Efficient Learning in Large-Scale Combinatorial Semi-Bandits

A. Proof for Theorem 1
To prove Theorem 1, we first prove the following theorem:

Theorem 3. If (1) W = ®0*, (2) the prior on 0* is N (0, \2I), and (3) the noises are i.i.d. sampled from N(0,0?), then
under CombLinTS$ algorithm with parameter (P, A, o), then we have

, ALn 2dKnA 2dnIn (1 + 2EA%)
RBayeS(n)§1+K)\m1n{\/ln<\/%>,\/dln( W >}\/ ln(l—l—g—z) ) (10)

Notice that Theorem 1 follows immediately from Theorem 3. Specifically, if A > o, then we have

. ALn 2dKn\ nKM\2
BBayes(n) S 1+K)\m1n{\/ln (\/%>,\/dln (m)} \/zdnlogz <1+ d )

=0 (K)\\/dn min{ln(L)7d}) . (11)

‘We now outline the proof of Theorem 3, which is based on (Russo & Van Roy, 2013; Dani et al., 2008). Let H; denote the
“history” (i.e. all the available information) by the start of episode ¢. Note that from the Bayesian perspective, conditioning
on H;, 6" and 0, are i.i.d. drawn from N(G_t, 3;) (see (Russo & Van Roy, 2013)). This is because that conditioning on
H;, the posterior belief in 6* is N (f;, ;) and based on Algorithm 2, 6; is independently sampled from N (;, %;). Since
ORACLE is a fixed combinatorial optimization algorithm (even though it can be independently randomized), and E, A, ®
are all fixed, then conditioning on H;, A* and A? are also i.i.d., furthermore, A* is conditionally independent of §;, and A?
is conditionally independent of 6*.

To simplify the exposition, V0 € R? and VA C E, we define
9(A,0) =D (¢e,0), (12)
ecA

then we have E[f(A*, w;)|Hy, 0%, 0;, A*, AY] = g(A*,0%) and E[f (AL, wy)|Hy, 0%, 0;, A*, AY] = g(At,60%), hence we
have E[R;|H,] = E[g(A*,0%) — g(A?,0%)|H,]. We also define the upper confidence bound (UCB) function Uy : 2% — R

as
Ut(A) = Z |:<¢Ea a_t> + C\/ ¢eTEt¢e} } (13)

ecA

where ¢ > 0 is a constant to be specified. Notice that conditioning on H;, U, is a deterministic function and A*, A? are
i.i.d., then E[U,(A") — Uy (A*)|H] = 0 and

E[R|Hi] = E[g(A",07) — Us(A")[Hi] + E[Up(A") — g(A", 07) [ Ha] - (14)

One key observation is that

E[U(A) — (A%, 0)|H] © S E [ﬂ{e € A} [<¢>e, 6, — 0%) + c\/qﬂwe} Ht}
eclE
® STE[1{e € AMH) E[(¢e, 00 — 0°)|Hi] + B | Y (/0TS0 Ht]
eckE ec At
Y E lz \ I Zige Ht] : (15)
ec At

where (b) follows from the fact that A® and 6* are conditionally independent, and (c) follows from E[0*|H;] =
0;. Hence Bpayes(n) = Y1, Elg(A*,6%) — Uy(A")] + CZ?:IE[ZeeAﬂ \/¢32t¢e] We can show that (1)
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Sor_ i Elg(A*,0%) — Uy (A*)] < 1if we choose

czmm{wn Qf;;)vdm (deg)}, 16)

and @) Y0y B[S cp V/OTS0be| < K/2dnin (1+ 2522) /1n (1 + %), Thus, the bound in Theorem 3 holds.
Please refer to the remainder of this section for the full proof.

A.dl.Boundon } !  E[g(A*,0%) — Uy (A*)]

o> inf i (222). (222, a

then Y 7 E[g(A*,0%) — Uy(A*)] < 1. To prove this result, we use the following inequality for truncated Gaussian
distribution.

