, for each round t = 1, 2, . . . , first
a random reward Xt,i ∼ Di is generated for each arm i
from its associated distribution. It is assumed that Xt,i is
independent of the other rewards (Xs,j)s 6=t or j 6=i. We set
Xt = (Xt,1, . . . , Xt,K) ∈ RK . In round t = 1, 2, . . . , the
decision maker chooses a probe pt ∈ P based on her past
observations, to observe the values Xt,i for each arm i in
pt; with our earlier introduced notation we can write that
the decision maker observes Xt,pt

.
= (Xt)pt ∈ Rpt . At the

end of each round, the decision maker can decide between
continuing or stopping to return a list of guesses (or a single
guess) on the indices of the good arms. The goal is to stop
as soon as possible, while avoiding poor guesses.

The following specific problem settings will be consid-
ered:
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(i) Fixed confidence, best-arm identification. The op-
timal arm is unique: If µ? = maxi∈[K] µi,
maxi:µi 6=µ? µi < µ?. The goal of the decision maker
is to identify the index i? = argmaxi∈[K] µi of the
optimal arm. The decision maker is given a confi-
dence parameter 0 ≤ δ < 1 and it is required that the
guess returned after τ probes must be correct on an
event E with probability at least 1− δ. Decision mak-
ers are compared based on their probe complexity,
i.e., the number of probes they use when the “good
event” E happens.

(ii) PAC subset selection. There are two subproblems
that we consider. In both cases the decision maker
is given a confidence, 0 ≤ δ < 1, a suboptimal-
ity threshold ε > 0 and a subset cardinality 1 ≤
m ≤ K. The problems differ in how a quality
q(S, µ) measure is assigned to a subset S ⊂ [K] of
arms. In both problems, the goal is to find a sub-
set of arms of cardinality m such that q(S, µ) ≥
maxP⊂[K]:|P |=m q(P, µ) − ε and with probability
1 − δ, the decision maker must return a subset sat-
isfying the above quality constraint. As before, deci-
sion makers are compared based on how many probes
they use before stopping. The two quality measures
considered are the reward of the worst arm in the set
and the average reward: qmin(S, µ) = mini∈S µi and
qavg(S, µ) = 1

|S|
∑
i∈S µi, S ⊂ [K], |S| = m. We

call the corresponding problems the strong and the
average PAC subset selection problems.

An algorithm used by a decision maker to select probes,
stop and return a guess will be said to be admissible with
respect to a class of environments, if, for any environment
within the class and any 0 ≤ δ < 1, the guess computed is
correct (according to the previous requirements) with prob-
ability 1− δ.

The above problems have been considered in the past in the
special case when P contains singletons only, by a number
of authors (see Section 1 for some references). We shall
call these the “bandit” problems. While one can readily
apply the algorithms developed for the bandit case to our
problem, the expectation is that the probe complexity of
reasonable algorithms should improve considerably as P
becomes “richer” (this was illustrated in Fig. 1). The ques-
tion is how the structure of P together with the problem
instance influences the problem complexity. For example,
in the extreme case when P contains [K], we expect the
probe complexity of reasonable algorithms to scale sublin-
early with K, whereas in the bandit case a linear scaling is
unavoidable. The case when P = {[K]} will be called the
full information case.

Note that since all probes “cost” the same amount (one unit

of time), a reasonable algorithm will avoid any probe p that
is entirely included in some other probe p′ ∈ P . Hence,
we may as well assume that the set of probes does not have
nontrivial chains in it.

We will present results for the class of environments Dsg
with the following restrictions: For each 1 ≤ i ≤ K, Di is
sub-Gaussian with common parameter σ2 = 1/4:

log

∫
R
e−λ(x−µi)Di(dx) ≤ λ2σ2/2 = λ2/8

for all λ ∈ R. To simplify the presentation of our results,
without loss of generality, we assume that µ1 ≥ µ2 ≥
· · · ≥ µK . (note that, obviously, the algorithms do not
use this assumption). For further simplicity, we assume
that ∆i ∈ [0, 1] for all i ∈ [K] where ∆i = µ1 − µi,
2 ≤ i ≤ K. Our assumptions on the reward distributions
Di are satisfied if, for example, Di has bounded support.

We will present algorithms, which will be shown to be ad-
missible for Dsg and we will bound their probe complexi-
ties. The bounds on the probe complexities will be given in
terms of the (suboptimality) gaps ∆i, 2 ≤ i ≤ K, i.e., they
will be dependent on the distributions D = (D1, . . . , DK).
Hence, we call them distribution dependent bounds. We
will accompany our constructive results with lower bounds,
putting a lower limit on the probe complexity of all admis-
sible algorithms. Again, these will be given in terms of the
gaps ∆i.

2.3. Set Multi-Cover Problems

Probes allow one to “explore” multiple arms simultane-
ously. Clever algorithms should use the probes in a smart
way to guarantee the necessary number of samples for each
of the arms while using the smallest number of probes. If,
for example, n ∈ N observations are enough from each of
the arms to distinguish their mean payoff from that of the
optimal arm, then an intelligent algorithm would try to cre-
ate the smallest covering of [K] using the subsets in P to
meet this requirement. More generally, for J ⊂ [K], we
define

CIP(J, n) = min
{∑

p sp : s ∈ NP ,
∑
p:i∈p sp ≥ n, i ∈ J

}
to be the cost of the smallest n-fold multi-covering of ele-
ments of J . Any s ∈ NP achieving the minimum is called
an optimal (integral) n-cover of J , while a feasible vector s
is called an n-cover. Given an n-cover s ∈ NP , we will say
that probe p belongs to s (writing p ∈ s) if sp > 0. The op-
timization problem defining CIP is a linear integer program
(hence the IP in CIP). Relaxing the integrality constraint
s ∈ NP to the nonnegativity constraint s ∈ [0,∞)P , we
get a so-called fractional optimal n-cover of J by solving
the otherwise identical optimization problem. The result-
ing optimal value will be denoted by CLP(J, n). Note that
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the relaxed problem is a linear program, explaining “LP”
in CLP. While this linear program has potentially expo-
nentially many variables in K, it can still be efficiently
solved provided an efficiently computable membership or-
acle is available for its dual (Grötschel et al., 1993). Both
CIP(J, n) and CLP(J, n) can be extended to non-integer
values of n.

It follows immediately from the definitions that
CLP(J, n) ≤ CIP(J, n). Further, for any a > 0,
CLP(J, a n) = a CLP(J, n) = an CLP(J, 1). The integral-
ity gap for a set multi-covering problem instance is given
by (P, J, n) is CIP(J, n)/CLP(J, n) (Vazirani, 2001).

Our algorithms will need “small” n-covers for various sub-
sets J ⊂ [K]. Depending on the structure of P , calcu-
lating an optimal multi-cover of J may be easy or hard2

(e.g., Slavik, 1998; Schrijver, 2003; Korte & Vygen, 2006).
Thus, to keep the presentation general, our algorithms will
rely on a set multi-covering oracle COrcl, which given
J, n,P , returns an n-fold multi-cover of J using the sets
in P . Denote by CO(J, n) the cost of the multi-cover re-
turned by the oracle on J, n (as with CIP and CLP the de-
pendence on P is suppressed). The oracle’s integral (frac-
tional) approximation gap, GIP (O,P) (GLP (O,P)), is the
worst-case multiplicative loss due to using COrcl in place
of an optimal integral (fractional) cover. In particular, with
? ∈ {IP, LP},

G?(O,P) = sup
n∈N+,J⊂[K]

CO(J, n)

C?(J, n)
.

Let d = maxp∈P |p| be the maximum number of actions
that can be covered by a single probe. If the set-system
P has no special structure, one possibility is to use the
greedy algorithm G as the oracle. This algorithm works
by sequentially setting sp = n for the probe p ∈ P that
covers the maximum number of active arms in J and then
deactivates the arms that are covered by p, until all arms
are deactivated. Further, GLP (O,P) ≤ 1 + log(d) ≤
1 + log(K). Lovász (1975) showed that CG(J, 1) ≤
(1 + log d)CLP(J, 1). Then, CG(J, n) = n CG(J, 1) ≤
(1 + log d)n CLP(J, 1) = (1 + log d)CLP(J, n), showing
that the required inequality indeed holds. Raz & Safra
(1997) proved that the exists some constant c > 0 such
that, unless P = NP , no approximation ratio of c log(K)
can be achieved, so in a worst-case the greedy algorithm is
a near-optimal approximation algorithm.

3. Finding the Best Arm
In this section we present two algorithms and their analysis
for the fixed confidence, best-arm identification problem.

2Computing the exact solution for the decision version of set
covering (i.e., when n = 1), when P can be any covering system,
is known to be NP-hard (Vazirani, 2001).

Recall that in this problem, given a set of probes P and
a confidence δ ∈ (0, 1], we need to design a sequential
procedure that identifies the best arm i? with probability at
least 1− δ using as few probes as possible.

3.1. Successive Elimination with Probes

The first algorithm modifies the successive elimination al-
gorithm of Even-Dar et al. (2002) to take into account the
richer observation structure of our problem. Recall that the
algorithm of Even-Dar et al. (2002) works in phases, in
each phase observing a certain number of rewards for each
remaining candidate actions. At the end of the phase the
provably suboptimal actions are eliminated. The number
of observations in each phase depends only on the phase
index. The process stops when the candidate set contains
a single element. The main difference to the algorithm
of Even-Dar et al. (2002) is that in each phase our algo-
rithm, which we call Successive Elimination with Probes
(SEWP), computes a set multi-covering for the remaining
candidate actions given the probes, with a requirement ad-
justed to the phase index. The returned multi-cover is then
used to get the observations for the remaining actions.

Algorithm 1 SuccessiveEliminationWithProbes (SEWP)
1: Inputs: K, δ, P , observation scheduling function f :

N → N and confidence function g : N × (0, 1] →
[0,∞).

2: Initialize candidate set: A1 = [K].
3: for t = 1, 2, . . . do
4: C(t)← COrcl(At, f(t),P).
5: Use each p in C(t) for Cp(t)-times to get new ob-

servations.
6: For each i ∈ At, let µ̂i(t) be the mean of all obser-

vations so far for arm i.
7: At+1 ← {i ∈ At : µ̂i(t) + 2g(t, δ) > maxj∈At µ̂j(t)}.
8: if |At+1| = 1 then
9: Return the arm in At+1.

