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A. Proof for Theorem 1
To prove Theorem 1, we first prove the following theorem:

Theorem 3. If (1) w̄ = Φθ∗, (2) the prior on θ∗ is N(0, λ2I), and (3) the noises are i.i.d. sampled from N(0, σ2), then
under CombLinTS algorithm with parameter (Φ, λ, σ), then we have
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Notice that Theorem 1 follows immediately from Theorem 3. Specifically, if λ ≥ σ, then we have

BBayes(n) ≤ 1 +Kλmin
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)
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We now outline the proof of Theorem 3, which is based on (Russo & Van Roy, 2013; Dani et al., 2008). LetHt denote the
“history” (i.e. all the available information) by the start of episode t. Note that from the Bayesian perspective, conditioning
on Ht, θ∗ and θt are i.i.d. drawn from N(θ̄t,Σt) (see (Russo & Van Roy, 2013)). This is because that conditioning on
Ht, the posterior belief in θ∗ is N(θ̄t,Σt) and based on Algorithm 2, θt is independently sampled from N(θ̄t,Σt). Since
ORACLE is a fixed combinatorial optimization algorithm (even though it can be independently randomized), and E,A,Φ
are all fixed, then conditioning onHt, A∗ and At are also i.i.d., furthermore, A∗ is conditionally independent of θt, and At

is conditionally independent of θ∗.

To simplify the exposition, ∀θ ∈ Rd and ∀A ⊆ E, we define

g(A, θ) =
∑
e∈A
〈φe, θ〉 , (12)

then we have E[f(A∗,wt)|Ht, θ∗, θt, A∗, At] = g(A∗, θ∗) and E[f(At,wt)|Ht, θ∗, θt, A∗, At] = g(At, θ∗), hence we
have E[Rt|Ht] = E[g(A∗, θ∗)− g(At, θ∗)|Ht]. We also define the upper confidence bound (UCB) function Ut : 2E → R
as

Ut(A) =
∑
e∈A

[〈
φe, θ̄t

〉
+ c
√
φTe Σtφe

]
, (13)

where c > 0 is a constant to be specified. Notice that conditioning on Ht, Ut is a deterministic function and A∗, At are
i.i.d., then E[Ut(A

t)− Ut(A∗)|Ht] = 0 and

E[Rt|Ht] = E[g(A∗, θ∗)− Ut(A∗)|Ht] + E
[
Ut(A

t)− g(At, θ∗)
∣∣Ht] . (14)

One key observation is that

E
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where (b) follows from the fact that At and θ∗ are conditionally independent, and (c) follows from E[θ∗|Ht] =

θ̄t. Hence BBayes(n) =
∑n
t=1 E[g(A∗, θ∗)− Ut(A∗)] + c

∑n
t=1 E

[∑
e∈At

√
φTe Σtφe

]
. We can show that (1)
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and (2)
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. Thus, the bound in Theorem 3 holds.

Please refer to the remainder of this section for the full proof.

A.1. Bound on
∑n
t=1 E[g(A∗, θ∗)− Ut(A∗)]

We first prove that if we choose
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then
∑n
t=1 E[g(A∗, θ∗)− Ut(A∗)] ≤ 1. To prove this result, we use the following inequality for truncated Gaussian

distribution.

Lemma 1. If X ∼ N(µ, s2), then we have

E[X1{X ≥ 0}] = µ

[
1− ΦG
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s

)]
+

s√
2π

exp

(
− µ2

2s2

)
,

where ΦG is the cumulative distribution function (CDF) of the standard Gaussian distribution N(0, 1). Furthermore, if

µ ≤ 0, we have E[X1{X ≥ 0}] ≤ s√
2π
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)
.

Based on Lemma 1, we can prove the following lemmas:

Lemma 2. If c ≥
√

ln
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)
, then we have

∑n
t=1 E[g(A∗, θ∗)− Ut(A∗)] ≤ 1.