Lemma 1. If X ~ N(u,s?), then we have

BXI{X > 0} = [1— 6 [ Z2)] £ = exp (12

= - /’L G S 27T Xp 252 )

where ®¢ is the cumulative distribution function (CDF) of the standard Gaussian distribution N (0,1). Furthermore, if
j < 0, we have E[X1{X > 0}] < —= exp (—QL)

Based on Lemma 1, we can prove the following lemmas:

We first prove that if we choose

Lemma 2. [fc > {/In (i‘/%), then we have ;| E[g(A*,0%) — U, (A*)] < L

Proof. We have the following naive bound:

G(A%, %)~ Ui(AT) = 3 [<¢>e,9* ét>c\/¢zzt¢e}

ec A*

< 3 (000 =8 - eyforsio] 1{(on0 - 8) - oy foTmi0, 2 0
ec A*

<3 ({608 8~ eyfoTmi0] 1{ (600" - 8) — e\ om0, 2 0.
eel

Notice that conditioning on Hy, (e, 0* — 6;) — c\/¢L S p. is a Gaussian random variable with mean —c/¢7' %, ¢, and
variance gbeTZtnge. Thus, from Lemma 1, we have

Eg« ax[g(A",0%) — U (A")|H,]

(a) _ _
< ZEO* |:|:<¢€70* - 0t> —Cy/ ¢Zzt¢e] 1{<¢ea9* - 0t> —Cy/ ¢gzt¢e > O}‘Ht:|

eck
®) ¢TI e c?
< Pe ~tPe _c
*ZV o eXp( 2
eck
© (@Y Mo ( > =
<e - <e - —, 18
Cow (-5 ) D el <o (-5 ) 2 ()

eckE
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where the last two inequalities follow from the fact that ¢1 X0, < ¢T 310, < N2||de||? < A2, since [|¢.| < 1 by
assumption®. Thus we have

- 62> nAL
E A% 0%) — U (AY)]| <exp | —— | —. (19)
[;M - v <o (<5 ) "2
If we choose ¢ > 4/21n (F) then we have E[Y"" | [g(A*,0%) — U (4%)]] < 1. 0
Lemma 3. Ifc > ,/dIn (%f/l%)‘), then we also have Y ;| E[g(A*,0%) — Upy(A*)] <1
Proof. Weuse vy, ..., v, to denote a fixed set of d orthonormal eigenvectors of ;, and A%, . .., A2 to denote the associated
eigenvalues. Notice that for ¢ £ j, we have fuiTZtvj = A?viij =0.Vi=1,...,d,wedefinev,1 4 = —v; and A; 14 = Ay,

which allows us to define the following conic decomposition:

2d
= Zaeivi, Vee E,

=1

subject to the constraints that a.; > 0, V(e, 7). Notice that a.;’s are uniquely determined. Furthermore, for i and j s.t.
|i — j| = d, by definition of conic decomposition, we have 0eite; = 0. In other words, a is a d-sparse vector.

Since we assume that [|¢.[ < 1, we have that >2°¢ a2, < 1, Ve € E. Thus, for any e, we have that (¢, 0* — 6;) =
Z?il Qle; <1},‘, 0* — 9t> and

¢Zzt¢e = (Z Qe V; > Zt Zaezvj

2d 2d
= Z Z QeiOle; viTZtvj. (20)

i=1 j=1

Notice that for i # j, if |¢ — j| # d, then viTEtvj = 0; on the other hand, if | — j| = d, aeiae; = 0. Thus, if ¢ # j, we
have i, v; Etvj = 0. Consequently,

2d
d)zzt(be Z aez i E{U, Z angZQ
i=1
Thus we have

2d
VT Side = ;a;Af_fZaez i @1

where the inequality follows from Cauchy-Schwartz inequality, specifically, define s; = 1 if ae;A; # 0, and s; = 0O if
aei\; = 0, then we have

2d 2d 2d
ZaeiAi = ZaeiAisi < Z 812 ZaQ A2 < \/g
=1 =1 =1

8Notice that in the derivation of Inequality (18), we implicitly assume that ¢Z 3¢ > 0, Ve € E. It is worth pointing out that the
case with ¢2 2;¢p. = 0 is a trivial case and this inequality still holds in this case.
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where the last inequality follows from the fact that « is d-sparse. Thus, for any e, we have that

2d 2d
<¢e, 0" — §t> —Cy/ ¢L%¢. < Zaei <Uz‘, 0" — 9_t> - % Z Qeil\;. (22)
i=1 1=1

Consequently, we have

2d
= = CAi
3 [l o= eyerme] <3 (00 25) (5 o) =
Define X; = (v;, 0% — 6;) — f%’, notice that conditioning on H;, we have X;|H; ~ N (— C\;\E , Af) Hence we have