10: end if
11: end for

Our first result shows that Algorithm 1 is admissible and
gives an upper bound on its probe complexity. To state it,
define the scheduling and confidence functions

f(t) = 2t, g(t, δ) =

√
log(4Kt2/δ)

2t+1
. (1)

For simplicity, assume that the arms are ordered in decreas-
ing order of their mean rewards and ∆2 > 0, i.e., the opti-
mal arm is unique. For 2 ≤ i ≤ K define

T̂i(δ) = 1 + max

{
s : g(s, δ) ≥ ∆i

4

}
, (2)

N̂i(δ) =
128

∆2
i

log

(
54K

δ
log

4

∆i

)
(3)
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and let T̂K+1(δ) = 0 and N̂K+1(δ) = 0. Note that
2T̂i(δ)+1 ≤ N̂i(δ), and both are decreasing with i ≥ 2
increasing.
Theorem 1. Pick any 0 ≤ δ < 1 and let SEWP run with in-
puts (K, δ,P, f, g) with f, g given by (1). Then, with prob-
ability at least 1− δ, SEWP returns the optimal arm i? = 1
within N probes, where N satisfies

N ≤ GIP (O,P)

K∑
i=2

T̂i(δ)∑
t=T̂i+1(δ)+1

CIP([i] , 2t) . (4)

Furthermore, with M̂i(δ)
.
= N̂i(δ)− N̂i+1(δ),

N ≤ GLP (O,P)

K∑
i=2

M̂i(δ) CLP ([i] , 1) . (5)

The bound (4) may be tighter than that shown in (5), but
perhaps the second is a bit easier to understand.3 For sim-
plicity, let us explain (5). Once (5) is explained, the mean-
ing of (4) follows. The term GLP (O,P) is the price of
using an oracle combined with some upper bounding that
allowed us to arrive at this simpler result by resorting to
the linearity properties of CLP. The rest is what we call
a sequential fractional multi-cover with the requirements
that arm i be covered N̂i(δ) times: In a sequential multi-
cover, the covering is not done in a single-shot, but is done
in phases. In the first phase, all the arms must be cov-
ered M̂K(δ) times. In the next phase, all the arms but
the last must be covered M̂K−1(δ) times, etc., up to the
last phase when arms one and two must be covered M̂2(δ)
times. Note that the total requirements for an arm i are
M̂K(δ)+M̂K−1(δ)+ · · ·+M̂i(δ) = N̂K(δ)−N̂K+1(δ)+
N̂K−1(δ) − N̂K(δ) + · · · + N̂i(δ) − N̂i+1(δ) = N̂i(δ).
Roughly N̂i(δ) ≈ O(1/∆2

i ) is the number of observations
needed from arm i (and one) in order to be able to tell which
of the two arms has a bigger mean reward. Now, compared
to (5), (4) uses a more precise expression for the number
of probes, by relying on the the phase structure of the algo-
rithm.

An alternative choice of f(t) and g(t, δ) is that f(t) = 1

and g(t, δ) =
√

log(4Kt2/δ)
t , which leads to N̂i(δ) =

O
(

1
∆2
i

log K
δ∆i

)
instead.

The proof, which borrows ideas from Even-Dar et al.
(2002), is in Appendix A.1. To prove that SEWP is admis-
sible, one only needs to show that when none of the confi-
dence intervals based on g used in the elimination step fail,
the optimal arm will not be eliminated. This essentially
relied on Hoeffding’s inequality, union bounds and calcu-
lations. To calculate the bound on the probe complexity

3In fact, if CO(·, n) is monotone increasing, (4) will hold with
CO replacing GIP · CIP, further tightening the bound.

bound, one shows that arm i will be eliminated after phase
T̂i(δ). This happens because in each phase the confidence
sets of all arms decrease at a uniform rate.

Now, we argue that this bound is tight up to a logK factor,
at least in some cases. In particular, in the bandit case, the
covering problem is trivial and we can use an optimal cov-
ering oracle. Then, CO([i] , 2t) = i2t, and hence the bound
becomes O

(∑K
i=1

1
∆2
i

log
(
K
δ log 1

∆i

))
. Up to a log fac-

tor, this matches the lower bound of Kaufmann et al. (2015)
which takes the form Ω

(∑K
i=1 ∆−2

i log(1/δ)
)

. Further-
more, as noted by Jamieson et al. (2014) (based on a result
of Farrell (1964)) the log log ∆−1 term is necessary.

To examine the tightness of the upper bound, we derive a
distribution dependent lower bound on the probe complex-
ity of algorithms admissible for Dsg. Call an environment
D a Gaussian environment with common variance σ2 if for
any 1 ≤ i ≤ K, Di is a Gaussian with variance σ2.

Theorem 2 (Distribution-dependent lower bound). For any
algorithm admissible forDsg, any confidence 0 < δ < 1/2,
any probe set P , any sequence 0 = ∆1 < ∆2 ≤ . . .∆K , if
D is a Gaussian environment with common variance σ2 =
1/4 and means µ1 = µ2 + ∆2 = · · · = µK + ∆K , if N is
the number of probes used by the algorithm on D then

E[N ] ≥ min
s∈[0,∞)P

∑
p∈P

sp s.t.
∑
p:1∈p

sp ≥
1

4∆2
2

log
1

6δ
,

and
∑
p:i∈p

sp ≥
1

4∆2
i

log
1

6δ
, 2 ≤ i ≤ K .

The proof can be found in Appendix A.2.

Note that the lower bound clearly reflects the structure of
P . However, even disregarding the constants and logarith-
mic factors, there is still a gap between our upper and lower
bounds: In the upper bound, as explained before, the size of
a sequential cover that appears, while in the lower bound,
the size of a “one-shot” cover is seen. Note that in either
the bandit or the full information case, there is no gap be-
tween these quantities. We were able to establish a gap of
log(K) when considering sequential and one-shot integral
covers. However, it remains a very interesting open ques-
tion whether the gap can be closed in the fractional case.

3.2. An Alternative Algorithm to Find the Best Arm

The second algorithm is a generalization of the exponential
gap elimination algorithm of Karnin et al. (2013), which
improves the logarithmic term in the sample complexity
from log(Kδ log 1

∆ ) to log( 1
δ log 1

∆ ) for the bandit problem.
So we expect that generalizing that algorithm to our setting
will have a similar improvement regarding the logK term.

The exponential gap elimination algorithm of Karnin et al.
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(2013) calls the median elimination algorithm of Even-Dar
et al. (2002) as a subroutine, which finds an ε-optimal arm
using O(Kε−2 log(1/δ)) samples with probability at least
1− δ (an arm is ε-optimal iff its expected reward is at least
µ1 − ε). So before generalizing the exponential gap elim-
ination algorithm, we need to first design a counterpart for
the median elimination algorithm.

3.2.1. MEDIAN ELIMINATION WITH PROBES

Simply replacing the uniform sampling in each phase
in the median elimination algorithm of Even-Dar et al.
(2002) with a set multi-cover does not work (shown in Ap-
pendix B.1), so a more careful design is needed. Our pro-
posed algorithm, called Median Elimination With Probes
(MEWP) is shown in Algorithm 2. It essentially runs the
original median elimination algorithm for bandits over a
one-cover of all arms (that is, each probe in the cover is
treated as an arm in the bandit setting), and in each phase
we eliminate half of the probes that do not seem to cover
a good arm. We stop running median elimination when a
single probe covers all the remaining arms. Then the al-
gorithm enters its second stage where we use this probe
until we identify an almost optimal arm from the remain-
ing ones. In the next theorem we prove that the algorithm
is admissible, and give an upper bound on the number of
probes required to find an ε-optimal arm.

Algorithm 2 MedianEliminationWithProbes
1: Inputs: K, δ ∈ (0, 1], ε > 0, P .
2: Set εt = ε

6 ( 3
4 )t, δt = δ

2t+1 .
3: C ← COrcl([K] , 1,P), and define a partition of the

arms as A1 = {πp ⊂ p : p ∈ C,∪p∈Cπp = [K]}.
4: for t = 1, 2, . . . do
5: for all π ∈ At do
6: Use 4

ε2t
log 3|π|

δt
-times p ∈ C that covers π to get

observations for each arm in p.
7: Let µ̂π(t) = maxi∈π µ̂i(t), where µ̂i(t) is the em-

pirical mean reward of arm i based on the obser-
vations in the actual phase t.

8: end for
9: Find the median m(t) of {µ̂π(t) : π ∈ At}.

10: Let At+1 = {π ∈ At : µ̂π(t) ≥ m(t)}.
11: if |At+1| = 1 then
12: terminate the loop and let π̂∗ be the single element

of At+1

13: end if
14: end for
15: If |π̂∗| > 1, use the probe that covers π̂∗ for

8
ε2 log 2|π̂∗|

δ -times.
16: Return the arm î∗ ∈ π̂∗ with the highest empirical

mean based on these observations.

Theorem 3. With probability at least 1−δ, MEWP returns

an ε-optimal arm î∗, and N , the total number of probes
used by the algorithm is

N = O

(
CO([K] , 1)

ε2
log
|πmax|
δ

)
. (6)

where |πmax| = maxπ∈A1
|π|.

Note that we have |πmax| inside the log term instead of the
expected 1. It can be shown that the argument of the log
term cannot be 1 in our problem setting, at least in the full
information case (where it has to be K). Detailed discus-
sion about this can be found in Appendix B.2.

3.2.2. EXPONENTIAL GAP ELIMINATION ALGORITHM

Algorithm 3 ExpGapEliminationWithProbes
1: Inputs: K, δ, P .
2: Initialize candidate set: A1 = [K]. Set εt = 1

4·2t ,
δt = δ

50t3 .
3: for t = 1, 2, . . . do
4: C(t)← COrcl(At, 1,P).
5: Create a partition Πt of At such that Πt ={

πp ⊂ p : p ∈ C(t),∪p∈C(t)πp = At
}

.
6: for πp ∈ Πt do
7: Use probe p for 2

ε2t
log

2|πp|
δt

-times to get observa-
tions for each arm in p.

8: end for
9: For each i ∈ At, let µ̂i(t) be the mean of all obser-

vations in phase t for arm i.
10: it ← MedianEliminationWithProbes(At, εt2 , δt).
11: Let At+1 = {i ∈ At : µ̂i(t) ≥ µ̂it(t)− εt}.
12: if |At+1| = 1 then
13: Return the arm in At+1.
14: end if
15: end for

Given the MEWP algorithm, we continue with generaliz-
ing the exponential gap elimination algorithm. The new al-
gorithm, called Exponential Gap Elimination with Probes
(EGEWP), is shown in Algorithm 3. The new idea here
is to use the partition-based exploration technique (as in
the MEWP algorithm) and replace the bandit-case median
elimination subroutine with MEWP. The analysis follows a
combination of the techniques of Karnin et al. (2013) and
the proof of Theorem 3. However, due to the more compli-
cated observation structure, we are only able to prove a ∆2

dependent upper bound on the number of probes:
Theorem 4. If the oracle COrcl always returns the opti-
mal solution for integer programming, EGEWP finds the
optimal arm with probability at least 1− δ after using

O

(
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

))
(7)

probes where |pmax| = maxp∈P |p|.
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If COrcl is not guaranteed to return the optimal in-
teger cover, the above theorem still holds by mak-
ing the following modification to the algorithm to en-
sure that Πt+1 is not worse than Πt for every t: if
| {π ∈ Πt : π ∩At+1 6= ∅} | < CO(At+1, 1), then use the
same partition pattern from Πt for Πt+1.

