Supplementary Material:

Inference in a Partially Observed Queuing Model with Applications in Ecology

Kevin Winner¹ Garrett Bernstein¹ Daniel Sheldon^{1,2} KWINNER@CS.UMASS.EDU GBERNSTEIN@CS.UMASS.EDU SHELDON@CS.UMASS.EDU

¹College of Information and Computer Sciences, University of Massachusetts, Amherst, MA 01002, USA

1. Proof of Log-Concavity

Proof of Theorem 2.

Proof. We can factor the pmf of δ as follows:

$$p(\delta) = a(\delta)b(\delta) \prod_{n_k \in n^+} c_k(\delta)e(\delta) \prod_{n_l \in n^-} d_l(\delta)e(\delta)^{-1}$$

$$a(\delta) = \prod_{p_i \in p^+, q_i \in q^+} \frac{p_i^{q_i + \delta}}{(q_i + \delta)!}$$

$$b(\delta) = \prod_{p_j \in p^-, q_j \in q^-} \frac{p_j^{q_j - \delta}}{(q_j - \delta)!}$$

$$c_k(\delta) = \frac{(n_k + \delta)!}{(n_k + \delta - y_k)!}$$

$$d_l(\delta) = \frac{(n_l - \delta)!}{(n_l - \delta - y_l)!}$$

$$e(\delta) = (1 - \alpha)^{\delta}$$

Where $\{p^+, q^+, n^+\}$ and $\{p^-, q^-, n^-\}$ represent the subsets of \mathbf{p} , \mathbf{q} , and \mathbf{n} which change positively and negatively under \mathbf{z} accordingly. Since the product of log concave functions is also log concave, it is thus sufficient to demonstrate that each of the factors of $\mathcal{L}(\delta)$ is log concave. Observe that the inner part of $a(\delta)$ is the form of $e^{\lambda} \operatorname{Poisson}_{\lambda}(k)$ where $\lambda = p_i$ and $k = q_i + \delta$. Since the Poisson is log concave and so is e^{λ} , $a(\delta)$ is also log concave in δ . By an identical argument, so is $b(\delta)$.

For $e(\delta)$, note that $\log(1-\alpha)^{\delta}=\delta\log(1-\alpha)$, which is linear in δ and therefore $e(\delta)$ is log concave in δ , as is $e(\delta)^{-1}$.

The proof of concavity for $c_k(\delta)$ and $d_l(\delta)$ is below:

$$c_k(\delta) = \frac{(n_k + \delta)!}{(n_k + \delta - y_k)!}$$

Let
$$n' = n_k + \delta$$

$$c_k(n') = \frac{n'!}{(n'-y_k)!}$$

by construction, $n' = n_k + \delta \ge y_k$

to show $c_k(n')$ is log concave, we must show:

$$c_k(n')^2 \ge c_k(n'-1)c_k(n'+1)$$

$$\frac{c_k(n')}{c_k(n'+1)} \ge \frac{c_k(n'-1)}{c_k(n')}$$

$$\frac{n'!}{(n'-y_k)!} \frac{(n'+1-y_k)!}{(n'+1)!} \ge \frac{(n'-1)!}{(n'-1-y_k)!} \frac{(n'-y_k)!}{n'!}$$

$$\frac{n'+1-y_k}{n'+1} \ge \frac{n'-y_k}{n'}$$

$$1 - \frac{y_k}{n'+1} \ge 1 - \frac{y_k}{n'}$$

Thus $c_k(n')$ and, by extension, $c_k(\delta)$ are log concave. A similar argument shows that $d_l(\delta)$ is log concave as well. Then we have shown that $p(\delta)$ is a product of log concave functions and therefore $p(\delta)$ is also log concave.

²Department of Computer Science, Mount Holyoke College, South Hadley, MA 01075, USA