2d
G 0" —0) — e [oTSipe < S X | Y o
S 0o 255

e€A* ec A*

() 2d
< ZXi]l{Xi >0} [Z Oéei‘| )
=1

ec A*

where the inequality (b) follows from the fact that X; < X;1{X; > 0} and [ZP A aei] > 0. On the other hand, notice
that [A*| < K

d
Zaeisfm*ﬁsm S S a < iE 3 1= 4 < K.
ec A* ecA* ecA* j=1 ecA*

Since X;1{X; > 0} > 0, we have

2d

D (e, 07 = 1) — e [$TS4de < K Y X;1{X; > 0},

e€A* i=1

notice that the RHS does not include A*. Hence we have

Eg-[g(A",0%) = Us(A")[Hi] = Bo- | > (¢e, 0" = 0) — e/ 6T 16

e€A*
2d

< KZ]EQ*[Xil{Xi > 0}|Hy]

i=1

2d
A; 2 24K\ 2

(2] < M (),
— \or 2d Vor 2d

where the last inequality follows from the fact that A; < A. Hence we have

- 2dKn\ 2
2 : * k) _ *\] < _
f:1E[g(A 07) — D) < V2 exp< Zd) ’

if we choose ¢ > 4 /2dIn (2‘3%’\), then we have Y | E[f(A*,0%) — U, (A*)] < 1. O
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Combining the results from Lemma 2 and 3, we have proved that if

cominf i (222 o (2524)

then > | E[g(A*,6*) — Uy (A*)] < 1.

A2.Boundon) ; E [ZeeAt \/m}

In this subsection, we derive a bound on ) ;" | E [Z ccat V d)ZZtgbe] . Our analysis is motivated by the analysis in (Dani

et al., 2008). Specifically, we provide a worst-case bound on 21’21 D ecat VOIS pe, for any realization of random
variable w,’s, 0;’s, At’s, A*, and 0*.

n dnlo 1+”KfX2
Lemmad. > )" > . /¢I'E0. < KA bigl-irj;;;)

Proof. To simplify the exposition, we define

Rtk = 4/ (bgi thﬁa;‘c . (24)

First, notice that 3, ! is the Gramian matrix and satisfies

|AY]
1
—1 -1 T
Y =2+ o) Z‘ﬁai‘éai- (25)
k=1
Hence for any ¢, k, we have that
_1

_ _ 1 1 1 1 _1
det [;4] > det {zt 1y ﬁ% ¢fi } = det {zt <I + ﬁzg ¢a;€¢fz zg) ¥, }

_ 12 L _ 1
= det [X; '] det {I + 5% ¢a£¢f¢czg} = det [2;] <1 + O_Qqs}fzthsaz)

) ) (26)
) : Q27

Remark 1. This is where the extra O(v/ K) factor arises. Notice that this extra factor is purely due to linear generalization.
Specifically, if ® = I, then ¥;’s and Et_l ’s will be diagonal, and we have

2
Zt,

— k
= det [2; '] (1 +—

Hence we have that

2
2tk
o2

(det [S4))"™ = (det [571]) H' (1 +

|A] 2
— _ zZ.
det [2] = det 27 [] (1 + ;:) : (28)

k=1

Notice that Equation 27 further implies that

A
(det [=24])" = (et [0 T (1 - Uf) , (29)

k=1
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since det [E;}}] > det [£; '] and |A?| < K. Recall that det [£; '] = (%)d, we have that

(det [ZnHDK > (det [Efl])K H l_tll (1 + zj:) - /\ilK ﬁ ﬁ (1 ™ f:) ' (30)

t=1k=1

On the other hand, we have

n A n
_ 1 d 1 d nK
trace [Znil] = trace | — —2 ZZ ak¢§§; = + ) Z ||¢ak||2 < /\2 PR (31

where the last inequality follows from the assumption that ||@.|| < 1, Ve € F and |A*| < K. From the trace-determinant
inequality, we have