Compared to the bound for SEWP, the logK term
is replaced with log |pmax|. More specifically, in
the full information case, the upper bound becomes
O
(

1
∆2

2
log
(
K
δ log 1

∆2

))
, which is the same as the upper

bound for SEWP. In the bandit case, the algorithm is ex-
actly the same as the exponential gap elimination algo-
rithm of Karnin et al. (2013), which enjoys an optimal
O
(∑K

i=1
1

∆2
i

log
(

1
δ log 1

∆i

))
upper bound on the number

of probes, and is better than the upper bound for SEWP in
bandit case. Therefore, although not formally proved, we
expect that EGEWP enjoys an improved probe complexity
compared with SEWP.

4. PAC Subset Selection
In this section, we consider the two PAC subset selection
problems introduced in Section 2. The first, named strong
PAC subset selection, is the same as the EXPLORE-m prob-
lem introduced by Kalyanakrishnan & Stone (2010) where
the goal is to find m (ε,m)-optimal arms. The second
problem, named average PAC subset selection, is to select
a subset of m arms with ε-optimal average reward, intro-
duced by Zhou et al. (2014).

The basic idea of our approach is to generalize our SEWP
algorithm with two modifications: (i) First, besides reject-
ing the arms that cannot be in the best m arms after each
phase, we also accept arms that have enough confidence
to be one of the best m arms, which shares a similar idea
with the Racing algorithm in Kaufmann & Kalyanakrish-
nan (2013). (ii) Specific stopping conditions are designed
to meet the ε-relaxation in the problem definition.

To make it easier to express the probe complexity, we intro-
duce a new symbol ∆

(ε,m)
i defined by ∆

(ε,m)
i = max{µi−

µm+1, ε} if i ≤ m and ∆
(ε,m)
i = max{µm − µi, ε} if

i > m. We then sort ∆
(ε,m)
i for all i ∈ [K] in ascending

order and let S(i) be the first i arms in the list, while ∆
(ε,m)
(i)

denotes the i-th smallest entry.

Analogously to Theorem 1, let f(t) = 2t, g(t, δ) =√
log(4Kt2/δ)

2t+1 , and define

N̂(i)(ε, δ) =
128(

∆
(ε,m)
(i)

)2 log

54K

δ
log

4

∆
(ε,m)
(i)

 (8)

and let N̂(K+1)(ε, δ) = 0.

Note that N̂(1)(ε, δ) = N̂(2)(ε, δ) since ∆
(ε,m)
(1) =

∆
(ε,m)
(2) = max{µm − µm+1, ε}. Also let M̂(i)(ε, δ)

.
=

N̂(i)(ε, δ)− N̂(i+1)(ε, δ).

4.1. Strong PAC Subset Selection

First we propose an algorithm that returns a subset Ŝ∗ con-
taining m (ε,m)-optimal arms with high probability. An
arm i is defined to be (ε,m)-optimal iff µi ≥ µm− ε. This
requirement is the same as qmin(Ŝ∗, µ) ≥ qmin([m] , µ)−ε
where qmin(S, µ) = mini∈S µi.

The algorithm, called Successive Accept Reject with
Probes (SARWP) is shown in Algorithm 4. The follow-
ing theorem shows that Algorithm 4 is admissible and the
probe complexity is bounded.

Algorithm 4 SuccessiveAcceptRejectWithProbes
1: Inputs: K, m, ε, δ, P , observation scheduling function
f : N → N and confidence function g : N × (0, 1] →
[0,∞).

2: Initialize candidate setA1 = [K], accepted armsAa1 =
∅, rejected arms Ar1 = ∅.

3: for t = 1, 2, . . . do
4: C(t)← COrcl(At, f(t),P).
5: Use each p ∈ C(t) for Cp(t)-times to get new ob-

servations.
6: For each i ∈ At, let µ̂i(t) be the mean of all obser-

vations so far for arm i. Sort the arms in At in de-
scending order of µ̂i(t). LetHt be the firstm−|Aat |
arms and Lt = At \Ht.

7: if mini∈Ht µ̂i(t) ≥ maxi∈Lt µ̂i(t) + 2g(t, δ) − ε
then

8: Return Ŝ∗ = Aat ∪Ht as selected subset.
9: end if

10: Let
Aat+1 = Aat ∪ {i ∈ Ht : µ̂i(t) > maxj∈Lt µ̂j(t) +
2g(t, δ)},
Art+1 = Art ∪ {i ∈ Lt : µ̂i(t) < minj∈Ht µ̂j(t) −
2g(t, δ)},
and At+1 = [K]−Aat+1 −Art+1

11: end for

Theorem 5. With probability at least 1 − δ, SARWP re-
turns a subset Ŝ∗ of size m within N probes, where
qmin(Ŝ∗, µ) ≥ qmin([m] , µ) − ε and N satisfies N ≤
GLP (O,P)

∑K
i=2 M̂(i)(ε, δ)CLP

(
S(i), 1

)
.

The upper bound on the probe complexity is in a similar
form to the one for SEWP in Theorem 1, while here the
number of samples required for arm i is determined by
∆

(ε,m)
i instead of ∆i. This complexity measure matches

existing work for the bandit case (Kalyanakrishnan et al.,
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2012; Kaufmann & Kalyanakrishnan, 2013). In the bandit
case, the upper bound matches the worst case lower bound
in Kalyanakrishnan et al. (2012): Ω(Kε−2 log(m/δ)), up
to logarithmic factors. We do not have a distribution de-
pendent lower bound like Theorem 2 and even in the bandit
case a distribution dependent lower bound for ε > 0 is still
an open question (Kaufmann & Kalyanakrishnan, 2013).

4.2. Average PAC Subset Selection

Next we consider the problem that aims to find a sub-
set whose aggregate regret is ε-optimal. Given a subset
S ⊂ [K] and |S| = m, the aggregate regret of S is defined
as RS = 1

m

(∑
i∈[m] µi −

∑
i∈S µi

)
= qavg([m] , µ) −

qavg(S, µ) where qavg(S, µ) = 1
|S|
∑
i∈S µi. The aggregate

regret of S is said to be ε-optimal iff RS ≤ ε.

To address the problem of finding an average ε-optimal
subset, Algorithm 4 can still be employed by only modify-
ing the stopping condition according to the different objec-
tive. The new stopping condition is described as follows:

Stopping condition for average PAC subset selection: First
for each i ∈ At, we construct an adversarial estimation
µ̂′i(t) by setting µ̂′i(t) = µ̂i(t) − g(t, δ) if i ∈ Ht and
µ̂′i(t) = µ̂i(t) + g(t, δ) if i ∈ Lt. Then we sort the arms in
descending order according to µ̂′i(t) and let H ′t be the first
m − |Aat | arms while L′t be the remaining. The algorithm
stops and returns Ŝ∗ = Aat ∪Ht if∑
i∈Ht\H′t

(µ̂i(t)− g(t, δ)) ≥
∑

i∈H′t\Ht

(µ̂i(t) + g(t, δ))−mε .

This way of constructing “adversarial estimation” is similar
to the one in the CLUCB algorithm of Chen et al. (2014),
where the goal is to identify a subset with the highest re-
ward sum without ε relaxation.

The next theorem shows that with the modified stopping
condition, Algorithm 4 is admissible and bounds its probe
complexity. Define

b(m, ε) = max
{
a ∈ N+ : µm−a+1 − µm+a ≤

mε

a

}
,

(9)

or b(m, ε) = 1 if µm − µm+1 > mε. Then we have the
following result:

Theorem 6. With probability at least 1 − δ,
SARWP with modified stopping condition returns
a subset Ŝ∗ of size m within N probes, where
qavg(Ŝ∗, µ) ≥ qavg([m] , µ) − ε and N satisfies
N ≤ GLP (O,P)

∑K
i=2 M̂(i)(mε/b, δ)CLP

(
S(i), 1

)
,

where b = b(m, ε).

Compared with Theorem 5, the complexity here is mea-
sured by ∆

(mε/b,m)
i instead. This distribution depen-

dent complexity measure is novel even in the bandit case
since the algorithm in Zhou et al. (2014) comes with
distribution independent guarantee only. Regarding the
worst case performance, since b(m, ε) ≤ min{m,K −
m}, in bandit case our upper bound can be further
relaxed to O

(
K
ε2 log

(
K
δ log 1

ε

))
if m ≤ K/2 and

O
(
K(K−m)2

m2ε2 log
(
K
δ log K−m

mε

))
if m > K/2. Com-

pared with the worst case lower bound in Zhou et al.
(2014): Ω

(
K
ε2

(
1 + log(1/δ)

m

))
for m ≤ K/2 and

Ω
(
K−m
m · Kε2

(
K−m
m + log(1/δ)

m

))
for m > K/2, al-

though our upper bound does not exactly match this worse
case lower bound, our distribution dependent quantity
b(m, ε) shows how the different K

ε2 and K(K−m)2

m2ε2 terms
appear for small m and large m compared with K/2.

5. Conclusions
We introduced a generalized version of the best arm iden-
tification problem, where a decision maker can query mul-
tiple arms at a time. This generalization describes several
real world problems that are not adequately modeled by the
standard best-arm identification problem. We generalized
several existing algorithms and provided distribution de-
pendent upper and lower bounds on the probe complexity,
and showed that our algorithms achieve essentially the best
possible performance in special cases. In the PAC subset
selection problems our complexity measure either matches
existing works for the bandit case or provides some new
insights. One very interesting question that remains for fu-
ture work is whether there is a real gap between our lower
and upper bounds. However, much work remains to be
done: We view our paper as opening a whole new prac-
tical and exciting research area of investigating richer feed-
back structures in “winner selection” problems. Interesting
questions include how to change the algorithms when the
subsets to be returned are restricted, or when probes are
associated with costs.
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A. Proofs
A.1. Proof of Theorem 1

We start with a technical lemma:

Lemma 7. Let 0 < a < 1/e, b ≥ 2. Then, for any n ≥ n∗(a, b) .
= 2

a log(2b log 1
a ), an ≥ log(b log n).

Proof. Let q1(x) = ax, q2(x) = log(b log x) = log(log x) + log b, x > e. The claim to be proven is that for any
n ≥ n∗

.
= n∗(a, b), q1(n) ≥ q2(n). By differentiation, it is easy to verify that the function f(x) = q1(x) − q2(x) is

non-decreasing if and only if x log x ≥ 1/a. Hence, it suffices to show that n∗ log n∗ ≥ 1/a, n∗ > e so that q2(n∗) is
well-defined and q1(n∗) ≥ q2(n∗).

From the assumptions and the definition of n∗, we get that n∗ ≥ 2 log(4)/a ≥ 1
a > e. Hence q2(n∗) is well-defined. Now,

from n∗ > e, we also get n∗ log n∗ ≥ n∗, which together with n∗ ≥ 1/a proves that n∗ log n∗ ≥ 1/a.