Proof. We have the following naive bound:
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∑
e∈A∗

[〈
φe, θ

∗ − θ̄t
〉
− c
√
φTe Σtφe

]
≤
∑
e∈A∗

[〈
φe, θ

∗ − θ̄t
〉
− c
√
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Notice that conditioning on Ht,
〈
φe, θ

∗ − θ̄t
〉
− c
√
φTe Σtφe is a Gaussian random variable with mean −c

√
φTe Σtφe and

variance φTe Σtφe. Thus, from Lemma 1, we have
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where the last two inequalities follow from the fact that φTe Σtφe ≤ φTe Σ1φe ≤ λ2‖φe‖2 ≤ λ2, since ‖φe‖ ≤ 1 by
assumption8. Thus we have

E

[
n∑
t=1

[g(A∗, θ∗)− Ut(A∗)]

]
≤ exp

(
−c

2

2

)
nλL√

2π
. (19)

If we choose c ≥
√

2 ln
(
λLn√

2π

)
, then we have E[

∑n
t=1 [g(A∗, θ∗)− Ut(A∗)]] ≤ 1.

Lemma 3. If c ≥
√
d ln

(
2dKnλ√

2π

)
, then we also have

∑n
t=1 E[g(A∗, θ∗)− Ut(A∗)] ≤ 1.

Proof. We use v1, . . . , vd to denote a fixed set of d orthonormal eigenvectors of Σt, and Λ2
1, . . . ,Λ

2
d to denote the associated

eigenvalues. Notice that for i 6= j, we have vTi Σtvj = Λ2
i v
T
i vj = 0. ∀i = 1, . . . , d, we define vi+d = −vi and Λi+d = Λi,

which allows us to define the following conic decomposition:

φe =

2d∑
i=1

αeivi, ∀e ∈ E,

subject to the constraints that αei ≥ 0, ∀(e, i). Notice that αei’s are uniquely determined. Furthermore, for i and j s.t.
|i− j| = d, by definition of conic decomposition, we have αeiαej = 0. In other words, αe is a d-sparse vector.

Since we assume that ‖φe‖ ≤ 1, we have that
∑2d
i=1 α

2
ei ≤ 1, ∀e ∈ E. Thus, for any e, we have that

〈
φe, θ

∗ − θ̄t
〉

=∑2d
i=1 αei

〈
vi, θ

∗ − θ̄t
〉

and

φTe Σtφe =

(
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i=1

αeiv
T
i

)
Σt

 2d∑
j=1

αeivj


=

2d∑
i=1

2d∑
j=1

αeiαejv
T
i Σtvj . (20)

Notice that for i 6= j, if |i − j| 6= d, then vTi Σtvj = 0; on the other hand, if |i − j| = d, αeiαej = 0. Thus, if i 6= j, we
have αeiαejv

T
i Σtvj = 0. Consequently,

φTe Σtφe =

2d∑
i=1

α2
eiv

T
i Σtvi =

2d∑
i=1

α2
eiΛ

2
i .

Thus we have

√
φTe Σtφe =

√√√√ 2d∑
i=1

α2
eiΛ

2
i ≥

1√
d

2d∑
i=1

αeiΛi, (21)

where the inequality follows from Cauchy-Schwartz inequality, specifically, define si = 1 if αeiΛi 6= 0, and si = 0 if
αeiΛi = 0, then we have

2d∑
i=1

αeiΛi =

2d∑
i=1

αeiΛisi ≤

√√√√ 2d∑
i=1

s2
i

√√√√ 2d∑
i=1
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eiΛ

2
i ≤
√
d

√√√√ 2d∑
i=1

α2
eiΛ

2
i ,

8Notice that in the derivation of Inequality (18), we implicitly assume that φT
e Σtφe > 0, ∀e ∈ E. It is worth pointing out that the

case with φT
e Σtφe = 0 is a trivial case and this inequality still holds in this case.
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where the last inequality follows from the fact that αe is d-sparse. Thus, for any e, we have that

〈
φe, θ

∗ − θ̄t
〉
− c
√
φTe Σtφe ≤

2d∑
i=1

αei
〈
vi, θ

∗ − θ̄t
〉
− c√

d

2d∑
i=1

αeiΛi. (22)

Consequently, we have

∑
e∈A∗

[〈
φe, θ

∗ − θ̄t
〉
− c
√
φTe Σtφe

]
≤

2d∑
i=1

(〈
vi, θ

∗ − θ̄t
〉
− cΛi√

d

)(∑
e∈A∗

αei

)
. (23)