=

étrace [Zn+1] > (det [E;H]) )

which implies that

1  nK 1 1 " 1 T t2
(}\2 + o3 ) > (dtrace [Zn+1]> > (det [2n+1 Z /\sz H H ( )

t=1k=1

Taking the logarithm, we have

n |A°| 2
K)\Q 2tk

t=1 k=1

Notice that ztzk = ¢ZE Et¢qt , hence we have that 0 < Zt2,k < d)anc Yigar < )\2||¢a2 |2 < A2. We have the following
technical lemma:

Lemma 5. For any real number x € [0, \2], we have x < ﬁ log (1+ %).
og 27

Proof. Define h(z) = ﬁ log (1 + %) — =, thus we only need to prove h(z) > 0 for z € [0, A?]. Notice that h(z)
og

is a strictly concave function for z > 0, and ~(0) = 0, h(\?) = 0. From Jensen’s inequality, for any z € (0, A\?), we have

h(z) > 0. O

Hence we have that

dK A2 log (1 + "KV)

do?

log (1 + 2%)

(33)

dnlog (1 + KAQ)
log (1 + )‘7)

(34)
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Recall that the above bound holds for any realization of random variables, thus, we have

n

n |AY —
E Z[Ut(At)_g(Atvg*)]l — F ZZZM <CK)\\/dnlog(1+f§>\).

=1 t=1 k=1 log (1 + g)

With

mN Qg;),%ln(?gg)}, Gs)

and combining the results in the previous subsection, we have proved Theorem 3.

B. Proof for Theorem 2

We start by writing an alternative formula for ¥, and 6. Notice that based on Algorithm 1, we have:

t—1|A7|
S =Tt 3 3 dadl
=1 k=1
t—1|A7|
»:1g, = 02212@5@7% af) (36)
T k=1

Interested readers might refer to Appendix C for the derivation of Equation (36). The proof proceeds as follows. We first
construct a confidence set of 8* based on the “self normalized bound” developed in (Abbasi-Yadkori et al., 2011). Then
we derive a regret bound based on Lemma 4 derived above.

B.1. Confidence Set
Our construction of confidence set is motivated by the analysis in (Agrawal & Goyal, 2013). We start by defining some
useful notation. Specifically, forany t = 1,2,...,n,any k = 1,2, ..., |At|, we define

Nt = Wi (ai) - W (a};) .

One key observation is that 7; ;’s form a Martingale difference sequence (MDS) since w/(e)’s are statistically independent
under P. Moreover, since w; (a},) is bounded in interval [0, 1], 7 5’s are sub-Gaussian with constant R = 1. We further
define

t—1|A7|

I+ZZ¢>a bar

T7=1 k=1

A7
Z (rb(l 777 k

7=1 k=1

t—1

As we will see later, we define V; and &; to use the “self normalized bound” developed in (Abbasi-Yadkori et al., 2011)
(see Theorem 1 of (Abbasi-Yadkori et al., 2011)). Notice that based on the above definition, we have ¥, 1= #V}, and

n * 1 1 *
9,:—9 :Et(g?&_/\29>

°Note that the notion of “time” is indexed by a pair (¢, k), and follows the lexicographical order.
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To see why the second equality holds, notice that

t—1 AT
1z 1 .
= 5 55 o (650 )
7=1k=1

= (Et_ - )\21> *ft

Hence, for any e € F, we have

n * 1 1 *
|<¢e,9t -0 > = ¢)6th <02§t - FQ >‘
1 1,
< loells, | 28— 30"

1 1,
< lls, |5 els, + 531971,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality follows from the trian-
gular inequality. Notice that
1075, < 10%[, = A07]l5,

hence we have

_ 1 1 .
(600 =) < el | S5l + 3 1071

Moreover, we have

1
S llls, =25 llyay s = = ey,

So we have

(6erBr — 0%)] < [[9ells, [ €yt + ||o*||2] . 37

The above inequality always holds. We now provide a high probability bound on ||&; ||V_1 based on the “self normalized
bound” proposed in (Abbasi-Yadkori et al., 2011). From Theorem 1 of (Abbasi- Yadkori et al., 2011), we know for any
d € (0,1), with probability at least 1 — 0,

1/2 -1/2
[€elly,- < \/210g (det(Vt) det(V4) ) Vi=1.2.....