To verify q1(n∗) ≥ q2(n∗) note first that from our assumptions on a and b, 2b log 1
a ≥ 4 ≥

√
e. Hence,

q1(n∗) = 2 log(2b log 1
a ) = log(4b2 log2 1

a ) ≥ log(2b2 log 1
a ) = log b+ log(2b log 1

a )

which holds, as by our condition on a, log(1/a) ≥ 1
2 . On the other hand,

q2(n∗) = log b+ log(log n∗) = log b+ log log
(

2
a log(2b log 1

a )
)

< log b+ log log(2b
a log 1

a ) (log 2x < x)

< log b+ log log( 2b
a2 ) . (log 1

a <
1
a )

Now, using again that log(2x) < x,

log( 2b
a2 ) = log(2b) + log 1

a2 < b+ log 1
a2 ≤ b log 1

a2 ,

where in the last inequality we also used b ≥ 2 and log 1
a2 ≥ 2 and that for x, y ≥ 2, x + y ≤ xy2 + y x2 = xy. Putting

together all the inequalities, we obtain q2(n∗) < q1(n∗).

With this, we are ready to prove Theorem 1:

Proof. Let T denote the number of phases before the algorithm exits, i.e., |AT | > 1 and |AT+1| = 1. Let U denote the
event that for any phase 1 ≤ t ≤ T , and for any arm i ∈ At that is not yet eliminated, the mean reward µi of arm i is
within the g(t, δ) vicinity of its estimate µ̂i(t):

U = {|µ̂i(t)− µi| ≤ g(t, δ) for all (i, t) s.t. 1 ≤ t ≤ T and i ∈ At} .

First, we will argue about the correctness and cost of the algorithm assuming that U happens and then we will show that U
indeed happens with large probability.

Assume therefore that U happens. We claim that on this event, the optimal arm i? = 1 cannot be eliminated, i.e., 1 ∈
A1, . . . , AT+1. That 1 ∈ A1 holds since A1 = [K]. Now, given that 1 ∈ At for some 1 ≤ t ≤ T , we have that
µ̂1(t)+2g(t, δ) ≥ µ1 +g(t, δ) > maxj∈At µj +g(t, δ) ≥ maxj∈At µ̂j(t), showing that 1 ∈ At+1 and hence arm 1 indeed
will not be eliminated.

Now, still assuming that U happens, consider bounding N . We start by asking how big t can be for a suboptimal arm i 6= 1
to be still included in At+1. Intuitively, if an arm is still considered as a candidate, its suboptimality “gap” ∆i cannot be
large. Indeed, defining µ̂∗(t) = maxj∈At µ̂j(t), from i ∈ At+1 we derive

∆i = µ1 − µi ≤ µ̂1(t) + g(t, δ)− (µ̂i(t)− g(t, δ)) ≤ µ̂∗(t)− µ̂i(t) + 2g(t, δ)

≤ 4g(t, δ) ,

where the second inequality used that 1 ∈ At and hence µ̂∗(t) ≥ µ̂1(t), while the last inequality used that i ∈ At+1.
Hence, by the definition of T̂i

.
= T̂i(δ), from i ∈ At+1 it follows that t < T̂i. In particular, for any t ≥ T̂i + 1, i 6∈ At. As
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a matter of fact, for any i > 2, t ≥ T̂i + 1, and j ≥ i, j cannot be in At. Hence, At ⊂ {1, . . . , i− 1}. By reindexing, for
1 ≤ i ≤ K and using T̂K+1 = 0, we conclude that

t ≥ T̂i+1 + 1 implies that At ⊂ [i] , 1 ≤ i ≤ K . (10)

Since (10) implies that for t ≥ T̂2 + 1, At is a singleton, T ≥ T̂2 + 1 cannot hold. Hence, T ≤ T̂2. Now, we can bound N ,
the total number of probes used before termination:

N =

T∑
t=1

P∑
p=1

Cp(t) =

T∑
t=1

CO(At, f(t)) ≤
T̂2∑
t=1

CO(At, f(t)) ≤ GIP (O,P)

T̂2∑
t=1

CIP(At, f(t)) , (11)

where we set At = {1} for t > T . Now, we divide the set {1, . . . , T̂2} into the disjoint intervals Si = {T̂i+1 + 1, . . . , T̂i},
i = 2, . . . ,K. Using that, by (10), for any t ∈ Si it holds that At ⊂ [i] and thus CIP(At, f(t)) ≤ CIP([i] , f(t)) (where we
used that for any A ⊂ B, n ∈ N, CIP(A,n) ≤ CIP(B,n)), we get

N ≤ GIP (O,P)
K∑
i=2

T̂i∑
t=T̂i+1+1

CIP([i] , 2t) ,

proving (4).

It remains to lower bound the probability that U happens by 1− δ. As usual, we do this by upper bounding the probability
of the complementer event U c = {∃s ∈ [T ] ,∃i ∈ As s.t. |µ̂i(s) − µi| > g(s, δ)}. For the sake of simplicity, let us
now assume that in each phase t, for each arm in At, we use only the first f(t) observed rewards and drop the potential
“overflow”. In fact, by dropping additional observations, the probability of failure can only increase, hence we may make
this assumption without loss of generality.

We have

Pr(U c) = Pr (∃s ∈ [T ] ,∃i ∈ As, |µ̂i(s)− µi| > g(s, δ))

=

∞∑
t=1

Pr (T = t, ∃s ∈ [t] ,∃i ∈ As, |µ̂i(s)− µi| > g(s, δ)) .

Note that µ̂i(s) is defined only when i ∈ As. Without loss of generality we can assume that µ̂i(s) when i ∈ As is
calculated based on taking the average of the first n(s) =

∑s
q=1 f(q) elements of an infinite i.i.d. sequence of random

variables drawn from the distribution of arm i. Hence, defining µ̂i(s) as the average of the first n(s) random variables in
this infinite sequence, we get a consistent extension of the definition of µ̂i(s) for arbitrary s ≥ 1.

We have

Pr(U c) =

∞∑
t=1

Pr (T = t,∃s ∈ [t] ,∃i ∈ As, |µ̂i(s)− µi| > g(s, δ))

≤
∞∑
t=1

Pr (T = t,∃s ∈ [t] ,∃i ∈ [K] , |µ̂i(s)− µi| > g(s, δ))

≤
∞∑
t=1

K∑
i=1

Pr (T = t,∃s ∈ [t] , |µ̂i(s)− µi| > g(s, δ))

≤
K∑
i=1

∞∑
s=1

∞∑
t=1

Pr (T = t, |µ̂i(s)− µi| > g(s, δ))

=

K∑
i=1

∞∑
s=1

Pr (|µ̂i(s)− µi| > g(s, δ)) .
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According to Hoeffding’s inequality,

Pr (|µ̂i(s)− µi| > g(s, δ)) ≤ 2 exp

(
−2

s∑
t=1

f(t)g(s, δ)2

)
≤ 2 exp

(
−2s+1 · log(4Ks2/δ)

2s+1

)
=

δ

2Ks2

and hence

Pr(U c) ≤
K∑
i=1

∞∑
s=1

δ

2Ks2
< δ .

Thus, it remains to upper bound T̂i = 1 + max
{
t : g(t, δ) ≥ ∆i

4

}
:

T̂i = 1 + max

{
t : g(t, δ) ≥ ∆i

4

}
= 1 + max

{
t :

√
log(4Kt2/δ)

2t+1
≥ ∆i

4

}

≤ 1 + max

{
log2 n :

√
log(4K(log2 n)2/δ)

2n
≥ ∆i

4

}

≤ 1 + log2 max

{
n :

∆2
i

16
n ≤ log

(
4K

δ · log 2
log n

)}
.

To bound the maximum above, we use Lemma 7. In our problem both b = 4K
δ·log 2 > 2 and 1

a = 16
∆2
i
> e satisfy the

conditions in this lemma. Plugging in these values of a and b in n∗ = n∗(a, b), we get an upper bound of T̂i in the form of
1 + log2

(
32
∆2
i

log
(

16K
δ·log 2 log 4

∆i

))
≤ log2

(
64
∆2
i

log
(

54K
δ log 4

∆i

))
, which concludes the proof of the upper bound on T̂i.

Let us now turn to proving (5). According to (11), we also have

N =

T∑
t=1

P∑
p=1

Cp(t) =

T∑
t=1

CO(At, f(t)) ≤
T̂2∑
t=1

CO(At, f(t)) ≤ GLP (O,P)

T̂2∑
t=1

CLP(At, f(t)) , (12)

Since for At ∈ [i], CLP(At, f(t)) ≤ CLP([i] , f(t)) also holds,

N ≤ GLP (O,P)

K∑
i=2

T̂i∑
t=T̂i+1+1

CLP([i] , 2t)

= GLP (O,P)

K∑
i=2

 T̂i∑
t=T̂i+1+1

2t

 CLP([i] , 1)

≤ GLP (O,P)

K∑
i=2

(
2T̂i+1 − 2T̂i+1+1

)
CLP([i] , 1)

= GLP (O,P)

(
K∑
i=2

2T̂i+1CLP([i] , 1)−
K∑
i=2

2T̂i+1+1CLP([i] , 1)

)

≤ GLP (O,P)

K∑
i=2

(
2T̂i+1 − 2T̂i+1+1

)
CLP([i] , 1)

≤ GLP (O,P)

(
K∑
i=2

2T̂i+1CLP([i] , 1)−
K−1∑
i=2

2T̂i+1+1CLP([i] , 1)

)

= GLP (O,P)

(
K∑
i=2

2T̂i+1CLP([i] , 1)−
K∑
i=3

2T̂i+1CLP([i− 1] , 1)

)
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= GLP (O,P)

(
2T̂2+1CLP([2] , 1) +

K∑
i=3

2T̂i+1 (CLP([i] , 1)− CLP([i− 1] , 1))

)

≤ GLP (O,P)

(
N̂2(δ)CLP([2] , 1) +

K∑
i=3

N̂i(δ) (CLP([i] , 1)− CLP([i− 1] , 1))

)

= GLP (O,P)

K∑
i=2

(
N̂i(δ)− N̂i+1(δ)

)
CLP([i] , 1)

= GLP (O,P)

K∑
i=2

M̂i(δ)CLP([i] , 1)

where 2T̂i+1 ≤ 128
∆2
i

log
(

54K
δ log 4

∆i

)
= N̂i(δ) and N̂K+1(δ) = 0.

A.2. Proof of Theorem 2

The proofs of our lower bounds are based on the following lemma, a specialized version of Lemma 1 of Kaufmann
et al. (2015). In the lemma we need the Kullback-Leibler divergence (or relative entropy)KL(P1, P2) of two distributions:
KL(P1, P2) =

∫
P1(dx) log dP1

dP2
(x) if the Radon-Nikodym derivative dP1

dP2
exists and is +∞ otherwise. Specializing this to

two Bernoulli distributions, we get the binary relative entropy function, d(x, y) = x log(x/y)+(1−x) log((1−x)/(1−y))
defined for x, y ∈ [0, 1]. (Define d(0, 0) = d(1, 1) = 0, d(0, 1) = d(1, 0) = +∞.)

