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1. Proof of Log-Concavity
Proof of Theorem 2.

Proof. We can factor the pmf of 4 as follows:

p(8) = a(®)b(@) [ ex(@)e® [ di(d)e(®)
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Where {p*,q*,n"} and {p~,¢~,n"} represent the sub-
sets of p, q, and n which change positively and negatively
under z accordingly. Since the product of log concave func-
tions is also log concave, it is thus sufficient to demonstrate
that each of the factors of £(0) is log concave. Observe that
the inner part of a(§) is the form of e*Poisson, (k) where
A = p; and k = ¢g; + §. Since the Poisson is log concave
and so is €*, a(6) is also log concave in §. By an identical
argument, o is b(9).

For e(d), note that log(1 — a)® = dlog(1 — a), which
is linear in 0 and therefore e(d) is log concave in ¢, as is
e(d)~L.

The proof of concavity for ¢ (9) and d;(9) is below:
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by construction, n’ = ng + § > Yk

to show ¢ (n') is log concave, we must show:

ck(n')z > ck(n’ — l)ck(n’ + 1)
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Thus ¢, (n') and, by extension, cx(d) are log concave. A
similar argument shows that d;(9) is log concave as well.
Then we have shown that p(d) is a product of log concave
functions and therefore p(0) is also log concave. O