Define Xi =
〈
vi, θ

∗ − θ̄t
〉
− cΛi√

d
, notice that conditioning onHt, we have Xi|Ht ∼ N

(
− cΛi√

d
,Λ2

i

)
. Hence we have

∑
e∈A∗

〈
φe, θ

∗ − θ̄t
〉
− c
√
φTe Σtφe

(a)

≤
2d∑
i=1
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[∑
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αei

]
(b)

≤
2d∑
i=1

Xi1{Xi ≥ 0}

[∑
e∈A∗

αei

]
,

where the inequality (b) follows from the fact that Xi ≤ Xi1{Xi ≥ 0} and
[∑

e∈A∗ αei
]
≥ 0. On the other hand, notice

that |A∗| ≤ K

∑
e∈A∗

αei ≤
√
|A∗|

√∑
e∈A∗

α2
ei ≤

√
|A∗|

√√√√∑
e∈A∗

d∑
j=1

α2
ej ≤

√
|A∗|

√∑
e∈A∗

1 = |A∗| ≤ K.

Since Xi1{Xi ≥ 0} ≥ 0, we have

∑
e∈A∗

〈
φe, θ

∗ − θ̄t
〉
− c
√
φTe Σtφe ≤ K

2d∑
i=1

Xi1{Xi ≥ 0} ,

notice that the RHS does not include A∗. Hence we have

Eθ∗ [g(A∗, θ∗)− Ut(A∗)|Ht] = Eθ∗
[∑
e∈A∗

〈
φe, θ

∗ − θ̄t
〉
− c
√
φTe Σtφe

∣∣∣∣∣Ht
]

≤ K
2d∑
i=1

Eθ∗ [Xi1{Xi ≥ 0}|Ht]

≤ K
2d∑
i=1

Λi√
2π

exp

(
− c

2

2d

)
≤ 2dKλ√

2π
exp

(
− c

2

2d

)
,

where the last inequality follows from the fact that Λi ≤ λ. Hence we have

n∑
t=1

E[g(A∗, θ∗)− Ut(A∗)] ≤
2dKnλ√

2π
exp

(
− c

2

2d

)
,

if we choose c ≥
√

2d ln
(

2dKnλ√
2π

)
, then we have

∑n
t=1 E[f(A∗, θ∗)− Ut(A∗)] ≤ 1.
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Combining the results from Lemma 2 and 3, we have proved that if

c ≥ min

{√
ln

(
λLn√

2π

)
,

√
d ln

(
2dKnλ√

2π

)}
,

then
∑n
t=1 E[g(A∗, θ∗)− Ut(A∗)] ≤ 1.

A.2. Bound on
∑n
t=1 E

[∑
e∈At

√
φTe Σtφe

]
In this subsection, we derive a bound on

∑n
t=1 E

[∑
e∈At

√
φTe Σtφe

]
. Our analysis is motivated by the analysis in (Dani

et al., 2008). Specifically, we provide a worst-case bound on
∑n
t=1

∑
e∈At

√
φTe Σtφe, for any realization of random

variable wt’s, θt’s, At’s, A∗, and θ∗.

Lemma 4.
∑n
t=1

∑
e∈At

√
φTe Σtφe ≤ Kλ

√
dn log

(
1+nKλ2

dσ2

)
log

(
1+λ2

σ2

) .

Proof. To simplify the exposition, we define

zt,k =
√
φT
atk

Σtφatk . (24)

First, notice that Σ−1
t is the Gramian matrix and satisfies

Σ−1
t+1 = Σ−1

t +
1

σ2

|At|∑
k=1

φatkφ
T
atk
. (25)

Hence for any t, k, we have that

det
[
Σ−1
t+1

]
≥ det

[
Σ−1
t +

1

σ2
φatkφ

T
atk

]
= det

[
Σ
− 1

2
t

(
I +

1

σ2
Σ

1
2
t φatkφ

T
atk

Σ
1
2
t

)
Σ
− 1

2
t

]
= det

[
Σ−1
t

]
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[
I +

1

σ2
Σ

1
2
t φatkφ

T
atk

Σ
1
2
t

]
= det

[
Σ−1
t

](
1 +

1

σ2
φTatk

Σtφatk

)
= det

[
Σ−1
t

](
1 +

z2
t,k

σ2

)
. (26)

Hence we have that

(
det
[
Σ−1
t+1

])|At| ≥ (det
[
Σ−1
t

])|At| |At|∏
k=1

(
1 +

z2
t,k

σ2

)
. (27)

Remark 1. This is where the extraO(
√
K) factor arises. Notice that this extra factor is purely due to linear generalization.