Lemma 8. Let î∗ ∈ [K] be the arm returned by some algorithm after observing reward from arm i ∈ [K]Mi times and let
î∗ = 0 if the algorithm never stops. For any a ∈ [K], let Ua denote the event that î∗ = a. Then, for any two environments
D1 and D2, and for any a ∈ [K],

K∑
i=1

ED1 [Mi]KL(D1
i , D

2
i ) ≥ d(PrD1(Ua),PrD2(Ua)) ,

where EDj and PrDj denote expectation and probability, respectively, under the assumptions that the environment is Dj .

Proof. The relative entropy of two one-dimensional Gaussian distributions with common variance σ2 = 1/4 and mean
difference m is m2/(2σ2). Let Gµ denote the Gaussian distribution with mean µ. Hence, KL(Gµ, Gµ+a) = 2a2 for any
µ, a ∈ R. Further, for any δ ∈ (0, 1/2),

d(1− δ, δ) = (1− δ) log
1− δ
δ

+ δ log
δ

1− δ
>

1

2
log

1

2δ
+ δ log δ ≥ 1

2
log

1

2δ
− 1

e
>

1

2
log

1

6δ
. (13)

Pick µ1 = 1/2, µi = µ1 −∆i and let D0 = (D1, . . . , DK)
.
= (Gµ1

, . . . , GµK ). Define D1 to be the modification of D0

when D2 is replaced by Gµ1+ε and let Di with 2 ≤ i ≤ K be the modification of D0 when Di is replaced by Gµ1+ε with
some ε > 0. As in the proof of Theorem 2 in Kaufmann et al. (2015), we apply Lemma 8 to the K pairs of environments
(D0, D1), . . . , (D0, DK) and arm a = 1.

We have KL(D0
j , D

1
j ) = 0 unless j = 2 in which case KL(D0

2, D
1
2) = KL(Gµ2 , Gµ1+ε) = (∆2 + ε)2. Also, for any

2 ≤ i ≤ K, 1 ≤ j ≤ K, KL(D0
j , D

i
j) = 0 unless i = j in which case KL(D0

i , D
i
i) = KL(Gµi , Gµ1+ε) = 2(∆i + ε)2.

Further, the optimal arm in D0 is arm one, while the optimal arm in Di is arm i because ε > 0. Hence, if U is the event
that the algorithm picks arm one, then, since the algorithm is admissible, PrD0(U) ≥ 1− δ, and PrDi(U) ≤ δ. Combined
with (13), letting Mi denote the number of observations from arm i, we get

ED0 [M1] ≥ 1

4(∆2 + ε)2
log

1

6δ
, ED0 [Mi] ≥

1

4(∆i + ε)2
log

1

6δ
, 2 ≤ i ≤ K .

Define Np the number of times probe p is used. Then, N =
∑
p∈P Np and Mi =

∑
p:i∈pNp. Combining this with the

previous inequalities leads to the linear program as shown in Theorem 2.



On Identifying Good Options under Combinatorially Structured Feedback

A.3. Proof of Theorem 3

Proof. The algorithm contains two stages: First, in the for loop, we aim to find a probe that contains an ε/2-optimal arm
with probability at least 1 − δ/2, in O(|A1|ε−2 log(|πmax|/δ)); then we find an arm that is ε/2-optimal arm within this
probe with probability at least 1− δ/2 after O(ε−2 log(|πmax|/δ)) probes.

First we will analyze the algorithm on the first stage. We need to show that

Pr
(
µ̂π̂∗ > µπ∗ −

ε

2

)
≥ 1− δ

2
(14)

where µπ = maxi∈π µi for all π ∈ A1 and π∗ = argmaxπ µπ . Clearly, µπ∗ = µ1, the expectation of the best arm.

Let πt = argmaxπ∈At µπ . Let Prt and Et denote the conditional probability and conditional expectation given all ran-
domness before phase t. To prove (14), we will first show that

Prt
(
µπt+1 > µπt − εt

)
≥ 1− δt .

Define Aεt = {π ∈ At : µπ ≤ µπt − εt} and A∗t = {π ∈ At : µ̂π(t) > µ̂πt(t)}. Then, for any π ∈ At, the event
{π ∈ A∗t ∩Aεt} ∧ {µ̂πt(t) ≥ µπt − εt/2} implies {µ̂π(t) > µπ + εt/2}. Thus, for any π ∈ At, π 6= πt,

Prt

(
π ∈ A∗t ∩Aεt

∣∣µ̂πt(t) ≥ µπt − εt
2

)
≤ Prt

(
µ̂π(t) > µπ +

εt
2

∣∣∣∣At, µ̂πt(t) ≥ µπt − εt
2

)
= Prt

(
µ̂π(t) > µπ +

εt
2

)
≤ δt

3
,

where (i) the equality holds since the samples from the arms in π and πt are independent, and (ii) the last inequality holds,
since by Hoeffding’s inequality (Cesa-Bianchi & Lugosi, 2006),

Prt

(
µ̂i(t) > µπ +

εt
2

)
≤ Prt

(
µ̂i(t) > µi +

εt
2

)
<

δt
3|π|

for all i ∈ π, since µ̂i(t) is estimated from (2/εt)
2 log(3|π|/δt) samples, and the union bound implies that this in-

equality simultaneously holds for all i ∈ π with probability δt/3. Furthermore, by definition πt 6∈ Aεt , hence
Prt

(
πt ∈ A∗t ∩Aεt

∣∣µ̂πt(t) ≥ µπt − εt
2

)
= 0. Therefore,

Et
[
|A∗t ∩Aεt |
|At|

∣∣∣∣µ̂πt(t) > µπt −
εt
2

]
≤ δt

3

Applying Markov’s inequality, we have

Prt

(
|A∗t ∩Aεt |
|At|

≥ 1

2

∣∣∣∣µ̂πt(t) > µπt −
εt
2

)
≤ 2δt

3
.

Note that again by Hoeffding’s inequality and the union bound, Prt(µ̂πt(t) > µπt − εt
2 ) ≥ 1 − δt

3 , and { |A
∗
t∩A

ε
t |

|At| < 1
2}

implies {µπt+1 > µπt − εt}. Then, by union bound, we get

Prt
(
µπt+1 > µπt − εt

)
≥ 1− δt

Since the bound is constant, the unconditional probability also satisfies this inequality, and so, by the union bound,

Pr
(
µπ̂∗ ≤ µπ∗ −

ε

2

)
≤

log2 |A1|∑
t=1

Pr
(
µπt+1 ≤ µπt − εt

)
≤

log2 |A1|∑
t=1

δt <
δ

2
,

proving (14).
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Next we will calculate the probe complexity until π̂∗ is found:

log2 |A1|∑
t=1

∑
π∈At

4

ε2
t

log
3|π|
δt
≤

log2 |A1|∑
t=1

4|At|
ε2
t

log
3|πmax|
δt

= O

(
|A1|
ε2

log
|πmax|
δ

)

Now we will analyze the second stage, by showing that it finds an ε/2-optimal arm from π̂∗ with probability at least
1− δ/2. Assume that the first stage ran for T phases, so we will consider conditional probabilities PrT conditioned on the
first T phases of the first stage.

Let i∗π̂∗ denote the optimal arm in π̂∗, µ̂i be the empirical mean reward for arm i ∈ π̂∗ in the second stage, computed
from 8

ε2 log 2|π̂∗|
δ samples, î∗ = argmaxi∈π̂∗ µ̂i, A

ε = {i ∈ π̂∗ : µi ≤ µi∗
π̂∗
− ε

2} and A∗ = {µ̂i > µ̂i∗
π̂∗
}. Clearly,

{µ̂i∗
π̂∗
≥ µi∗

π̂∗
− ε

4} and {∀i ∈ Aε, µ̂i ≤ µi + ε
4} imply {|Aε ∩A∗| = ∅}, which in turn implies {̂i∗ /∈ Aε}. Therefore,

PrT

(
µî∗ > µi∗

π̂∗
− ε

2

)
≥ PrT

(
µ̂i∗
π̂∗
≥ µi∗

π̂∗
− ε

4
∧ ∀i ∈ Aε, µ̂i ≤ µi +

ε

4

)
≥ 1− PrT

(
µ̂i∗
π̂∗
< µi∗

π̂∗
− ε

4

)
−
∑
i∈Aε

PrT

(
µ̂i > µi +

ε

4

)
.

Applying Hoeffding’s inequality, we have

PrT

(
µ̂i − µi >

ε

4

)
≤ e−nε

2

8 =
δ

2|π̂∗|

where n = 8
ε2 log 2|π̂∗|

δ . Note that the same probability bound holds for µi − µ̂i > ε
4 . Therefore,

PrT

(
µî∗ ≥ µi∗π̂∗ −

ε

2

)
≥ 1− (|Aε|+ 1)δ

2|π̂∗|
≥ 1− δ

2
.

Since the bound is independent of the condition, we also have

Pr
(
µî∗ ≥ µi∗π̂∗ −

ε

2

)
≥ 1− δ

2
.

Combining with (14), we obtain

Pr(µî∗ ≥ µi? − ε) ≥ 1− δ .

Finally, the total number of probes can be bounded as

N = O

(
|A1|
ε2

log
|πmax|
δ

)
+

8

ε2
log

2|π̂∗|
δ

= O

(
CO([K] , 1)

ε2
log
|πmax|
δ

)
(|A1| = CO([K] , 1))

A.4. Proof of Theorem 4

Proof. As in earlier proofs, we are going to use Prt and Et to denote the conditional probability and conditional ex-
pectation, respectively, given all randomness before phase t, and we denote the σ-algebra corresponding to the latter by
Ft−1.