5

d
Obviously, det (V1) = {K—Z} , on the other hand, we have

[det(Vf)]l/d M _ <

|AT]
2 o ( DK
d d I; ||¢(lk H — )\2 d 9

where the last inequality follows from the assumption that ||¢.| < 1. Hence, for ¢ < n, we have

1
T=1

2
l/d TLK

Thus, with probability at least 1 — §, we have

K2 1
oo < Jdlog (14 ™Y fotoe (L) w12, .0
Hé-HVt g dO’2 g 5
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Thus, we have the following lemma:

Lemma 6. Forany \,o > 0 and any ¢ € (0, 1), with probability at least 1 — 6, we have

— 1 nK\2 1\ 67,
_ < _ B, _ az "2
(e, 00 — 07)] < lldells, [U\/dlog <1 + s > +2log (5> | (38)

forallt=1,2,...,n,and forall e € E.

Notice that ||, ||y, = /@I e, thus, the above lemma immediately implies the following lemma:

Lemma 7. Forany \,o > 0, any ¢ € (0,1), and any

1 DK N2 N el
> —4/dl 14+ — 21 — —
C‘M °g< e )* Og(6>+ X

with probability at least 1 — 0, we have

(¢e,01) — e/ TS pe < (e, 0F) < (e, 01) + c\/ 9T S e,

forallee Fandt=1,2,...n.

Notice that

<¢ea 0*> < <¢67 §f> + Cy/ ¢Zzt¢e

is exactly w(e) < wy(e).

B.2. Regret Analysis

We define event G as

G = {<¢e, 0:) — c\/ 0T Sige < (Be,0%) < (e, 0r) + /ST Ve € E, VE =1,... n} , (39)

and use G to denote the complement of event G. Recall that Lemma 7 states that if

1 nK A2 1\ 1
> — — < N
ca\/dlog<1+ 3 >+2log(5>+All9 2 (40)

then P(G) > 1 — §. Moreover, by definition, under event G, we have w(e) < wy(e), forallt =1,...,nand any e € E.

Notice that

R(n) = ZE Z w(e) — Z Wt(e)]

t=1 ec A* ec At

= ZE Z w(e) — Z v‘v(e)]
t=1 e€A* ec At
P(G)Y_E lz wie)— Y w(e)|G| +P(G)D E| > w(e)- > w(e)|G

t=1 ec A* ec At t=1 ec A* ec At

<SS E|DY wle) = Y w(e)|G| +P(G)nk,

t=1 e€CA* ec At
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where the last inequality follows from the naive bound on the realized regret. If c satisfies inequality (40), we have
P (G) < §, hence we have

G| +nKoj.

A <3 E| Y wle) = 3wl

e€A* ec At

Finally, we bound 37" | E [>°. . 4. W(e) — 3. 4+ W(e)|G] using a worst-case bound conditioning on G (worst-case over
all the possible random realizations), notice that conditioning on G, we have

dowle) < Y Wile) < ) Wle),

e€CA* ecA* ec At

where the first inequality follows from the definition of event G, and the second inequality follows from that A? is the exact
solution of the combinatorial optimization problem (F, A, W;). Thus we have

dowle)= > w(e) < > Wile) = > wle)

ecA* ec At ec At ec At
= Z {<¢e7 0, — 9*> +Cy/ %TEtfﬁe}
ec At
<2 ) /TS,
ec At

where the last inequality follows from the definition of G. Recall that from Lemma 4, we have

~ dnlog ( 1+"£§2)
> D \/qbzztfbesm\/ (1)

t=1 ec At

Thus we have

n

SE|D wle)- > w(e)|G

t=1 e€A* ec At

- dnlog (1 + 2E5°
<2E |33 /oo SQcKA\/ ”1;’:E1+2) )

t=1 ec At

which implies

nK\2
R(n) < 2cin, | 080 20) s
log (1 + %)

C. Technical Lemma

In this section, we derive Equation (36). We first prove the following technical lemma:

Lemma 8. For any ¢,0 € R?, any positive definite ¥ € R, any o > 0, and any w € R, if we define

T

S oy 200 E

dTYp + 02
_ Seo” - ¢
enew— |:I ¢TE¢—|—0'2:|9+|:¢)TE¢+0'2:| w,

then we have
1
Shew =271 F f¢¢T (41)

e Onew =% 19+ ¢>w (42)

new
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Proof. Notice that Equation (41) follows directly from the Woodbury matrix identity (matrix inversion lemma). We now
prove Equation (42). Notice that we have

o SeeT 7 - 6
Hnew - |:I— ¢TE¢+U2:| 9 + |:¢TE¢+U2:| w
B S66TE | o n 6
_[E_¢Uw+042 9+{w2¢+ﬁ}w
pI0) :|