Specifically, if Φ = I , then Σt’s and Σ−1
t ’s will be diagonal, and we have

det
[
Σ−1

t+1

]
= det

[
Σ−1

t

] |At|∏
k=1

(
1 +

z2t,k
σ2

)
. (28)

Notice that Equation 27 further implies that

(
det
[
Σ−1
t+1

])K ≥ (det
[
Σ−1
t

])K |At|∏
k=1

(
1 +

z2
t,k

σ2

)
, (29)
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since det
[
Σ−1
t+1

]
≥ det

[
Σ−1
t

]
and |At| ≤ K. Recall that det

[
Σ−1

1

]
=
(

1
λ2

)d
, we have that

(
det
[
Σ−1
n+1

])K ≥ (det
[
Σ−1

1

])K n∏
t=1

|At|∏
k=1

(
1 +

z2
t,k

σ2

)
=

1

λ2dK

n∏
t=1

|At|∏
k=1

(
1 +

z2
t,k

σ2

)
. (30)

On the other hand, we have

trace
[
Σ−1
n+1

]
= trace

 1

λ2
I +

1

σ2

n∑
t=1

|At|∑
k=1

φatkφ
T
atk

 =
d

λ2
+

1

σ2

n∑
t=1

|At|∑
k=1

‖φatk‖
2 ≤ d

λ2
+
nK

σ2
, (31)

where the last inequality follows from the assumption that ‖φe‖ ≤ 1, ∀e ∈ E and |At| ≤ K. From the trace-determinant
inequality, we have

1

d
trace

[
Σ−1
n+1

]
≥
(
det
[
Σ−1
n+1

]) 1
d ,

which implies that

(
1

λ2
+
nK

dσ2

)dK
≥
(

1

d
trace

[
Σ−1
n+1

])dK
≥
(
det
[
Σ−1
n+1

])K ≥ 1

λ2dK

n∏
t=1

|At|∏
k=1

(
1 +

z2
t,k

σ2

)
.

Taking the logarithm, we have

dK log

(
1 +

nKλ2

dσ2

)
≥

n∑
t=1

|At|∑
k=1

log

(
1 +

z2
t,k

σ2

)
. (32)

Notice that z2
t,k = φTatk

Σtφatk , hence we have that 0 ≤ z2
t,k ≤ φTatk

Σ1φatk ≤ λ2‖φatk‖
2 ≤ λ2. We have the following

technical lemma:

Lemma 5. For any real number x ∈ [0, λ2], we have x ≤ λ2

log
(

1+λ2

σ2

) log
(
1 + x

σ2

)
.

Proof. Define h(x) = λ2

log
(

1+λ2

σ2

) log
(
1 + x

σ2

)
−x, thus we only need to prove h(x) ≥ 0 for x ∈ [0, λ2]. Notice that h(x)

is a strictly concave function for x ≥ 0, and h(0) = 0, h(λ2) = 0. From Jensen’s inequality, for any x ∈ (0, λ2), we have
h(x) > 0.

Hence we have that

n∑
t=1

|At|∑
k=1

z2
t,k ≤

λ2

log
(
1 + λ2

σ2

) n∑
t=1

|At|∑
k=1

log

(
1 +

z2
t,k

σ2

)
≤
dKλ2 log

(
1 + nKλ2

dσ2

)
log
(
1 + λ2

σ2

) (33)

Finally, we have that

n∑
t=1

|At|∑
k=1

zt,k ≤
√
nK

√√√√ n∑
t=1

|At|∑
k=1

z2
t,k ≤ Kλ

√
dn log

(
1 + nKλ2

dσ2

)
log
(
1 + λ2

σ2

) . (34)
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Recall that the above bound holds for any realization of random variables, thus, we have

E

[
n∑
t=1

[
Ut(A

t)− g(At, θ∗)
]]

= cE

 n∑
t=1

|At|∑
k=1

zt,k

 ≤ cKλ√dn log
(
1 + nKλ2

d

)
log
(
1 + λ2

σ2

) .