First we are going to bound the number of phases in running EGEWP. We start with the following simple observation:
For any i 6= 1 and t such that T ≥ t ≥ log2

1
∆i

, i ∈ At and 1 ∈ At, the event Ct,i = {µit ≥ µ1 − εt
2 } ∧ {µit ≤

µ̂it(t) + εt
2 } ∧ {µi ≥ µ̂i(t)−

εt
2 } implies i /∈ At+1. This holds since given Ct,i,

µ̂it(t) ≥ µit −
εt
2
≥ µ1 − εt ≥ µi + 3εt ≥ µ̂i(t) +

5

2
εt > µ̂i(t) + εt
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where in the third step we used that µ1 − µi = ∆i ≥ 2−t = 4εt for t ≥ log2
1

∆i
. Now assume that Ft−1 is such that

1 ∈ At and π ∈ Πt. Then, for any t ≥ log2
1

∆2
,

Prt (∃i ∈ π, i 6= 1, i ∈ At+1)

≤ Prt

(
µit < µ1 −

εt
2

)
+ Prt

(
µit > µ̂it(t) +

εt
2

)
+

∑
i∈π,i6=1

Prt

(
µi < µ̂i(t)−

εt
2

)
. (15)

Now, for any t ≥ 1 and Ft−1 as above,

Prt

(
µit < µ1 −

εt
2

)
≤ δt

by the high probability guarantee for the success of MEWP and the fact that new samples are used in each phase. Further-
more, for any i ∈ π and t ≥ 1,

Prt

(
µi < µ̂i(t)−

εt
2

)
≤ δt

2|π|
and Prt

(
µi > µ̂i(t) +

εt
2

)
≤ δt

2|π|
(16)

by Hoeffding’s inequality since µ̂i is computed from 2ε−2
t log(2|π|/δt) new samples. Finally, since it is selected based on

different samples than the ones used in estimating µ̂it , denoting by πt(j) the partition cell of At containing j, we have

Prt

(
µit > µ̂it(t) +

εt
2

)
=
∑
j∈At

Prt

(
µj > µ̂j(t) +

εt
2

∣∣it = j
)

Prt (it = j)

=
∑
j∈At

Prt

(
µj > µ̂j(t) +

εt
2

)
Prt (it = j)

≤
∑
j∈At

δt
2|πt(j)|

Prt (it = j) ≤ δt
2
. (17)

Continuing (15) with the above inequalities, we obtain that for any t ≥ log2
1

∆2
and Ft−1 such that 1 ∈ At and π ∈ Πt,

Prt (∃i ∈ π, i 6= 1, i ∈ At+1) ≤ δt +
δt
2

+
δt
2

= 2δt. (18)

Since the same 2δt bound holds for ny Ft−1 with 1 ∈ At and π ∈ Πt, we also have

Pr (∃i ∈ π, i 6= 1, i ∈ At+1|π ∈ Πt, 1 ∈ At) ≤ 2δt. (19)

Furthermore, for any t ≥ 1, the events {1 ∈ At}, {µ̂1(t) ≥ µ1 − εt
2 }, and {µ̂it(t) ≤ µit + εt

2 } imply that 1 ∈ At+1, since

µ̂1(t) ≥ µ1 −
εt
2
≥ µit −

εt
2
≥ µ̂it(t)− εt .

Therefore, from (16) (for i = 1) and (17) we get

Pr(1 ∈ At+1|1 ∈ At) ≥ 1− δt
2
− δt

2
= 1− δt . (20)

The above inequality shows that the optimal arm 1 is not eliminated with high probability, while (19) shows that for large
enough t, the suboptimal arms are eliminated with high probability. Thus, it remains to quantify how fast the suboptimal
arms are eliminated. To this end, we show that the number of probes used in every phase decays exponentially fast for
t ≥ log2

1
∆2

. Let Π+
t = {π ∈ Πt : ∃i ∈ π, i ∈ At+1}. Then, for any t ≥ log2

1
∆2

and Ft−1 with 1 ∈ At, we have
Et
[
|Π+
t − πt(1)|

]
≤ 2δt|Πt − πt(1)| by (18), and so

Et
[
|Π+
t − π(1)|

|Πt − πt(1)|

]
≤ 2δt .
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Again, since the right hand side is independent of the conditioning in Et, we can replace the conditioning on Ft−1 with
conditioning on 1 ∈ At; then, by Markov’s inequality, for any z > 0 and t ≥ log2

1
∆2

,

Pr

(
|Π+
t − π(1)|

|Πt − πt(1)|
>

1

z

∣∣∣∣1 ∈ At) ≤ E
[
|Π+
t −π(1)|

|Πt−πt(1)|

]
z

≤ 2zδt . (21)

Now define the event

B(t) =

{
|Π+
t − πt(1)|
|Πt − πt(1)|

≤ 1

z

}
∧ {∀i ∈ πt(1), i 6= 1, i /∈ At+1};

note that π(1), and hence B(t), is defined when 1 ∈ At. Then, by (19),(21), and the union bound,

Pr(B(t)|1 ∈ At) ≥ 1− 2zδt − 2δt = 1− 2(z + 1)δt. (22)

Next we consider when the algorithm stops if 1 ∈ At and B(t) happen in each phase t ≥ log2
1

∆2
. Note that, denoting the

last phase of the algorithm by T , the probability of this event can be bounded from below as

Pr

(
{∀t ∈ [T ] , 1 ∈ At} ∧ {∀ log2

1

∆2
≤ t ≤ T,B(t)}

)
≥ 1−

∞∑
t=1

(2z + 3)δt = 1−
∞∑
t=1

(2z + 3)δ

50t3
≥ 1− 3δ(2z + 3)

100
,

(23)

by (20), (22), the union bound, and since
∑∞
t=1 1/t3 < 1 +

∫∞
1

1/t3dt = 3/2.

If z > 1 and |Πt| ≤ z, then

|Π+
t − π(1)| ≤ |Πt − π(1)|

z
≤ z − 1

z
< 1 ,

which means that Π+
t ⊂ {π(1)}. Also, B(t) implies that all suboptimal arms in π(1) are eliminated, which leads to the

fact that only the optimal arm 1 can survive after phase t. According to the algorithm, there must be at least one arm left
after the elimination of each phase, so we can conclude that if for some z > 1 and phase t > log2

1
∆2

, {1 ∈ At}, |Πt| ≤ z,
and B(t) holds, the algorithm must stop after this phase and return the optimal arm i? = 1.

If |Πt| > z, and {1 ∈ At} and B(t) holds, then

|Π+
t |
|Πt|

≤ |Π
+
t − π(1)|+ 1

|Πt|
≤ |Πt − π(1)|+ z

z|Πt|
=
|Πt|+ z − 1

z|Πt|
≤ (z − 1) + (z + 1)

z(z + 1)
=

2

z + 1
,

Since repartitioning in the next phase will not increase the number of probes needed to cover At+1 compared to Π+
t , we

have |Πt+1| ≤ |Π+
t |. Therefore, for any z > 1 and t ≥ log2

1
∆2

such that {1 ∈ At} ∧B(t) holds, |Πt| > z, implies

|Πt+1|
|Πt|

≤ 2

z + 1
. (24)

For simplicity, we choose z = 15. Then, by (23), the probability of the event {∀t ∈ [T ] , 1 ∈ At} ∧ {∀ log2
1

∆2
≤ t ≤

T,B(t)} is at least 1−δ; thus, it is enough to bound the probe complexity of the algorithm under the latter event. Assuming
the event holds, by the choice of z we have that after t ≥ log2

1
∆2

phases, |Πt| ≥ 16 implies |Πt+1|
|Πt| ≤

1
8 , and the algorithm

stops after phase t if |Πt| ≤ 15. Let s = log2
1

∆2
. Then the algorithm must run into one of the following three cases: (a)

T < s, (b) T ≥ s and |Πt| ≥ 16 for s ≤ t ≤ T , (c) T ≥ s and |Πt| ≥ 16 for s ≤ t ≤ T − 1, |ΠT | ≤ 15.

Here we only consider the last two cases where T ≥ s; the upper bound obtained this way trivially hold for case (a), as
well. For T ≥ s, we divide the T phases into two parts: 1 ≤ t < s and s ≤ t ≤ T . In the second part, by definition,
|Πt| ≥ 16 for s ≤ t ≤ T − 1, and so |Πt| ≤ CO([K] , 1)

(
1
8

)t−s
for s ≤ t ≤ T by (24). Therefore, the probe complexity

of the algorithm, without the samples used by the MEWP subroutine, is

s−1∑
t=1

∑
π∈Πt

2

ε2
t

log
2|π|
δt

+

T∑
t=s

∑
π∈Πt

2

ε2
t

log
2|π|
δt
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≤ 32CO([K] , 1)

s−1∑
t=1

4t log
100|pmax|t3

δ
+ 32CO([K] , 1)

T−s∑
r=0

(
1

8

)r
4r+s log

100|pmax|(r + s)3

δ
.

Here the first term on the right hand side is clearly bounded from above by

C1
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

)
for some universal positive constant C1, while the second term can be bounded as

C2 · CO([K] , 1)4s
( T−s∑
r=0

1

2r
log

s · |pmax|
δ

+

T−s∑
r=0

log r

2r

)
≤ C3

(
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

))
(r + s ≤ rs)

for universal contants C2, C3 > 0. In conclusion, the total probe complexity without the samples used by median elimina-
tion is

O

(
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

))
.

The last thing is to show that the probe complexity of the MEWP subroutine is dominated by the above quantity. To show
this, consider each phase t, the number of probes used outside median elimination is

∑
π∈Πt

2
ε2t

log 2|π|
δt

which is relaxed

to 2CO(At,1)
ε2t

log 2|pmax|
δt

in our analysis. According to Theorem 3, MEWP in phase t uses O
(
CO(At,1)

ε2t
log |πmax|

δt

)
probes,

where |πmax| = maxπ∈Πt |π| ≤ |pmax|. So taking the probe complexity of median elimination processes into account we
still have the total probe complexity as

N = O

(
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

))
.

A.5. Proof of Theorem 5

Proof. Let T denote the number of phases that the algorithm runs until the stopping condition is satisfied and U denote the
event that all confidence bounds hold throughout the process:

U = {|µ̂i(t)− µi| ≤ g(t, δ) for all (i, t) s.t. 1 ≤ t ≤ T and i ∈ At} .

In the proof of Theorem 1, we have already shown that Pr(U) ≥ 1 − δ. So the remaining of the proof contains two parts
given the fact that U holds: (i) if T is finite thus Ŝ∗ is returned, each arm in Ŝ∗ must be (ε,m)-optimal, and (ii) the probe
complexity is upper bounded.

First we will show that if T <∞ then each arm i ∈ Ŝ∗ must be (ε,m)-optimal. Since Ŝ∗ = AaT ∪HT , if i ∈ Ŝ, i belongs
to either AaT or HT . If i ∈ AaT , we use the following proposition to show that 1 ≤ i ≤ m.

Proposition 9. If U holds, then for any 2 ≤ t ≤ T , if i ∈ Aat then 1 ≤ i ≤ m, if i ∈ Art then m+ 1 ≤ i ≤ K.

Proof. For t = 2, if i ∈ Aa2 , then µ̂i(1) > maxj∈L1
µ̂j(1) + 2g(1, δ). Since |L1| = K −m, we can find at least K −m

arms such that for each j of them µ̂i(1) > µ̂j(1) + 2g(1, δ). From U we know that µi > µj , which means there are at least
K −m arms worse than i, hence 1 ≤ i ≤ m holds. On the other hand, if i ∈ ArT , for similar reason, we can find at least
m arms better than i and thus m+ 1 ≤ i ≤ K. Next we will show that if it holds for t then it also holds for t+ 1.