_ —-1p
=Y hewX 0+{¢TZ¢)+02 w

that is,
_ _ Yl Ye
—1 _ v—1 new
Yewlnew =270 + LbTEgb n 02} w. (43)

Notice that

_ _ 1 ) o2+ ¢T%¢
Srew X6 = [E '+ mﬂ Sp=¢+—5—¢= 0. (44)
g g g
Plug Equation (44) into Equation (43), we have Equation (42). O]
Based on Lemma 8, by mathematical induction, we have
1 =t [A7]
-1 _y-1, L T
Xy =X+ 72 ;I;(ba;(éa;
- =l [A7|
10, = z;lelg SN barw (af)
T7=1k=1

further noting that ¥; = A7 and 6; = 0, we can derive Equation (36).

D. A Variant of Theorem 2 for Approximation Algorithms

By suitably redefining the realized regret, we can prove a variant of Theorem 2 in which ORACLE can be an approximation
algorithm. Specifically, for a (possibly approximation) algorithm ORACLE, let A*(w) be the solution of ORACLE to the
optimization problem (E, A, w), we say v € [0, 1) is a sub-optimality gap of ORACLE if

fA*(w),w) > (1—7) rfIlleajt{ f(A,w), Vw. (45)

Then we define the (scaled) realized regret R} as

RY = (A wi) = 5

; (46)

where A°P is the exact solution to the optimization problem (E, A, w). The (scaled) cumulative regret R (n) is defined

as
n

R'(n) =Y E[R]|w].

t=1

Under the assumptions that (1) the support of P is a subset of [0, 1]7 (i.e. wy(e) € [0,1] V¢ and Ve € E), (2) the item
weight w(e)’s are statistically independent under P, and (3) the oracle ORACLE has sub-optimality gap v € [0, 1), we have
the following variant of Theorem 2 when CombLinUCB is applied to coherent learning cases:
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Theorem 4. For any \,o > 0, any ¢ € (0,1), and any c satisfying

1 nkK A2 ||9*||2
> — -
c \/dln<1—|— 3 )—1—21 <5> N )

if w = ®0* and the above three assumptions hold, then under CombLinUCB algorithm with parameter (P, \, o, ¢), we have

2K\ [dnln (14 253
In (1+23)

R7(n) <

< + nKo.
L=~

Proof. Notice that Lemma 7 in Section B.1 still holds. With G defined in Equation (39), we have

t=1 e€ Aopt ec At
n B 1 B
= Z:IE Z (e) — . (e)]
t=1 e€ Aopt ec At
_ 1 _ . ~ 1 - _
ZE > w(e) = > w(e)|G +P(G)ZE[Z (&) — 17— (e)G]
ec Aopt v ec At t=1 e€ Acpt v ec At
n 1 _
t=1 e€ Aopt ec At

where the last inequality follows from the naive bound on R} . If ¢ satisfies inequality (40), we have P (G) < 4, hence we

W=YE] Y W X w

e€ Aopt 7 cear
Finally, we bound >";" | E [Ee caom W(€) = 725 Yo e We) ‘G] using a worst-case bound conditioning on G (worst-
case over all the possible random realizations), notice that conditioning on GG, we have

Z w(e) < Z ) < maXZWt ’y Z we(e),

ec Aopt ec Aopt ecA

+ nKo.

where

e The first inequality follows from the definition of event G. Specifically, under event G, w(e) < W (e) for all
t=1,...,nandalle € E.

e The second inequality follows from A°Pt € A.

e The last inequality follows from A? < ORACLE(E, A, W;) and ORACLE has sub-optimality gap  (see Equation (45)).

Thus we have

> - Y w ,JZM@—ZMJ

e€ Aopt eGA’ ec At e€ At
— Z [ (e, 0r —9*>+c\/¢zzt¢e]
eeA”

< Z \ ET Side,

eeA"
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where the last inequality follows from the definition of G. Recall that from Lemma 4, we also have

n dnlog (1+ "Ké‘z)
AT e < KX do® /.

t=1 ec At

Putting the above inequalities together, we have proved the theorem.