With

c = min

{√
ln

(
λLn√

2π

)
,

√
d ln

(
2dKnλ√

2π

)}
, (35)

and combining the results in the previous subsection, we have proved Theorem 3.

B. Proof for Theorem 2
We start by writing an alternative formula for Σt and θ̄t. Notice that based on Algorithm 1, we have:

Σ−1
t =

1

λ2
I +

1

σ2

t−1∑
τ=1

|Aτ |∑
k=1

φaτkφ
T
aτk

Σ−1
t θ̄t =

1

σ2

t−1∑
τ=1

|Aτ |∑
k=1

φaτkwτ (aτk) (36)

Interested readers might refer to Appendix C for the derivation of Equation (36). The proof proceeds as follows. We first
construct a confidence set of θ∗ based on the “self normalized bound” developed in (Abbasi-Yadkori et al., 2011). Then
we derive a regret bound based on Lemma 4 derived above.

B.1. Confidence Set

Our construction of confidence set is motivated by the analysis in (Agrawal & Goyal, 2013). We start by defining some
useful notation. Specifically, for any t = 1, 2, . . . , n, any k = 1, 2, . . . , |At|, we define

ηt,k = wt

(
atk
)
− w̄

(
atk
)
.

One key observation is that ηt,k’s form a Martingale difference sequence (MDS)9 since w(e)’s are statistically independent
under P . Moreover, since wt (atk) is bounded in interval [0, 1], ηt,k’s are sub-Gaussian with constant R = 1. We further
define

Vt =
σ2

λ2
I +

t−1∑
τ=1

|Aτ |∑
k=1

φaτkφ
T
aτk

ξt =

t−1∑
τ=1

|Aτ |∑
k=1

φaτkητ,k

As we will see later, we define Vt and ξt to use the “self normalized bound” developed in (Abbasi-Yadkori et al., 2011)
(see Theorem 1 of (Abbasi-Yadkori et al., 2011)). Notice that based on the above definition, we have Σ−1

t = 1
σ2Vt, and

θ̄t − θ∗ = Σt

(
1

σ2
ξt −

1

λ2
θ∗
)
.

9Note that the notion of “time” is indexed by a pair (t, k), and follows the lexicographical order.
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To see why the second equality holds, notice that

Σ−1
t θ̄t =

1

σ2

t−1∑
τ=1

|Aτ |∑
k=1

φaτk

(
φTaτkθ

∗ + ητ,k

)
=

(
Σ−1
t −

1

λ2
I

)
θ∗ +

1

σ2
ξt.

Hence, for any e ∈ E, we have

∣∣〈φe, θ̄t − θ∗〉∣∣ =

∣∣∣∣φTe Σt

(
1

σ2
ξt −

1

λ2
θ∗
)∣∣∣∣

≤ ‖φe‖Σt

∥∥∥∥ 1

σ2
ξt −

1

λ2
θ∗
∥∥∥∥

Σt

≤ ‖φe‖Σt

[
1

σ2
‖ξt‖Σt +

1

λ2
‖θ∗‖Σt

]
,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality follows from the trian-
gular inequality. Notice that

‖θ∗‖Σt ≤ ‖θ
∗‖Σ1

= λ ‖θ∗‖2 ,

hence we have ∣∣〈φe, θ̄t − θ∗〉∣∣ ≤ ‖φe‖Σt [ 1

σ2
‖ξt‖Σt +

1

λ
‖θ∗‖2

]
.

Moreover, we have

1

σ2
‖ξt‖Σt =

1

σ2
‖ξt‖σ2V −1

t
=

1

σ
‖ξt‖V −1

t
.

So we have ∣∣〈φe, θ̄t − θ∗〉∣∣ ≤ ‖φe‖Σt [ 1

σ
‖ξt‖V −1

t
+

1

λ
‖θ∗‖2

]
. (37)

The above inequality always holds. We now provide a high probability bound on ‖ξt‖V −1
t

, based on the “self normalized
bound” proposed in (Abbasi-Yadkori et al., 2011). From Theorem 1 of (Abbasi-Yadkori et al., 2011), we know for any
δ ∈ (0, 1), with probability at least 1− δ,

‖ξt‖V −1
t
≤

√
2 log

(
det(Vt)1/2 det(V1)−1/2

δ

)
∀t = 1, 2, . . . .