If it holds for t, then we have # {i : 1 ≤ i ≤ m, i ∈ At} = m− |Aat | and # {i : m+ 1 ≤ i ≤ K, i ∈ At} = K −m−
|Art |. For i ∈ At and i ∈ Aat+1, we can find at least |Lt| = K −m − |Art | arms in At worse than i so 1 ≤ i ≤ m must
hold. Similarly, for i ∈ At and i ∈ Art+1, we can find at least |Ht| = m− |Aat | arms in At better than i so m+ 1 ≤ i ≤ K
must hold. Then by induction, Proposition 9 holds.
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We now continue the proof of Theorem 5. Proposition 9 shows that if i ∈ AaT then 1 ≤ i ≤ m. For the other case, if
i ∈ HT , then µ̂i(T ) ≥ maxj∈LT µ̂j(T ) + 2g(T, δ)− ε. Next we will show that µi ≥ µm − ε by discussing the following
two cases:

If 1 ≤ i ≤ m then µi ≥ µm − ε must hold. If m + 1 ≤ i ≤ K, since i ∈ HT and all arms in ArT must be K −m worst,
then there exists 1 ≤ j ≤ m such that j ∈ LT and thus µ̂i(T ) ≥ µ̂j(T ) + 2g(T, δ)− ε. Therefore µi ≥ µj − ε ≥ µm − ε.

Now we have shown that if T < ∞, every arm in Ŝ∗ = AaT ∪HT must be (ε,m)-optimal. Next we will prove that if U
holds then the probe complexity is upper bounded by the following propositions.

Proposition 10. For 1 ≤ t < T , g(t, δ) > ε/2.

Proof. If g(t, δ) ≤ ε/2, then mini∈Ht µ̂i(t) ≥ maxi∈Lt µ̂i(t) ≥ maxi∈Lt µ̂i(t) + 2g(t, δ)− ε. The stopping condition is
satisfied, thus T = t.

Proposition 11. For 1 ≤ t < T , if i ∈ At+1, then g(t, δ) ≥ (µi − µm+1)/4 if 1 ≤ i ≤ m, and g(t, δ) ≥ (µm − µi)/4 if
m+ 1 ≤ i ≤ K.

Proof. For i ∈ At, 1 ≤ i ≤ m, if g(t, δ) < (µi − µm+1)/4, since # {i : m+ 1 ≤ i ≤ K, i ∈ At} = K −m − |Art |,
there exist at least K −m− |Art | arms in At such that for each j of them µi − µj > 4g(t, δ). Then

µ̂i(t)− µ̂j(t) ≥ (µi − g(t, δ))− (µj + g(t, δ)) = µi − µj − 2g(t, δ) > 2g(t, δ) .

Given the fact that Lt contains K −m− |Art | arms with the lowest µ̂j(t)s for j ∈ At, we have µ̂i(t) > maxj∈Lt µ̂j(t) +
2g(t, δ), which means i must be accepted to Aat+1 thus i /∈ At+1.

Similarly, we can prove that for i ∈ At, m+ 1 ≤ i ≤ K, if g(t, δ) < (µm − µi)/4, then i must be rejected to Art+1. Now
Proposition 11 has been proved.

Combining Propositions 10 and 11 and the definition of ∆
(ε,m)
i we get that for 1 ≤ t < T , if i ∈ At+1, g(t, δ) ≥ ∆

(ε,m)
i /4.

Then following the proof of Theorem 1 gives the result of Theorem 5.

A.6. Proof of Theorem 6

Proof. Let T denote the number of phases that the algorithm runs until the stopping condition is satisfied and U denote the
event that all confidence bounds hold throughout the process:

U = {|µ̂i(t)− µi| ≤ g(t, δ) for all (i, t) s.t. 1 ≤ t ≤ T and i ∈ At} .

We have Pr(U) ≥ 1 − δ. Similar with the proof of Theorem 5, the remaining of the proof contains two parts given the
fact that U holds: (i) if T is finite thus Ŝ∗ is returned, the aggregate regret of Ŝ∗ must be ε-optimal, and (ii) the probe
complexity is upper bounded.

First we will show that if T < ∞ then 1
m

(∑
i∈[m] µi −

∑
i∈Ŝ∗ µi

)
≤ ε. Recall that Ŝ∗ = AaT ∪ HT . The arms in AaT

incur no regret since Proposition 9 still holds and says that AaT ⊂ [m]. So we only need to show that∑
i∈[m]\AaT

µi −
∑
i∈HT

µi ≤ mε .

Furthermore, it is equivalent to show ∑
i∈[m]\AaT \HT

µi −
∑

i∈HT \[m]

µi ≤ mε .

Recall the stopping condition ∑
i∈HT \H′T

(µ̂i(T )− g(T, δ)) ≥
∑

i∈H′T \HT

(µ̂i(T ) + g(T, δ))−mε .
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To show that the stopping condition is sufficient, we introduce some new notations:

Consider the sequence of arms in At sorted by their µ̂i(t), let at(i) be the arm at the i-th position. Let

bt = max
{
a ∈ N : µ̂at(mt−a+1) − µ̂at(mt+a) < 2g(t, δ)

}
,

where mt = m− |Aat |.

According to the construction of H ′t we know that Ht = {at(1), ..., at(mt)}, H ′t = {at(1), ..., at(mt − bt), at(mt +
1), ..., at(mt + bt)} and |Ht \H ′t| = |H ′t \Ht| = bt.

Next we construct a set of pairs PairT = {(i, j)} for i ∈ [m] \AaT \HT and j ∈ HT \ [m] as follows: sort HT \ [m] and
[m] \ AaT \HT both in descending order according to their µ̂i(T )s (this is valid since [m] \ AaT ⊂ AT by Proposition 9)
, then take last of i ∈ [m] \ AaT \ HT and the first j ∈ HT \ [m] as a pair into PairT , then repeat this procedure until
no arm remains (Note that | [m] \ AaT \ HT | = |HT \ [m] |). Since for each pair (i, j), i /∈ HT and j ∈ HT , we have
µ̂j(T ) ≥ µ̂i(T ).

Then ∑
i∈[m]\AaT \HT

µi −
∑

i∈HT \[m]

µi

≤
∑

(i,j)∈PairT

(µ̂i(T )− µ̂j(T ) + 2g(T, δ))

≤
∑

(i,j)∈Pair+T

(2g(T, δ)− (µ̂j(T )− µ̂i(T )))

where Pair+
T = {(i, j) ∈ PairT : µ̂j(T )− µ̂i(T ) < 2g(T, δ)}. Then we will show |Pair+

T | ≤ bT . This is because, if
|Pair+

T | > bT , then there must be a pair (i, j) ∈ Pair+
T such that j ∈ HT ∩H ′T and i /∈ HT ∪H ′T . Thus µ̂aT (mT−bT )(T )−

µ̂aT (mT+bT+1)(T ) ≤ µ̂j(T )− µ̂i(T ) < 2g(T, δ) which contradicts the definition of bt.

Next we construct another set of |Pair+
T | pairs (i, j) between i ∈ H ′T \HT and j ∈ HT \H ′T in the similar fashion: Let

Pair′T =
{

(aT (mT + |Pair+
T |), aT (mT − |Pair+

T |+ 1)), ..., (aT (mT + 1), aT (mT ))
}
.

If we consider the pairs in Pair+
T and Pair′T in the order that they are constructed, then for each corresponding (i, j) ∈

Pair+
T and (i′, j′) ∈ Pair′T , we have µ̂j(T )− µ̂i(T ) ≥ µ̂j′(T )− µ̂i′(T ). Therefore,∑

i∈[m]\AaT \HT

µi −
∑

i∈HT \[m]

µi ≤
∑

(i,j)∈Pair+T

(2g(T, δ)− (µ̂j(T )− µ̂i(T )))

≤
∑

(i,j)∈Pair′T

(2g(T, δ)− (µ̂j(T )− µ̂i(T )))

Consider the remaining pairs (i, j) between i ∈ H ′T \ HT and j ∈ HT \ H ′T which are not in Pair′T , 2g(T, δ) −
(µ̂j(T )− µ̂i(T )) > 0 still holds. Then we have∑

i∈[m]\AaT \HT

µi −
∑

i∈HT \[m]

µi ≤
∑

i∈H′T \HT

(µ̂i(T ) + g(T, δ))−
∑

i∈HT \H′T

(µ̂i(T )− g(T, δ)) ≤ mε .

Now we have proved that the aggregate regret of Ŝ∗ is ε-optimal. The remaining task is to upper bound the probe com-
plexity.

Proposition 12. For 1 ≤ t < T , g(t, δ) > mε/4b, where

b = max
{
a ∈ N+ : µm−a+1 − µm+a ≤

mε

a

}
,

or b = 1 if µm − µm+1 > mε.
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Proof. The proposition is proved by showing that if g(t, δ) ≤ mε/4b, the stopping condition must be satisfied after this
phase. Recall the definition of bt = |Ht \H ′t| = |H ′t \Ht|, we will first show that bt ≤ b.

If b = min{m,K−m}, bt ≤ bmust hold. Next we discuss the case when b < min{m,K−m}: Since µm−b−µm+b+1 >
mε/b ≥ 4g(t, δ), for any 1 ≤ i ≤ m− b and m+ b+ 1 ≤ j ≤ K, if i, j ∈ At, then µ̂i(t)− µ̂j(t) ≥ µi − µj − 2g(t, δ) >
2g(t, δ). So there are at least m− |Aat | − b = mt − b arms in At such that for each i of them 1 ≤ i ≤ m− b, as well as at
least |At| −mt − b arms such that for each j of them m+ b+ 1 ≤ j ≤ K. Since for each pair of such i, j, µ̂i(t) > µ̂j(t),
if bt > b then there must exist 1 ≤ i ≤ m − b and m + b + 1 ≤ j ≤ K such that i, j ∈ (Ht \H ′t) ∪ (H ′t \Ht). This is
impossible because

µ̂at(mt−bt+1)(t) ≥ µ̂i(t) > µ̂j(t) + 2g(t, δ) ≥ µ̂at(mt+bt)(t) + 2g(t, δ) ,

which contradicts the definition of bt. Hence bt ≤ b holds.

Then ∑
i∈H′t\Ht

(µ̂i(t) + g(t, δ))−
∑

i∈Ht\H′t

(µ̂i(t)− g(t, δ))

= 2btg(t, δ) +
∑

i∈H′t\Ht

µ̂i(t)−
∑

i∈Ht\H′t

µ̂i(t)

≤ 2btg(t, δ) ≤ 2bt ≤ 2b · mε
4b

≤ mε ,

which shows that the stopping condition is satisfied and thus the proposition holds.

Note that Proposition 11 still holds here, together with Proposition 12 we get that for 1 ≤ t < T , if i ∈ At+1, g(t, δ) ≥
∆

(mε/b,m)
i /4. Then following the proof of Theorem 1 gives the result of Theorem 6.
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B. Discussion for the MEWP Algorithm
The median elimination algorithm (ME) of Even-Dar et al. (2002) works as follows: The algorithm runs in phases. In
every phase t each potentially good arm is sampled 4ε−2

t log(3/δt) times, where δt = δ2−t−1 and εt = ε(3/4)t/3; then
the lower half of the arms with inferior performance is eliminated, and the next phase is run with the remaining arms only.
The algorithm terminates when a single arm remains.