Obviously, det (V1) =
[
σ2

λ2

]d
, on the other hand, we have

[det(Vt)]
1/d ≤ trace(Vt)

d
=
σ2

λ2
+

1

d

t−1∑
τ=1

|Aτ |∑
k=1

‖φaτk‖
2 ≤ σ2

λ2
+

(t− 1)K

d
,

where the last inequality follows from the assumption that ‖φe‖ ≤ 1. Hence, for t ≤ n, we have

[det(Vt)]
1/d ≤σ

2

λ2
+
nK

d
.

Thus, with probability at least 1− δ, we have

‖ξt‖V −1
t
≤

√
d log

(
1 +

nKλ2

dσ2

)
+ 2 log

(
1

δ

)
∀t = 1, 2, . . . , n.
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Thus, we have the following lemma:

Lemma 6. For any λ, σ > 0 and any δ ∈ (0, 1), with probability at least 1− δ, we have

∣∣〈φe, θ̄t − θ∗〉∣∣ ≤ ‖φe‖Σt
[

1

σ

√
d log

(
1 +

nKλ2

dσ2

)
+ 2 log

(
1

δ

)
+
‖θ∗‖2
λ

]
, (38)

for all t = 1, 2, . . . , n, and for all e ∈ E.

Notice that ‖φe‖Σt =
√
φTe Σtφe, thus, the above lemma immediately implies the following lemma:

Lemma 7. For any λ, σ > 0, any δ ∈ (0, 1), and any

c ≥ 1

σ

√
d log

(
1 +

nKλ2

dσ2

)
+ 2 log

(
1

δ

)
+
‖θ∗‖2
λ

,

with probability at least 1− δ, we have〈
φe, θ̄t

〉
− c
√
φTe Σtφe ≤ 〈φe, θ∗〉 ≤

〈
φe, θ̄t

〉
+ c
√
φTe Σtφe,

for all e ∈ E and t = 1, 2, . . . n.

Notice that
〈φe, θ∗〉 ≤

〈
φe, θ̄t

〉
+ c
√
φTe Σtφe

is exactly w̄(e) ≤ ŵt(e).

B.2. Regret Analysis

We define event G as

G =

{〈
φe, θ̄t

〉
− c
√
φTe Σtφe ≤ 〈φe, θ∗〉 ≤

〈
φe, θ̄t

〉
+ c
√
φTe Σtφe ∀e ∈ E, ∀t = 1, . . . , n

}
, (39)

and use Ḡ to denote the complement of event G. Recall that Lemma 7 states that if

c ≥ 1

σ

√
d log

(
1 +

nKλ2

dσ2

)
+ 2 log

(
1

δ

)
+

1

λ
‖θ∗‖2 , (40)

then P(G) ≥ 1− δ. Moreover, by definition, under event G, we have w̄(e) ≤ ŵt(e), for all t = 1, . . . , n and any e ∈ E.

Notice that

R(n) =

n∑
t=1

E

[∑
e∈A∗

wt(e)−
∑
e∈At

wt(e)

]

=

n∑
t=1

E

[∑
e∈A∗

w̄(e)−
∑
e∈At

w̄(e)

]

=P (G)

n∑
t=1

E

[∑
e∈A∗

w̄(e)−
∑
e∈At

w̄(e)

∣∣∣∣∣G
]

+ P
(
Ḡ
) n∑
t=1

E

[∑
e∈A∗

w̄(e)−
∑
e∈At

w̄(e)

∣∣∣∣∣Ḡ
]

≤
n∑
t=1

E

[∑
e∈A∗

w̄(e)−
∑
e∈At

w̄(e)

∣∣∣∣∣G
]

+ P
(
Ḡ
)
nK,
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where the last inequality follows from the naive bound on the realized regret. If c satisfies inequality (40), we have
P
(
Ḡ
)
≤ δ, hence we have

R(n) ≤
n∑
t=1

E

[∑
e∈A∗

w̄(e)−
∑
e∈At

w̄(e)

∣∣∣∣∣G
]

+ nKδ.

Finally, we bound
∑n
t=1 E

[∑
e∈A∗ w̄(e)−

∑
e∈At w̄(e)

∣∣G] using a worst-case bound conditioning onG (worst-case over
all the possible random realizations), notice that conditioning on G, we have∑

e∈A∗

w̄(e) ≤
∑
e∈A∗

ŵt(e) ≤
∑
e∈At

ŵt(e),

where the first inequality follows from the definition of eventG, and the second inequality follows from thatAt is the exact
solution of the combinatorial optimization problem (E,A, ŵt). Thus we have∑

e∈A∗

w̄(e)−
∑
e∈At

w̄(e) ≤
∑
e∈At

ŵt(e)−
∑
e∈At

w̄(e)

=
∑
e∈At

[〈
φe, θ̄t − θ∗

〉
+ c
√
φTe Σtφe

]
≤ 2c

∑
e∈At

√
φTe Σtφe,

where the last inequality follows from the definition of G. Recall that from Lemma 4, we have

n∑
t=1

∑
e∈At

√
φTe Σtφe ≤ Kλ

√
dn log

(
1 + nKλ2

dσ2

)
log
(
1 + λ2

σ2

) .

Thus we have

n∑
t=1

E

[∑
e∈A∗

w̄(e)−
∑
e∈At

w̄(e)

∣∣∣∣∣G
]
≤ 2cE

[
n∑
t=1

∑
e∈At

√
φTe Σtφe

]
≤ 2cKλ

√
dn log

(
1 + nKλ2

dσ2

)
log
(
1 + λ2

σ2

) ,

which implies

R(n) ≤ 2cKλ

√
dn log

(
1 + nKλ2

dσ2

)
log
(
1 + λ2

σ2

) + nKδ.

C. Technical Lemma
In this section, we derive Equation (36). We first prove the following technical lemma:

Lemma 8. For any φ, θ̄ ∈ Rd, any positive definite Σ ∈ Rd×d, any σ > 0, and any w ∈ R, if we define

Σnew = Σ− ΣφφTΣ

φTΣφ+ σ2

θ̄new =

[
I − ΣφφT

φTΣφ+ σ2

]
θ̄ +

[
Σφ

φTΣφ+ σ2

]
w,

then we have

Σ−1
new = Σ−1 +

1

σ2
φφT (41)

Σ−1
newθ̄new = Σ−1θ̄ +

1

σ2
φw. (42)
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Proof. Notice that Equation (41) follows directly from the Woodbury matrix identity (matrix inversion lemma). We now
prove Equation (42). Notice that we have

θ̄new =

[
I − ΣφφT

φTΣφ+ σ2

]
θ̄ +

[
Σφ

φTΣφ+ σ2

]
w

=

[
Σ− ΣφφTΣ

φTΣφ+ σ2

]
Σ−1θ̄ +

[
Σφ

φTΣφ+ σ2

]
w

= ΣnewΣ−1θ̄ +

[
Σφ

φTΣφ+ σ2

]
w,

that is,

Σ−1
newθ̄new = Σ−1θ̄ +

[
Σ−1

newΣφ

φTΣφ+ σ2

]
w. (43)

Notice that

Σ−1
newΣφ =

[
Σ−1 +

1

σ2
φφT

]
Σφ = φ+

φTΣφ

σ2
φ =

σ2 + φTΣφ

σ2
φ. (44)

Plug Equation (44) into Equation (43), we have Equation (42).

Based on Lemma 8, by mathematical induction, we have

Σ−1
t = Σ−1

1 +
1

σ2

t−1∑
τ=1

|Aτ |∑
k=1

φaτkφ
T
aτk

Σ−1
t θ̄t = Σ−1

1 θ̄1
1

σ2

t−1∑
τ=1

|Aτ |∑
k=1

φaτkwτ (aτk) ,

further noting that Σ1 = λ2I and θ̄1 = 0, we can derive Equation (36).

D. A Variant of Theorem 2 for Approximation Algorithms
By suitably redefining the realized regret, we can prove a variant of Theorem 2 in which ORACLE can be an approximation
algorithm. Specifically, for a (possibly approximation) algorithm ORACLE, let A∗(w) be the solution of ORACLE to the
optimization problem (E,A,w), we say γ ∈ [0, 1) is a sub-optimality gap of ORACLE if

f(A∗(w),w) ≥ (1− γ) max
A∈A

f(A,w), ∀w. (45)

Then we define the (scaled) realized regret Rγt as

Rγt = f
(
Aopt,wt

)
− f (At,wt)

1− γ
, (46)

where Aopt is the exact solution to the optimization problem (E,A, w̄). The (scaled) cumulative regret Rγ(n) is defined
as

Rγ(n) =

n∑
t=1

E [Rγt |w̄] .