B.1. Compared with a Naive Modification of ME

A tempting approach to address our problem would be, instead of sampling each remaining arm n times in one phase,
we sample a set of probes that is a minimum n-cover of those arms. We will call this naive modification of the median
elimination algorithm the naive-ME algorithm. While “naive-ME” preserves the same O(Kε−2 log(1/δ)) performance in
the bandit case, the following proposition shows that in the full information case this algorithm requires K1/2-times more
probes than expected.
Proposition 13. In the full information case where P = {[K]}, the probe complexity of the naive-ME algorithm is at least

Ω

(
K1/2

ε2
log

K

δ

)
.

Intuitively, the presence of the K1/2 term is not expected since the full information case gives K times more information
than the bandit case.

B.2. Further Analysis of MEWP

It can be shown that the worst case upper bound in Theorem 3 is unimprovable in both the bandit and full information
setting by the following theorem.
Theorem 14. In the full information case, for every K ≥ 2, ε > 0 and δ ∈ (0, 1/2), and for any algorithm that returns an
ε-optimal arm with probability at least 1− δ, there exist reward distributions (D1, . . . , DK) such that

E[N ] ≥ 1

16ε2
log

K

12δ
(25)

where N is the total number of probes used by the algorithm.

Moreover, for any general observation structure P , a lower bound is

E[N ] ≥ CLP([K] , 1)

16ε2
log

1

6δ
. (26)

Compared to the upper bound of Theorem 3 in general cases, lower bound (26) has a |πmax| gap inside the log term.
However, (26) is not tight since in the full information case we have a tighter lower bound Ω(ε−2 log(K/δ)) in (25).
Therefore, although whether the |πmax| term is tight or not is still an open question there has to be some quantity between
1 and K in the log term. Note that MEWP may not be the best choice for only finding an ε-optimal arm in practice since it
does not provide distribution dependent performance. However, the worst case upper bound is theoretically good enough
(has a better log term) for being a subroutine of our later algorithm EGEWP.

B.3. Empirical Comparison

We compare our MEWP algorithm to naive-ME, the naive modification of the median elimination algorithm described
above. We consider the case where every subset of size |p| is a probe in P and compare the two algorithms with different
|p| values when K = 1000. The other parameters are set as follows: δ = 0.1, ε = 0.2, the reward distributions are all
Gaussian with variance 1/4 and means µ1 = 1, µi = 1− (i/K)0.5 for i 6= 1.

The results, presented in Figure 2, show that the probe complexity of MEWP decreases faster than that of naive-ME as
|p| grows to K, and finally becomes much better close to the full information case (|p| = K). This is consistent with our
theoretical results in Proposition 13 and Theorem 3 since in the bandit case both algorithms require O(Kε−2 log(1/δ))
probes, while in the full information case our lower bound for the naive-ME in Proposition 13 shows a

√
K disadvantage

compared to the upper bound of MEWP in Theorem 3.
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Figure 2. Comparison between MEWP and naive-ME

B.4. Proof of Proposition 13

The median elimination algorithm deterministically runs dlog2Ke phases since it eliminates half of the arms in each phase.
In phase t, the algorithm collects 4

ε2t
log 3

δt
samples for each arm in the set of arms At considered, where εt = ε

3

(
3
4

)t
and

δt = δ
2t+1 , and then selectsAt+1 to contain half of the arms with better estimated mean rewards. Under the full information

setting, there is only one probe that covers all arms, so the algorithm uses that probe the probe 4
ε2t

log 3
δt

times in each phase.
Then the total probe complexity N is

N =

dlog2Ke∑
t=1

4

ε2
t

log
3

δt
=

dlog2Ke∑
t=1

36

ε2

(
16

9

)t
log

6 · 2t

δ

≥ 36

ε2

(
16

9

)log2K

log
6K

δ
(only take the last term)

=
36

ε2
K log2

16
9 log

6K

δ
>

36

ε2
K1/2 log

6K

δ

= Ω

(
K1/2

ε2
log

K

δ

)
.

B.5. Proof of Theorem 14

We prove (25) and (26) separately.

First we prove a modification of Lemma 8 for the full information case.

Lemma 15. Consider the full information case. Let î∗ ∈ [K] be the arm returned by some algorithm after N trials if the
algorithm stops and let î∗ = 0 if the algorithm never stops. Furthermore, for any a ∈ [K], let Ua denote the event that
î∗ = a. Then, for any two environments D1 and D2, and for any a ∈ [K],

ED1 [N ]

K∑
i=1

KL(D1
i , D

2
i ) ≥ d(PrD1(Ua),PrD2(Ua)),

where EDj and PrDj denote expectation and probability under the assumptions that the environment is Dj , KL(D1
i , D

2
i )

denotes the relative entropy (or Kullback-Leibler divergence) between D1
i and D2

i for all i ∈ [K], and d(x, y) =
x log(x/y) + (1− x) log((1− x)/(1− y)) is the binary relative entropy.

Proof. Assume that the full information algorithm is applied in the bandit case in a naive way: trying each arm once in the
bandit case when it would choose to try the only probe in the full information case. Then N1 = . . . = NK = N , and the
statement of the lemma follows immediately from Lemma 8.
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Proof of (25). We prove the theorem by applying Lemma 15. In order to do so, we need to construct the environments
D1 and D2. We assume that for any i ∈ [K] , k ∈ {1, 2}, Dk

i is Gaussian with mean µki and variance σ2 = 1/4. In D2

we set µ2
1 = ε, µ2

2 = ... = µ2
K = 0. Now consider any algorithm that returns an ε-optimal arm with probability 1 − δ.

Then we have PrD2(U1) ≥ 1 − δ. Furthermore,
∑K
i=2 PrD2(Ui) < δ, and so there exists some j ∈ {2, . . . ,K} such

that PrD2(Uj) < δ/(K − 1). We use this j to select the expected values of the distributions D1
i : in particular, we let

µ1 = ε, µj = 2ε, and µi = 0 for all other i. Then we have PrD1(Uj) ≥ 1− δ.

Since the relative entropy of two 1-dimensional Gaussian distributions with common variance σ2 and mean difference
m is m2/(2σ2), we have

∑K
i=1KL(D1

i , D
2
i ) = KL(D1

j , D
2
j ) = (2ε)2/(2σ2) = 8ε2. Furthermore, by the monotonic-

ity properties of the binary entropy function d, and since PrD2(Uj) < δ/(K − 1) < 1 − δ ≤ PrD1(Uj), we have
d(PrD1(Uj),PrD2(Uj)) ≥ d(1− δ, δ/(K − 1)). Thus, applying Lemma 15, we get

ED1 [N ] ≥
d
(

1− δ, δ
K−1

)
8ε2

. (27)

The last step is to bound d
(

1− δ, δ
K−1

)
from below:

d

(
1− δ, δ

K − 1

)
= (1− δ) log

1− δ
δ

K−1

+ δ log
δ

1− δ
K−1

>
1

2
log

K − 1

2δ
+ δ log δ ≥ 1

2
log

K − 1

2δ
− 1

e

>
1

2
log

K − 1

6δ
≥ 1

2
log

K

12δ
.

Combined with (27) we have ED1 [N ] ≥ 1
16ε2 log K

12δ , which concludes the proof.

Proof of (26). Let D be an environment such that Di, i ∈ [K] is Gaussian with mean µi and variance σ2 = 1/4, where
µ1 = ε and µi = 0 for all i 6= 1.

We createK environments,D1, . . . , DK , such thatDk
i is Gaussian with mean µki and variance σ2 = 1/4, and use Lemma 8

to lower bound the number of trials needed in environment D. For D1, let µ1
1 = −ε and µ1

i = µi for all i 6= 1. For Dk,
k 6= 1, let µkk = 2ε and µkj = µj for all j 6= k.

Consider an algorithm A that, with probability at least 1− δ, returns an ε-optimal solution (in any environment satisfying
the assumptions of this paper). Then, using the notation of Lemma 8, we have PrDk(U1) < δ for all k ∈ [K] and
PrD(U1) ≥ 1− δ.

Let Ni be the number of samples observed by algorithm A for arm i. Similarly to the proof of Lemma 15, we construct
a bandit algorithm from A using probes in such a way that whenever A decides to try a probe p in the original problem,
the bandit version tries each arm i ∈ p once in the bandit problem. Then the number of samples for each arm i will be the
same in the original and in the bandit problem, and so, similarly to the proof of Theorem 14, Lemma 8 implies that

ED[Ni] ≥
d(1− δ, δ)

8ε2

for all i ∈ [K]. Using the derivation in Theorem 2, we get d(1− δ, δ) > 1
2 log 1

6δ . Therefore, we have

ED[Ni] =
∑
p3i

ED[Np] ≥
1

16ε2
log

1

6δ

where Np is the number of times that probe p is played. Since ED[N ] =
∑
p∈P ED[Np], lower bounding ED[N ] leads to

ED[N ] ≥ CLP

(
[K] ,

1

16ε2
log

1

6δ

)
=
CLP([K] , 1)

16ε2
log

1

6δ
. (28)
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C. Experimental Results
C.1. Comparing SEWP and EGEWP

To compare the performance between SEWP and EGEWP algorithms, we investigate the performance under three different
probe settings: (a) the bandit case; (b) the full information case; and (c) an intermediate case where every subset of size
|p| =

√
K is a probe. For each scenario we consider two environments: (a) an easy problem where µ1 = 0.3 and

µ2 = ... = µK = 0 and (b) a hard problem where µ1 = 1 and µi = 1 − (i/n)0.5 for i 6= 1. Each reward distribution
is Gaussian with variance σ2 = 1/4. Under each combination of probe and distribution settings, we test the sample
complexity for different values of K with δ = 0.1. In the experiments we report average probe usage over 100 runs. The
results are shown in Figure 6.

The results show that EGEWP performs worse than the SEWP in all settings considered, despite its favorable asymptotic
performance guarantees. This phenomenon is supported by the experimental studies by Jamieson et al. (2014) in the bandit
case, in which the exponential gap elimination algorithm of Karnin et al. (2013) is shown to be worse than the successive
elimination algorithm of Even-Dar et al. (2002).
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Figure 3. |p| = 1, easy case
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Figure 4. |p| = 1, hard case
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Figure 5. |p| =
√
K, easy case
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Figure 6. |p| =
√
K, hard case
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Figure 7. |p| = K, easy case
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Figure 8. |p| = K, hard case

C.2. Experiment Settings for Figure 1

In Figure 1, the lilUCB algorithm comes from Jamieson et al. (2014). The parameters we used in experiments is the lilUCB
Heuristic setting, which performs the best in the experiments of Jamieson et al. (2014). The SE algorithm is short for the
successive elimination algorithm of Even-Dar et al. (2002). As these algorithms select options for measurements, we adapt
them to the probe setting by choosing the first probe in some arbitrary ordering of probes that gives a measurement for
the selected option . In experiments, all distributions we used are Gaussian with variance 1/4. Each point reported in the
figure is based on 100 repeated experiments under the same reward distributions, where we set one of the means to be 0.5
and the others to be 0.