Under the assumptions that (1) the support of P is a subset of [0, 1]L (i.e. wt(e) ∈ [0, 1] ∀t and ∀e ∈ E), (2) the item
weight w(e)’s are statistically independent under P , and (3) the oracle ORACLE has sub-optimality gap γ ∈ [0, 1), we have
the following variant of Theorem 2 when CombLinUCB is applied to coherent learning cases:
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Theorem 4. For any λ, σ > 0, any δ ∈ (0, 1), and any c satisfying

c ≥ 1

σ

√
d ln

(
1 +

nKλ2

dσ2

)
+ 2 ln

(
1

δ

)
+
‖θ∗‖2
λ

, (47)

if w̄ = Φθ∗ and the above three assumptions hold, then under CombLinUCB algorithm with parameter (Φ, λ, σ, c), we have

Rγ(n) ≤ 2cKλ

1− γ

√
dn ln

(
1 + nKλ2

dσ2

)
ln
(
1 + λ2

σ2

) + nKδ.

Proof. Notice that Lemma 7 in Section B.1 still holds. With G defined in Equation (39), we have

Rγ(n) =

n∑
t=1

E

[ ∑
e∈Aopt

wt(e)−
1

1− γ
∑
e∈At

wt(e)

]

=

n∑
t=1

E

[ ∑
e∈Aopt

w̄(e)− 1

1− γ
∑
e∈At

w̄(e)

]

=P (G)

n∑
t=1

E

[ ∑
e∈Aopt

w̄(e)− 1

1− γ
∑
e∈At

w̄(e)

∣∣∣∣∣G
]

+ P
(
Ḡ
) n∑
t=1

E

[ ∑
e∈Aopt

w̄(e)− 1

1− γ
∑
e∈At

w̄(e)

∣∣∣∣∣Ḡ
]

≤
n∑
t=1

E

[ ∑
e∈Aopt

w̄(e)− 1

1− γ
∑
e∈At

w̄(e)

∣∣∣∣∣G
]

+ P
(
Ḡ
)
nK,

where the last inequality follows from the naive bound on Rγt . If c satisfies inequality (40), we have P
(
Ḡ
)
≤ δ, hence we

have

Rγ(n) ≤
n∑
t=1

E

[ ∑
e∈Aopt

w̄(e)− 1

1− γ
∑
e∈At

w̄(e)

∣∣∣∣∣G
]

+ nKδ.

Finally, we bound
∑n
t=1 E

[∑
e∈Aopt w̄(e)− 1

1−γ
∑
e∈At w̄(e)

∣∣∣G] using a worst-case bound conditioning on G (worst-
case over all the possible random realizations), notice that conditioning on G, we have∑

e∈Aopt

w̄(e) ≤
∑

e∈Aopt

ŵt(e) ≤ max
A∈A

∑
e∈A

ŵt(e) ≤
1

1− γ
∑
e∈At

ŵt(e),

where

• The first inequality follows from the definition of event G. Specifically, under event G, w̄(e) ≤ ŵt(e) for all
t = 1, . . . , n and all e ∈ E.

• The second inequality follows from Aopt ∈ A.

• The last inequality follows from At ← ORACLE(E,A, ŵt) and ORACLE has sub-optimality gap γ (see Equation (45)).

Thus we have

∑
e∈Aopt

w̄(e)− 1

1− γ
∑
e∈At

w̄(e) ≤ 1

1− γ

[∑
e∈At

ŵt(e)−
∑
e∈At

w̄(e)

]

=
1

1− γ
∑
e∈At

[〈
φe, θ̄t − θ∗

〉
+ c
√
φTe Σtφe

]
≤ 2c

1− γ
∑
e∈At

√
φTe Σtφe,
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where the last inequality follows from the definition of G. Recall that from Lemma 4, we also have

n∑
t=1

∑
e∈At

√
φTe Σtφe ≤ Kλ

√
dn log

(
1 + nKλ2

dσ2

)
log
(
1 + λ2

σ2

) .

Putting the above inequalities together, we have proved the theorem.


